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Integral membrane proteins, which 
represent 20-30% of the proteome, 
consist an intriguing group of molecular 
nano-machines in living cells. They 
are unique in almost every aspect: (i) 
they are biosynthetically dependent 
on intimate membrane-ribosome 
relationships; (ii) they zigzag through 
a complex lipophilic environment of 
the membrane utilizing a sophisticated 
membrane-embedded proteinaceous 
channel; (iii) they fold into active 
enzymes through mechanisms that 
are only vaguely understood; (iv) they 
mediate processes essential to the 
life of the cell that include vectorial 
enzymatic reactions and information 
transfer; and (v) when they require 
degradation, cells use mechanistically 
fascinating pathways for recycling. 
Since many of these proteins are critical 
for life, various inherited diseases result 
when mutations occur in membrane 
proteins. Furthermore, membrane 
proteins serve as targets for more than 

50% of the world’s pharmaceuticals at 
this time.

Currently, our laboratory has 
several ongoing membrane protein-
related research aims. One is to 
achieve a better understanding of 
the mechanism underlying secondary 
multidrug (Mdr) export. A second is 
to elucidate the biosynthetic pathway 
of membrane proteins and a third 
is to unravel the mechanism of 
integral membrane protein folding 
and recycling. Mechanistic aspects 
of Mdr research involve physiologic, 
genetic, biochemical, and structural 
approaches, while membrane protein 
biogenesis studies utilize mainly in vivo 
experiments and the quality control 
research is studied using both in vivo 
and in vitro techniques. To investigate 
these basic, evolutionarily conserved 
biological phenomena, our experimental 
system is the well-characterized 
Gram-negative bacterium Escherichia 

coli--a “clever” bug that has provided 
basic insights into innumerable basic 
biological processes.      

 
Mdr transport: Promiscuity in 
structure and function 

The efflux of multiple drugs by 
Mdr transporters represents a major 
obstacle in successfully treating many 
cancer and infectious diseases. In 
addition to their clinical importance, 
Mdr transporters attracted us because 
they have intriguing mechanistic 
characteristics that differ substantially 
from those of substrate-specific 
transport systems (Lewinson et al, 
2006). Several important properties 
have been revealed during our 
investigation of the Escherichia coli 
Mdr transporter MdfA (Edgar and 
Bibi, 1997; Adler and Bibi, 2002; Sigal 
et al, 2006b). (1) Our studies suggest 
that MdfA functions as a monomer 
and has a large, complex, robust 
and extremely flexible substrate-
recognition pocket (Lewinson and 
Bibi, 2001; Adler and Bibi, 2004; Sigal 
et al, 2005; Sigal et al, 2007). (2) The 
importance of electrostatic interactions 
between Mdr transporters and their 
cationic substrates was noted in our 
studies (Edgar and Bibi, 1999; Adler 
et al, 2004; Adler and Bibi, 2005). (3) 
We revealed a surprising degree of 
promiscuity in the transport mechanism 
of MdfA (Lewinson et al, 2003; Sigal et 
al, 2006a; Sigal et al, in preparation). 
(4) We have recently discovered an 
unanticipated major physiological role 
for MdfA in alkaline pH homeostasis 
(Lewinson et al, 2004; Krulwich et al, 
2005).  

Collectively, by using MdfA as 
a paradigm for secondary Mdr 
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Fig. 1 Theoretical 3D model of MdfA. All the acidic residues of MdfA are shown in a space 
filled presentation. Residues D34 and E26 are membrane embedded and can be utilized 
alternatively for active transport. Arrows illustrate the drug/proton antiport activity.
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by the findings that E. coli utilizes a 
similar pathway and by the possibility 
of studying the targeting pathway 
in vivo. Our initial results were both 
surprising and unpredicted (Herskovits 
et al, 2000). (1) We demonstrated that 
of the major components of the system 
only the SRP-receptor is essential for 
membrane protein expression and 
membrane targeting of ribosomes 
(Seluanov and Bibi, 1997; Herskovits 
and Bibi, 2000). The SRP itself was 
found to be inessential for expression 
and targeting, but is required for proper 
insertion and assembly of membrane 
proteins (Bochkareva et al, in 
preparation). Given its central role in the 
process, we focused our later efforts in 
elucidating the role of the SRP-receptor 
in vivo. (2) We identified the functional 
core of the SRP-receptor (Eitan and 
Bibi, 2004). (3) We demonstrated that, 
despite the fact that the majority of the 
SRP receptor molecules are located in 
the cytoplasm, only the membrane-
bound receptor represents the 
functional form (Zelazny et al, 1997; 

Herskovits et al, 2001). (4) Importantly, 
we discovered that the SRP-receptor 
forms a complex with membrane-
bound ribosomes, even in the absence 
of SRP or the translocon (Herskovits 
et al, 2002). (5) In collaboration with 
the group of prof. Irmgard Sinning at 
Heidelberg University, we identified 
a lipid-responsive domain in the 
receptor (Parlitz et al, 2007; Bahari 
et al, 2007). Collectively, our results 
support an alternative order of events 
in the E. coli system, compared to 
the current SRP model. Due to the 
complexity of in vivo experiments, we 
are evaluating the predictions of our 
hypothesis, utilizing a broad variety of 
approaches and methods, including 
genetic, biochemical, structural, and 
imaging tools, with the aim of better 
understanding how ribosome targeting 
and membrane protein synthesis are 
regulated in vivo.

Intra-membrane proteolysis
We were attracted by the relatively 

recent discovery of proteolytic 
enzymes, which catalyze cleavage of 
integral membrane proteins inside the 
lipid environment. This activity is crucial 
for many biological and pathological 
processes. One group of such 
proteases includes Rhomboids, which 
are evolutionarily widespread intra-
membrane serine proteases that cleave 
unrelated sequences inside membrane 
proteins with a single trans-membrane 
helix. To test whether rhomboids 
may have a general role in cleavage 
of unfolded membrane proteins, we 
utilized the E. coli rhomboid GlpG (of 
unknown function) and several E. 
coli integral membrane proteins. Our 
studies demonstrated that indeed, the 
protease cleaves unfolded membrane 
proteins both in vivo and in detergent 
solution, and various aspects of this 
activity are currently investigated (Erez 
and Bibi, in preparation). We suggest 
that, in addition to their specific 
functions, rhomboids may potentially 
play a role in membrane quality control, 
by initiating cleavage of unfolded 
integral membrane proteins. 

The intriguing question of how a 
water requiring reaction (peptide bond 

transporters (Sigal et al, 2006b), our 
studies demonstrated that in order 
for these transporters to function in 
multidrug resistance, they must be 
exceptionally flexible in structure and 
function. As a major goal for the future, 
we hope to resolve the high-resolution 
3D structure of MdfA and elucidate 
the multidrug transport mechanism, 
with an emphasis on the novel 
proton recognition and translocation 
mechanism. 

Membrane protein biogenesis: 
Surprises in vivo 

All living cells utilize conserved 
systems responsible for membrane 
protein biogenesis, including the signal 
recognition particle (SRP) system, 
consisting of the SRP protein-RNA 
complex, which recognizes nascent 
hydrophobic peptides in the process of 
translation, and its membrane-bound 
receptor (the SRP receptor). Since 
the SRP pathway has been elucidated 
mainly through a remarkable series 
of in vitro studies, we were attracted 

Fig. 2 A model for targeting ribosomes translating membrane proteins to the translocon 
in E. coli. SRP= Signal recognition particle; FtsY= SRP-receptor. (I) targeting ribosomes to 
the membrane. (II) The ribosome docking site after incorporation of an mRNA encoding a 
membrane protein. (III) Interaction with a free translocon (SecYEG). (IV) Dissociation of 
SRP & FtsY and assembly of the ribosome translating a membrane protein on the translocon. 
The positively charged amphipathic helix in FtsY is required for GTPase stimulation and 
dissociation of SRP from its receptor.
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