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The immune system functions by 
a coordinated response of many cell 
types that exchange information via 
a complex communication network 
(Figure 1A). Important mediators of 
that intercellular communication are 
cytokines – small proteins that are 
secreted and can be detected by cells of 
the immune system, as well as by cells 
of other tissues. Thus, cytokines have 
crucial functions in the development, 
differentiation and regulation of 
immune cells.

The motivation for our research 
is to obtain a better quantitative 
understanding of this intercellular 
communication network. We use a 
modular approach, characterizing the 
function of simple network modules that 
will provide the basic building blocks 
of the network. Studies at the level 
of single cells can avoid ambiguities 
that arise due to heterogeneous 
responses in cell populations, and 
provide quantitative data under well-
defined conditions, which is necessary 
for mathematical modeling. We aim 
to combine quantitative experimental 
studies and mathematical modeling to 
gain new insights on the function of 
these networks.

Model Systems
Currently, we focus on network 

modules involved in T-cell activation 
and differentiation. The simplest 

module consists of autocrine feedback, 
where cells express a receptor for a 
cytokine which they secrete (Fig. 1B). 
Such feedback exists in the process of T 
cell activation, where the cytokine IL-2 
is secreted upon activation and induces 
upregulation of the expression level 
of its own receptor. Other examples 
for such positive autocrine feedback 
include IFN-g in Th1 cells, IL-4 in Th2 
cells, and IL-21 in Th17 cells. We aim 
to better understand the functions of 
autocrine feedback and its importance 

in the process of T-cell activation. Some 
questions of interest include: How does 
the feedback influence threshold for 
antigen specificity? Can one cell support 
its own proliferation, or is a quorum 
response required? Does feedback 
affect heterogeneity in a clonal 
population of cells? Applying mouse 
genetics, drugs and altered environment 
settings will serve to characterize the 
feedback loop and isolate its functions.

A second module of interest is 
combinatorial signaling: cells can 
express several cytokine receptors 
simultaneously, enabling response 
to combinations of cytokines. 
Differentiation of CD4+ T-cells into 
Th1/Th2 subsets serves as a paradigm 
for cell differentiation driven by 
combinations of external signals. We 
are quantitatively mapping the response 
of activated Th cells to various cytokine 
combinations and time-profiles, and 

measure secreted cytokine profiles of 
cells during the differentiation process. 
These experiments at the single-cell 
level are expected to yield detailed 
information on how input parameters 
influence regulation and decision-
making in this model differentiation 
process. Specific questions include: Is 
the response gradual or switch-like (all-
or-none)? Is the differentiation process 
deterministic or random (Instruction vs. 
selection)? Modeling of this system will 
include effects of stochasticity in gene 
expression.

Another area of interest is the study 
of intercellular interactions in tumor 
microenvironments and their role in 
tumor development. In collaboration 
with Prof. Yinon Ben-Neriah and Dr. Eli 
Pikarsky from the Hebrew University, we 
study a mouse model for inflammation 
induced cancer. Here, the interactions 
between transformed hepatocytes 
and tumor-associated macrophages 
will be investigated at the single-cell 
level, inside simple microenvironments 
realized in microfluidcs devices.

Methodology
We are developing and applying 

several techniques in our studies: A) 
well-defined cellular microenvironments 
realized inside microfluidics devices; 
B) ELISA based immunoassay and 
sensitive fluorescence microscopy for 
studying responses of single living cells 
in those devices; C) flow cytometry 
for high throughput, multi-parameter 
analysis of secreted cytokines and 
distributions of cellular parameters; and 
D) systems biology based mathematical 
modeling of network function based on 
experimental observations. The use of 
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Fig. 1 The cytokine communication network. A) Immune cells communicate via a complex 
network of cytokines. The diagram is partial, and serves as an illustration (adopted from 
Biocarta). B) A network module: Autoregulation. Upon activation, T-helper cells secrete IL-2 
and up-regulate expression of IL-2 receptor. Further cell proliferation depends on sufficient 
IL-2 signaling.
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advanced fluorescent microscopy and 
microfluidics systems enables studies 
of single living cells in well defined 
environments and under controlled 
interactions. These techniques extend 
a method we have developed for 
sensitive detection of gene expression 
in individual cells. 

That method combines trapping 
of individual cells inside microfluidic 
chambers and enzymatic amplification 
to achieve sensitive fluorescence 
detection. Using this novel method 
we could study real-time protein 
expression events in living E. coli cells 
with single-molecule resolution [Cai, 
L., et. al., 2006]. This allowed us to 
observe for the first time individual 
protein production events, which occur 
in random bursts, and characterize their 
statistical properties (Figure 2). The 
method was also used to detect the 
steady-state population distribution of 
a protein expressed at a very low level, 
by counting the number of reporter 
molecules in individual cells. This was 
demonstrated in bacteria, yeast and 
mammalian cells. Our assay opens up 
possibilities for studying the process 
of protein expression, its control and 
dynamics, in single cells of diverse cell 
types in the unexplored regime of low 
expression levels. Possible examples 
include transcription factors involved 
in gene regulation, or the leakiness of 
silenced promoters in differentiated 
cells.

Mathematical modeling
We are applying mathematical 

modeling and numerical simulations 
to study simple modules of the 
cytokine communication network. In 
accord with experimental work, we 
are building models of the effects 
of autocrine feedback, and also of 
combinatorial cytokine signaling 
affecting differentiation of T-helper 
cells. The models will include effects of 
stochasticity in gene expression, which 
contribute to heterogeneity in cell 
populations. Recently, we developed 
an analytical theory that relates the 
dynamic random process of protein 
production in bursts, with variation in 
protein levels across a population of 
genetically identical cells [Friedman, N., 

Fig. 2 Detection of protein expression with single-molecule sensitivity A) A two-layers 
microfluidics device for measuring protein expression in individual cells, with single-
molecule sensitivity [Cai, L., et. al., 2006]. Cells containing the reporter b-galactosidase 
are trapped inside a closed miniature chamber. Right: The increase rate of fluorescent 
signal is proportional to the number of reporter molecules in the chamber. B) Quantitative 
measurement of protein production in living E. coli cells. Left: Proteins are produced in bursts 
of random time and amplitude. Inset: the number of protein molecules per burst follows an 
exponential distribution. Right: The same assay is used to count reporter molecules in a 
population of cells. The time domain behavior and the population distribution are related 
with an analytical model [Friedman, N., et. al., 2006] (solid line). C) Microfluidic devices 
used for cellular assays. Top: an image of the device shown in A, with closed chambers. 
Middle: An image of a mouse embryonic stem-cell inside one of the chambers of that device. 
Bottom: Primary activated mouse T-cells inside a microfluidics device.

Fig. 3 Random bursts of gene expression in yeast cells. A) Six frames from a movie of yeast 
cells growing under normal (no stress) conditions. These cells express a fusion of the HSP12 
protein to a yellow-fluorescent protein (YFP). Arrows indicate cells that produce the fusion 
protein in a burst. B) Distribution of fluorescence levels in these cells, measured by flow 
cytometry, showing a large variability in protein levels in the cell population. Black line is a 
fit with the analytical model (gamma distribution). C) Traces of YFP fluorescence level as a 
function of time for 10 cells from the experiment shown in A. Cells produce the protein in 
bursts with random timing and amplitude. D) Burst size follows an exponential distribution.
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et. al., 2006]. This model was extended 
to analytically describe the shape of the 
distribution for the cases of negative 
and positive autoregulation, and the 
joint distribution of a repressor and 
a repressed protein (extrinsic noise). 
Additionally, in collaboration with Prof. 
Naama Barkai (Weizmann Institute), we 
applied our model to study how cells 
control the level of noise. Our results 
suggest that noise in gene expression 
contains mechanistic information about 
the underlying regulation processes, 
which is not available from the mean 
response (Figure 3).
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