Publications
2024
-
(2024) Protein Science. 33, 8, e5087. Abstract
The Escherichia coli GroEL/ES chaperonin system facilitates protein folding in an ATP-driven manner. There are
2023
-
(2023) Current Opinion in Structural Biology. 83, 102721. Abstract
Characterization of transition and intermediate states of reactions provides insights into their mechanisms and is often achieved through analysis of linear free energy relationships. Such an approach has been used extensively in protein folding studies but less so for analyzing allosteric transitions. Here, we point out analogies in ways to characterize pathways and intermediates in folding and allosteric transitions. Achieving an understanding of the mechanisms by which proteins undergo allosteric switching is important in many cases for obtaining insights into how they function.
-
(2023) Communications Biology. 6, 1, 888. Abstract
The CCT/TRiC chaperonin is found in the cytosol of all eukaryotic cells and assists protein folding in an ATP-dependent manner. The heterozygous double mutation T400P and R516H in subunit CCT2 is known to cause Leber congenital amaurosis (LCA), a hereditary congenital retinopathy. This double mutation also renders the function of subunit CCT2, when it is outside of the CCT/TRiC complex, to be defective in promoting autophagy. Here, we show using steady-state and transient kinetic analysis that the corresponding double mutation in subunit CCT2 from Saccharomyces cerevisiae reduces the off-rate of ADP during ATP hydrolysis by CCT/TRiC. We also report that the ATPase activity of CCT/TRiC is stimulated by a non-folded substrate. Our results suggest that the closed state of CCT/TRiC is stabilized by the double mutation owing to the slower off-rate of ADP, thereby impeding the exit of CCT2 from the complex that is required for its function in autophagy.
-
(2023) Journal of Physical Chemistry Letters. 14, 29, p. 6513-6521 Abstract
The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.
-
From Microstates to Macrostates in the Conformational Dynamics of GroEL: a Single-Molecule FRET Study(2023) BioRxiv. Abstract
The chaperonin GroEL is a multi-subunit molecular machine that assists in protein folding in the E. coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. However, a measurement of subunit dynamics and their relation to the allosteric cycle of GroEL has been missing. Here, we report single-molecule FRET measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the co-chaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-liganded conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis, confirming the essential role of the observed dynamics in the function of GroEL.
-
2022
-
(2022) Proceedings of the National Academy of Sciences of the United States of America. 119, 48, e221317011. Abstract
Confining compartments are ubiquitous in biology, but there have been few experimental studies on the thermodynamics of protein folding in such environments. Recently, we reported that the stability of a model protein substrate in the GroEL/ES chaperonin cage is reduced dramatically by more than 5 kcal mol−1 compared to that in bulk solution, but the origin of this effect remained unclear. Here, we show that this destabilization is caused, at least in part, by a diminished hydrophobic effect in the GroEL/ES cavity. This reduced hydrophobic effect is probably caused by water ordering due to the small number of hydration shells between the cavity and protein substrate surfaces. Hence, encapsulated protein substrates can undergo a process similar to cold denaturation in which unfolding is promoted by ordered water molecules. Our findings are likely to be relevant to encapsulated substrates in chaperonin systems, in general, and are consistent with the iterative annealing mechanism of action proposed for GroEL/ES.
-
(2022) Journal of Bacteriology. 204, 8, e00179-22. Abstract
The NtrC family of AAA+ proteins are bacterial transcriptional regulators that control σ54-dependent RNA polymerase transcription under certain stressful conditions. MopR, which is a member of this family, is responsive to phenol and stimulates its degradation. Biochemical studies to understand the role of ATP and phenol in oligomerization and allosteric regulation, which are described here, show that MopR undergoes concentration-dependent oligomerization in which dimers assemble into functional hexamers. The oligomerization occurs in a nucleation-dependent manner with a tetrameric intermediate. Additionally, phenol binding is shown to be responsible for shifting MopRs equilibrium from a repressed state (high affinity toward ATP) to a functionally active, derepressed state with low-affinity for ATP. Based on these findings, we propose a model for allosteric regulation of MopR. IMPORTANCE The NtrC family of bacterial transcriptional regulators are enzymes with a modular architecture that harbor a signal sensing domain followed by a AAA+ domain. MopR, a NtrC family member, responds to phenol and activates phenol adaptation pathways that are transcribed by σ54-dependent RNA polymerases. Our results show that for efficient ATP hydrolysis, MopR assembles as functional hexamers and that this activity of MopR is regulated by its effector (phenol), ATP, and protein concentration. Our findings, and the kinetic methods we employ, should be useful in dissecting the allosteric mechanisms of other AAA+ proteins, in general, and NtrC family members in particular.
-
(2022) Annual Review of Biophysics. 51, 1, p. 115-133 Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from
and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. -
(2022) Protein Science. 31, 5, e4298. Abstract
Heterooligomers that undergo ligand-promoted conformational changes are ubiquitous in nature and involved in many essential processes. Conformational switching often leads to positive cooperativity in ligand binding that is reflected in a Hill coefficient with a value greater than one. The subunits comprising heterooligomers can differ, however, in their affinity for the ligand. Such so-called site heterogeneity results in apparent negative cooperativity that is reflected by a Hill coefficient with a value less than one. Consequently, positive cooperativity due to the ligand-promoted allosteric switch can be masked, in cases of such heterooligomers, by apparent negative cooperativity owing to site heterogeneity. Here, we derived expressions for the Hill coefficient, in the case of a heterodimer, in which the contributions from the ligand-promoted allosteric switch and site heterogeneity are separated. Using these equations and simulations for higher order oligomers, we show under which conditions site heterogeneity can significantly mask the extent of observed positive cooperativity.
2021
-
(2021) Journal of Molecular Biology. 433, 20, 167007. Abstract
Recent progress in structure-prediction methods that rely on deep learning suggests that the atomic structure of almost any protein may soon be predictable directly from its amino acid sequence. This much-awaited revolution was driven by substantial improvements in the reliability of methods for inferring the spatial distances between amino acid pairs from an analysis of homologous sequences. Improved reliability has been accompanied, however, by a reduced ability to detect amino acid relationships that are not due to direct spatial contacts, such as those that arise from protein dynamics or allostery. Given the central importance of dynamics and allostery to protein activity, we argue that an important future advance would extend modeling beyond predicting a single static structure. Here, we briefly review some of the developments that have led to the remarkable recent achievement in structure prediction and speculate what methods and sources of information may be leveraged in the future to develop a modeling framework that addresses protein dynamics and allostery.
-
(2021) Angewandte Chemie - International Edition. 60, 36, p. 19637-19642 Abstract
Understanding proteinligand interactions in a cellular context is an important goal in molecular biology and biochemistry, and particularly for drug development. Investigators must demonstrate that drugs penetrate cells and specifically bind their targets. Towards that end, we present a native mass spectrometry (MS)-based method for analyzing drug uptake and target engagement in eukaryotic cells. This method is based on our previously introduced direct-MS method for rapid analysis of proteins directly from crude samples. Here, direct-MS enables label-free studies of proteindrug binding in human cells and is used to determine binding affinities of lead compounds in crude samples. We anticipate that this method will enable the application of native MS to a range of problems where cellular context is important, including proteinprotein interactions, drug uptake and binding, and characterization of therapeutic proteins.
-
(2021) Journal of Physical Chemistry B. 125, 1, p. 70-73 Abstract
Hill coefficients, which provide a measure of cooperativity in ligand binding, can be determined for equilibrium (or steady-state) data by measuring fractional saturation (or initial reaction velocities) as a function of ligand concentration. Hill coefficients can also be determined for transient kinetic data from plots of the observed rate constant of the ligand-promoted conformational change as a function of ligand concentration. Here, it is shown that the ratio of the values of these two Hill coefficients can provide insight into the allosteric mechanism. Cases when the value of the kinetic Hill coefficient is equal to or greater than the value of the equilibrium coefficient indicate concerted transitions whereas ratios smaller than one indicate a sequential transition. The derivations in this work are for symmetric dimers but are expected to have general applicability for homo-oligomers.Errata:A production error occurred in an in-text, unnumbered equation which appears in three places in the paper. In this equation, which is found (i) three lines above eq 6, (ii) on the line above eq 10, and (iii) on the line above eq 19, a product was written as a quotient.
-
(2021) Journal of Physical Chemistry Letters. 12, p. 5723-5730 Abstract
The GroE molecular chaperone system is a critical protein machine that assists the folding of substrate proteins in its cavity. Water in the cavity is suspected to play a role in substrate protein folding, but the mechanism is currently unknown. Herein, we report measurements of water dynamics in the equatorial and apical domains of the GroEL cavity in the apo and football states, using site-specific tryptophanyl mutagenesis as an intrinsic optical probe with femtosecond resolution combined with molecular dynamics simulations. We observed clearly different water dynamics in the two domains with a slowdown of the cavity water from the apical to equatorial region in the football state. The results suggest that the GroEL cavity provides a unique water environment that may facilitate substrate protein folding.
2020
-
(2020) Journal of Molecular Biology. 432, 23, p. 5995-6002 Abstract
About 20% of all familial amyotrophic lateral sclerosis (ALS) cases are associated with mutations in superoxide dismutase (SOD1), a homodimeric protein. The disease has an autosomal-dominant inheritance pattern. It is, therefore, important to determine whether wild-type and mutant SOD1 subunits self-associate randomly or preferentially. A measure for the extent of bias in subunit association is the coupling constant determined in a double-mutant cycle type analysis. Here, cell lysates containing co-expressed wild-type and mutant SOD1 subunits were analyzed by native mass spectrometry to determine these coupling constants. Strikingly, we find a linear positive correlation between the coupling constant and the reported average duration of the disease. Our results indicate that inter-subunit communication and a preference for heterodimerization greatly increase the disease severity.
-
(2020) eLife. 9, e56511. Abstract
The thermodynamics of protein folding in bulk solution have been thoroughly investigated for decades. By contrast, measurements of protein substrate stability inside the GroEL/ES chaperonin cage have not been reported. Such measurements require stable encapsulation, that is no escape of the substrate into bulk solution during experiments, and a way to perturb protein stability without affecting the chaperonin system itself. Here, by establishing such conditions, we show that protein stability in the chaperonin cage is reduced dramatically by more than 5 kcal mol-1 compared to that in bulk solution. Given that steric confinement alone is stabilizing, our results indicate that hydrophobic and/or electrostatic effects in the cavity are strongly destabilizing. Our findings are consistent with the iterative annealing mechanism of action proposed for the chaperonin GroEL.
2019
-
(2019) Toxicology and Applied Pharmacology. 384, 114782. Abstract
Bleomycin is an anticancer antibiotic effective against a range of human malignancies. Yet its usefulness is limited by serious side effects. In this study, we converted bleomycin into a prodrug by covalently linking 2-sulfo, 9 fluorenylmethoxycarbonyl (FMS) to the primary amino side chain of bleomycin. FMS-bleomycin lost its efficacy to bind transition metal ions and therefore was converted into an inactive derivative. Upon incubation in vitro under physiological conditions, the FMS-moiety undergoes spontaneous hydrolysis, generating native bleomycin possessing full anti-bacterial potency. FMS hydrolysis and reactivation takes place with a t(1/2) value of 17 +/- 1 h. In silico simulation predicts a narrow therapeutic window in human patients of seven hours, starting 40 min after administration. In mice, close agreement was obtained between the experimental and the simulated pharmacokinetic profiles for FMS-bleomycin. FMS-bleomycin is thus shown to be a classical prodrug: it is inactive at the time of administration and the non-modified (active) bleomycin is released with a desirable pharmacokinetic profile following administration, suggesting it may have therapeutic value in the clinic.
-
(2019) Biophysical Journal. 117, 10, p. 1915-1921 Abstract
A fundamental problem that has hindered the use of the classic Monod-Wyman-Changuex (MWC) allosteric model since its introduction is that it has been difficult to determine the values of its parameters in a reliable manner because they are correlated with each other and sensitive to the data-fitting method. Consequently, experimental data are often fitted to the Hill equation, which provides a measure of cooperativity but no insights into its origin. In this work, we derived a general relationship between the value of the Hill coefficient and the parameters of the MWC model. It is shown that this relationship can be used to select the best estimate of the true combination of the MWC parameter values from all the possible ones found to fit the data. Here, this approach was applied to fits to the MWC model of curves of the fraction of GroEL molecules in the high-affinity (R) state for ATP as a function of ATP concentration. Such curves were collected at different temperatures, thereby providing insight into the hydrophobic effect associated with the ATP-promoted allosteric switch of GroEL. More generally, the relationship derived here should facilitate future thermodynamic analysis of other MWC-type allosteric systems.
-
(2019) Current Opinion in Structural Biology. 58, p. 10-17 Abstract
Double-mutant cycle (DMC) analysis is a powerful approach for detecting and quantifying the energetics of both direct and long-range interactions in proteins and other chemical systems. It can also be used to unravel higher-order interactions (e.g. three-body effects) that lead to cooperativity in protein folding and function. In this review, we describe new applications of DMC analysis based on advances in native mass spectrometry and high-throughput methods such as next generation sequencing and protein complementation assays. These developments have facilitated carrying out high throughput DMC analysis, which can be used to characterize increasingly higher-order interactions and very large interaction networks in proteins. Such studies have provided insights into the extent of cooperativity (epistasis) in protein structures. High-throughput DMC studies have also been used to validate correlated mutation analysis and can provide restraints for protein docking.
-
(2019) Journal of Biological Chemistry. 294, 37, p. 13527-13529 Abstract
The chaperonin GroEL and its co-chaperonin GroES form both GroEL-GroES bullet-shaped and GroEL-GroES(2) football-shaped complexes. The residence time of protein substrates in the cavities of these complexes is about 10 and 1 s, respectively. There has been much controversy regarding which of these complexes is the main functional form. Here, we show using computational analysis that GroEL protein substrates have a bimodal distribution of folding times, which matches these residence times, thereby suggesting that both bullet-shaped and football-shaped complexes are functional. More generally, co-existing complexes with different stoichiometries are not mutually exclusive with respect to having a functional role and can complement each other.
-
(2019) Structure. 27, 4, p. 566-578 Abstract[All authors]
Allosteric regulation plays an important role in many biological processes, such as signal transduction, transcriptional regulation, and metabolism. Allostery is rooted in the fundamental physical properties of macromolecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop is used here to provide an overview of the progress and remaining limitations in the understanding of the mechanistic foundations of allostery gained from computational and experimental analyses of real protein systems and model systems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of these frameworks in illuminating molecular mechanisms and explaining cellular processes, and describe some of their promising practical applications in engineering molecular sensors and informing drug design efforts. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop offers an insightful overview of the understanding of the mechanistic foundations of allostery, gained from computational and experimental analyses of real protein systems and model systems. Various practical applications are illustrated.
-
(2019) Biophysical Journal. 116, 1, p. 42-48 Abstract
The GroE chaperonin system facilitates protein folding in an ATP-dependent manner. It has remained unclear why some proteins are obligate clients of the GroE system, whereas other closely related proteins are able to fold efficiently in its absence. Factors that cause folding to be slower affect kinetic partitioning between spontaneous folding and chaperone binding in favor of the latter. One such potential factor is contact order (CO), which is the average separation in sequence between residues that are in contact in the native structure. Here, we generated variants of enhanced green fluorescent protein with different COs using circular permutations. We found that GroE dependence in vitro and in vivo increases with increasing CO. Thus, our results show that CO is relevant not only for folding in vitro of relatively simple model systems but also for chaperonin dependence and folding in vivo.
2018
-
(2018) Analytical Chemistry. 90, 17, p. 10090-10094 Abstract
A powerful method to determine the energetic coupling between amino acids is double mutant cycle analysis. In this method, two residues are mutated separately and in combination and the energetic effects of the mutations are determined. A deviation of the effect of the double mutation from the sum of effects of the single mutations indicates that the two residues are interacting directly or indirectly. Here, we show that double mutant cycle analysis by native mass spectrometry can be carried out for interactions in crude Escherichia coli cell extracts, thereby obviating the need for protein purification and generating binding isotherms. Our results indicate that intermolecular hydrogen bond strengths are not affected by the more crowded conditions in cell lysates.
-
(2018) Philosophical Transactions of the Royal Society B: Biological Sciences. 373, 1749, 20170176. Abstract
Advances in native mass spectrometry and single-molecule techniques have made it possible in recent years to determine the values of successive ligand binding constants for large multi-subunit proteins. Given these values, it is possible to distinguish between different allosteric mechanisms and, thus, obtain insights into how various bio-molecular machines work. Here, we describe for ring-shaped homo-oligomers, in particular, how the relationship between the values of successive ligand binding constants is diagnostic for concerted, sequential and probabilistic allosteric mechanisms.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
-
(2018) PLoS ONE. 13, 2, 0192619. Abstract
The GroE chaperonin system, which comprises GroEL and GroES, assists protein folding in vivo and in vitro. It is conserved in all prokaryotes except in most, but not all, members of the class of mollicutes. In Escherichia coli, about 60 proteins were found to be obligatory clients of the GroE system. Here, we describe the properties of the homologs of these GroE clients in mollicutes and the evolution of chaperonins in this class of bacteria. Comparing the properties of these homologs in mollicutes with and without chaperonins enabled us to search for features correlated with the presence of GroE. Interestingly, no sequence-based features of proteins such as average length, amino acid composition and predicted folding/disorder propensity were found to be affected by the absence of GroE. Other properties such as genome size and number of proteins were also found to not differ between mollicute species with and without GroE. Our data suggest that two clades of mollicutes re-acquired the GroE system, thereby supporting the view that gaining the system occurred polyphyletically and not monophyletically, as previously debated. Our data also suggest that there might have been three isolated cases of lateral gene transfer from specific bacterial sources. Taken together, our data indicate that loss of GroE does not involve crossing a high evolutionary barrier and can be compensated for by a small number of changes within the few dozen client proteins.
2017
-
(2017) Journal of Biological Chemistry. 292, 50, p. 20583-20591 Abstract
The GroE chaperonin system in Escherichia coli comprises GroEL and GroES and facilitates ATP-dependent protein folding in vivo and in vitro Proteins with very similar sequences and structures can differ in their dependence on GroEL for efficient folding. One potential but unverified source for GroEL dependence is frustration, wherein not all interactions in the native state are optimized energetically, thereby potentiating slow folding and misfolding. Here, we chose enhanced green fluorescent protein as a model system and subjected it to random mutagenesis, followed by screening for variants whose in vivo folding displays increased or decreased GroEL dependence. We confirmed the altered GroEL dependence of these variants with in vitro folding assays. Strikingly, mutations at positions predicted to be highly frustrated were found to correlate with decreased GroEL dependence. Conversely, mutations at positions with low frustration were found to correlate with increased GroEL dependence. Further support for this finding was obtained by showing that folding of an enhanced green fluorescent protein variant designed computationally to have reduced frustration is indeed less GroEL-dependent. Our results indicate that changes in local frustration also affect partitioning in vivo between spontaneous and chaperonin-mediated folding. Hence, the design of minimally frustrated sequences can reduce chaperonin dependence and improve protein expression levels.
-
(2017) Nature Communications. 8, 1, 212. Abstract
The strength and specificity of protein complex formation is crucial for most life processes and is determined by interactions between residues in the binding partners. Double-mutant cycle analysis provides a strategy for studying the energetic coupling between amino acids at the interfaces of such complexes. Here we show that these pairwise interaction energies can be determined from a single high-resolution native mass spectrum by measuring the intensities of the complexes formed by the two wild-type proteins, the complex of each wild-type protein with a mutant protein, and the complex of the two mutant proteins. This native mass spectrometry approach, which obviates the need for error-prone measurements of binding constants, can provide information regarding multiple interactions in a single spectrum much like nuclear Overhauser effects (NOEs) in nuclear magnetic resonance. Importantly, our results show that specific inter-protein contacts in solution are maintained in the gas phase.
-
(2017) Proceedings of the National Academy of Sciences of the United States of America. 114, 20, p. 5189-5194 Abstract
Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential "conformational waves" They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively.
2016
-
(2016) Journal of Molecular Biology. 428, 22, p. 4520-4527 Abstract
The chaperonin-containing t-complex polypeptide 1 (CCT, also known as TRiC) assists protein folding in an ATP-dependent manner. CCT/TRiC was mixed rapidly with different concentrations of ATP, and the amount of phosphate formed upon ATP hydrolysis was measured as a function of time using the coumarin-labeled phosphate-binding protein method. Two burst phases were observed, followed by a lag phase and then a linear steady-state phase of ATP hydrolysis. The phases were assigned by (i) determining their dependence on ATP and K+ concentrations and (ii) by measuring their sensitivity to the mutation Gly345 -> 4Asp in subunit CCT4, which decreases cooperativity in ATP binding. The values of the observed rate constants corresponding to the burst phases are found to decrease with increasing ATP and K+ concentrations, thereby indicating that the apo state of CCT/TRiC is in equilibrium between several conformations and that "conformational selection" by ATP takes place before hydrolysis. The amplitude of the lag phase, which follows, decreases with increasing ATP concentrations, thus indicating that it reflects a transition between states with low affinity for ATP and a state with high affinity for ATP that is predominant under steady-state conditions. A kinetic model based on the data is suggested, in which CCT/TRiC is in equilibrium between a relatively large number of states that are distinguished kinetically, in agreement with its proposed sequential allosteric mechanism. (C) 2016 Elsevier Ltd. All rights reserved.
-
(2016) Chemical Reviews. 116, 11, p. 6588-6606 Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
2015
-
(2015) Current Opinion in Structural Biology. 34, p. 7-16 Abstract
Native mass spectrometry (MS) and ion mobility MS provide a way to discriminate between various allosteric mechanisms that cannot be distinguished using ensemble measurements of ligand binding in bulk protein solutions. Native MS, which yields mass measurements of intact assemblies, can be used to determine the values of ligand binding constants of multimeric allosteric proteins, thereby providing a way to distinguish, for example, between concerted and sequential allosteric models. Native MS can also be employed to study cooperativity owing to ligand-modulated protein oligomerization. The rotationally averaged cross-section areas of complexes obtained by ion mobility MS can be used to distinguish between induced fit and conformational selection. Native MS and its allied techniques are, therefore, becoming increasingly powerful tools for dissecting allosteric mechanisms.
-
(2015) Nature Communications. 6, 8624. Abstract
The ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized. Here we use single-molecule Förster resonance energy transfer (smFRET) to probe QSOX conformation in resting and cycling enzyme populations. We report the discovery of unanticipated roles for conformational changes in QSOX beyond mediating electron transfer between redox-active sites. In particular, a state of the enzyme not previously postulated or experimentally detected is shown to gate, via a conformational transition, the entrance into a sub-cycle within an expanded QSOX kinetic scheme. By tightly constraining mechanistic models, smFRET data can reveal the coupling between conformational and chemical transitions in complex enzymatic cycles.
-
(2015) eLife. 4, September, e08932. Abstract
Methods for analysing correlated mutations in proteins are becoming an increasingly powerful tool for predicting contacts within and between proteins. Nevertheless, limitations remain due to the requirement for large multiple sequence alignments (MSA) and the fact that, in general, only the relatively small number of top-ranking predictions are reliable. To date, methods for analysing correlated mutations have relied exclusively on amino acid MSAs as inputs. Here, we describe a new approach for analysing correlated mutations that is based on combined analysis of amino acid and codon MSAs. We show that a direct contact is more likely to be present when the correlation between the positions is strong at the amino acid level but weak at the codon level. The performance of different methods for analysing correlated mutations in predicting contacts is shown to be enhanced significantly when amino acid and codon data are combined.
-
(2015) Biophysical Journal. 109, 6, p. 1157-1162 Abstract
The Engrailed Homeodomain (EnHD) transcription factor of Drosophila melanogaster was fused to the enhanced green fluorescent protein (eGFP) either at its C- or N-terminus via three- or ten-residue flexible linkers. Here, we show that EnHD undergoes destabilization upon fusing it to eGFP regardless of the linker length used and whether the tethering is to its N- or C-terminus. The destabilization is reflected in melting points that are lower by up to 9°C. Thermodynamic analysis and coarse-grained molecular dynamic simulations indicate that this destabilization is due to eGFP-promoted entropic stabilization of the denatured state ensemble of EnHD. Our results provide, therefore, an example for destabilizing interdomain allostery. They are also important given the widespread use of eGFP tagging in cell biology, as they indicate that such tagging can cause unintended protein destabilization and concomitant effects.
-
(2015) Bioinformatics. 31, 12, p. 1929-1937 Abstract
Motivation: With rapid accumulation of sequence data on several species, extracting rational and systematic information from multiple sequence alignments (MSAs) is becoming increasingly important. Currently, there is a plethora of computational methods for investigating coupled evolutionary changes in pairs of positions along the amino acid sequence, and making inferences on structure and function. Yet, the significance of coevolution signals remains to be established. Also, a large number of false positives (FPs) arise from insufficient MSA size, phylogenetic background and indirect couplings. Results: Here, a set of 16 pairs of non-interacting proteins is thoroughly examined to assess the effectiveness and limitations of different methods. The analysis shows that recent computationally expensive methods designed to remove biases from indirect couplings outperform others in detecting tertiary structural contacts as well as eliminating intermolecular FPs; whereas traditional methods such as mutual information benefit from refinements such as shuffling, while being highly efficient. Computations repeated with 2,330 pairs of protein families from the Negatome database corroborated these results. Finally, using a training dataset of 162 families of proteins, we propose a combined method that outperforms existing individual methods. Overall, the study provides simple guidelines towards the choice of suitable methods and strategies based on available MSA size and computing resources.
2014
-
(2014) Journal of the American Chemical Society. 136, 26, p. 9396-9403 Abstract
ATP-dependent binding of the chaperonin GroEL to its cofactor GroES forms a cavity in which encapsulated substrate proteins can fold in isolation from bulk solution. It has been suggested that folding in the cavity may differ from that in bulk solution owing to steric confinement, interactions with the cavity walls, and differences between the properties of cavity-confined and bulk water. However, experimental data regarding the cavity-confined water are lacking. Here, we report measurements of water density and diffusion dynamics in the vicinity of a spin label attached to a cysteine in the Tyr71 → Cys GroES mutant obtained using two magnetic resonance techniques: electron-spin echo envelope modulation and Overhauser dynamic nuclear polarization. Residue 71 in GroES is fully exposed to bulk water in free GroES and to confined water within the cavity of the GroEL-GroES complex. Our data show that water density and translational dynamics in the vicinity of the label do not change upon complex formation, thus indicating that bulk water-exposed and cavity-confined GroES surface water share similar properties. Interestingly, the diffusion dynamics of water near the GroES surface are found to be unusually fast relative to other protein surfaces studied. The implications of these findings for chaperonin-assisted folding mechanisms are discussed.
-
(2014) Current Opinion in Structural Biology. 26, 1, p. 113-120 Abstract
Hetero-oligomeric protein complexes are involved in many of the key processes in cells. Given that the subunits of a complex function together, it has often been expected to find that (i) they are expressed at similar levels in cells; (ii) they are simultaneously present or absent in genomes; and that (iii) the effects on fitness of deleting their genes should be similar. Such a coherence is, however, often found to be weak or absent. Multi-functionality of subunits and mechanisms of complex assembly are discussed as possible sources for the lack of coherence.
2013
-
(2013) Proceedings of the National Academy of Sciences of the United States of America. 110, 27, p. 10884-10885 Abstract
-
(2013) Cell Reports. 3, 4, p. 1051-1056 Abstract
Computational analysis of proteomes in all kingdoms of life reveals a strong tendency for N-terminal domains in two-domain proteins to have shorter sequences than their neighboring C-terminal domains. Given that folding rates are affected by chain length, we asked whether the tendency for N-terminal domains to be shorter than their neighboring C-terminal domains reflects selection for faster-folding N-terminal domains. Calculations of absolute contact order, another predictor of folding rate, provide additional evidence that N-terminal domains tend to fold faster than their neighboring C-terminal domains. A possible explanation for this bias, which is more pronounced in prokaryotes than in eukaryotes, is that faster folding of N-terminal domains reduces the risk for protein aggregation during folding by preventing formation of nonnative interdomain interactions. This explanation is supported by our finding that two-domain proteins with a shorter N-terminal domain are much more abundant than those with a shorter C-terminal domain.
-
(2013) Israel Journal of Chemistry. 53, 3-4, p. 217-226 Abstract
Single-nucleotide mutations (SNPs) in protein-coding regions of the human genome are a major factor in determining human variation in health and disease. Here, we analyze the amino acid changes and functional effects due to non-synonymous SNPs. Three databases were used: (i) Variation - mutations found in the general human population; (ii) Cosmic - mutations found in cancer cells; and (iii) Pathogenic - a curated subset of mutations in Variation that are associated with diseases. The distributions of amino acid changes in these datasets were analyzed. It is shown that mutations in the Pathogenic dataset, in particular, tend to introduce order-promoting residues. The effects of the mutations in these datasets were also studied using the program Polyphen-2, which predicts the functional impact of non-synonymous mutations. In order to evaluate the significance of these predicted effects, we compared them to those due to the same amino acid replacements introduced at other positions in the same proteins as a control. A mutation can be deleterious because the amino acid change is drastic (for example a change from hydrophobic residue to hydrophilic residue) or because of its location in the protein. We found that, on both counts, mutations in the Variation dataset tend to be less deleterious than randomly expected whereas mutations in the Pathogenic dataset tend to be more deleterious than their control mutations. The mutations in the Cosmic dataset are found to be more deleterious than those in its control set but less than those in Pathogenic.
-
(2013) Proceedings of the National Academy of Sciences of the United States of America. 110, 18, p. 7235-7239 Abstract
The activity of many proteins, including metabolic enzymes, molecular machines, and ion channels, is often regulated by conformational changes that are induced or stabilized by ligand binding. In cases of multimeric proteins, such allosteric regulation has often been described by the concerted Monod-Wyman-Changeux and sequential Koshland-Némethy-Filmer classic models of cooperativity. Despite the important functional implications of the mechanism of cooperativity, it has been impossible in many cases to distinguish between these various allosteric models using ensemble measurements of ligand binding in bulk protein solutions. Here, we demonstrate that structural MS offers a way to break this impasse by providing the full distribution of ligand-bound states of a protein complex. Given this distribution, it is possible to determine all the binding constants of a ligand to a highly multimeric cooperative system, and thereby infer its allosteric mechanism. Our approach to the dissection of allostericmechanisms relies on advances in MS - which provide the required resolution of ligand-bound states - and in data analysis. We validated our approach using the well-characterized Escherichia coli chaperone GroEL, a double-heptameric ring containing 14 ATP binding sites, which has become a paradigm for molecular machines. The values of the 14 binding constants of ATP to GroEL were determined, and the ATP-loading pathway of the chaperone was characterized. The methodology and analyses presented here are directly applicable to numerous other cooperative systems and are therefore expected to promote further research on allosteric systems.
2012
-
(2012) Proceedings of the National Academy of Sciences of the United States of America. 109, 46, p. 18833-18838 Abstract
The eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) is an ATP-fueled machine that assists protein folding. It consists of two back-to-back stacked rings formed by eight different subunits that are arranged in a fixed permutation. The different subunits of CCT are believed to possess unique substrate binding specificities that are still mostly unknown. Here, we used high-throughput microscopy analysis of yeast cells to determine changes in protein levels and localization as a result of a Glu to Asp mutation in the ATP binding site of subunits 3 (CCT3) or 6 (CCT6). The mutation in subunit CCT3 was found to induce cytoplasmic foci termed P-bodies where mRNAs, which are not translated, accumulate and can be degraded. Analysis of the changes in protein levels and structural modeling indicate that P-body formation in cells with the mutation in CCT3 is linked to the specific interaction of this subunit with Gln/Asn-rich segments that are enriched in many P-body proteins. An in vitro gel-shift analysis was used to show that the mutation in subunit CCT3 interferes with the ability of CCT to bind a Gln/Asn-rich protein aggregate. More generally, the strategy used in this work can be used to unravel the substrate specificities of other chaperone systems.
-
(2012) Proceedings of the National Academy of Sciences of the United States of America. 109, 22, p. E1437-E1443 Abstract
Enzymatic inhibition by product molecules is an important and widespread phenomenon. We describe an approach to study product inhibition at the single-molecule level. Individual HRP molecules are trapped within surface-tethered lipid vesicles, and their reaction with a fluorogenic substrate is probed. While the substrate readily penetrates into the vesicles, the charged product (resorufin) gets trapped and accumulates inside the vesicles. Surprisingly, individual enzyme molecules are found to stall when a few tens of product molecules accumulate. Bulk enzymology experiments verify that the enzyme is noncompetitively inhibited by resorufin. The initial reaction velocity of individual enzyme molecules and the number of product molecules required for their complete inhibition are broadly distributed and dynamically disordered. The two seemingly unrelated parameters, however, are found to be substantially correlated with each other in each enzyme molecule and over long times. These results suggest that, as a way to counter disorder, enzymes have evolved the means to correlate fluctuations at structurally distinct functional sites.
-
(2012) FEBS Journal. 279, 4, p. 543-550 Abstract
Experimental studies and theoretical considerations have shown that only a small subset of Escherichia coli proteins fold in vivo with the help of the GroE chaperone system. These proteins, termed GroE substrates, have been divided into three classes: (a) proteins that can fold independently, but are found to associate with GroEL; (b) proteins that require GroE when the cell is under stress; and (c) 'obligatory' proteins that require GroE assistance even under normal conditions. It remains unclear, however, why some proteins need GroE and others do not. Here, we review experimental and computational studies that addressed this question by comparing the sequences and structural, biophysical and evolutionary properties of GroE substrates with those of nonsubstrates. In general, obligatory substrates are found to have lower folding propensities and be more aggregation prone. GroE substrates are also more conserved than other proteins and tend to utilize more optimal codons, but this latter feature is less apparent for obligatory substrates. There is no evidence, however, for any specific sequence signatures although there is a tendency for sequence periodicity. Our review shows that reliable sequence- or structure-based predictions of GroE dependency remain a challenge. We suggest that the different classes of GroE substrates be studied separately and that proper control test sets (e.g. TIM barrel proteins that need GroE for folding versus TIM barrels that fold independently) be used more extensively in such studies.
2011
-
(2011) Macromolecular Crystallography. Carrondo M. A. & Spadon P.(eds.). p. 79-86 Abstract
Chaperonins such as GroEL from Escherichia coli are molecular machines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. Here, we describe some of the various functional (allosteric) states of GroEL, the pathways by which they inter-convert and the coupling between allosteric transitions and protein folding reactions.
-
(2011) Allostery. Fenton A. W.(eds.). p. 205-216 Abstract
Fluorescence correlation spectroscopy (FCS) is an experimental technique in which the equilibrium fluctuations of the fluorescent signal of molecules diffusing through a focused laser beam are measured. An autocorrelation analysis of these fluctuations provides information on dynamic processes, such as allosteric transitions, that the molecules undergo provided that they are fast relative to the diffusion time through the beam. In cases when the dynamics are slow relative to the diffusion time through the beam, FCS curves can yield information about the number of conformational states and their relative populations. Hence, FCS can be used to investigate allosteric systems with either slow or fast dynamics but the type of information gained in these two situations is different. Here, the utility of the FCS technique is exemplified in the case of the single-ring version of the Escherichia coli molecular chaperone GroEL that interconverts with relatively slow dynamics between two allosteric states: a T state with low affinity for ATP and an R state with high affinity for ATP. Thermodynamic analysis suggests that the T-state population should become negligible with increasing ATP concentrations, in conflict with the requirement for conformation cycling, which is essential for the operation of molecular machines. Surprisingly, FCS experiments showed that, even at ATP saturation, ∼50% of the molecules still populate the T state at any instance of time, indicating constant out-of-equilibrium cycling between T and R.
2010
-
(2010) Biophysical Journal. 99, 5, p. 1645-1649 Abstract
There is often an interest in knowing, for a given ligand concentration, how many protein molecules have one, two, three, etc. ligands bound in a specific manner. This is a question that cannot be addressed using conventional ensemble techniques. Here, a mathematical method is presented for separating specific from nonspecific binding in nonensemble studies. The method provides a way to determine the distribution of specific binding stoichiometries at any ligand concentration when using nonensemble (e.g., single-molecule) methods. The applicability of the method is demonstrated for ADP binding to creatine kinase using mass spectroscopy data. A major advantage of our method, which can be applied to any protein-ligand system, is that no previous information regarding the mechanism of ligand interaction is required.
-
(2010) Journal of Molecular Biology. 401, 3, p. 532-543 Abstract
The eukaryotic cytoplasmic chaperonin-containing TCP-1 (CCT) is a complex formed by two back-to-back stacked hetero-octameric rings that assists the folding of actins, tubulins, and other proteins in an ATP-dependent manner. Here, we tested the significance of the hetero-oligomeric nature of CCT in its function by introducing, in each of the eight subunits in turn, an identical mutation at a position that is conserved in all the subunits and is involved in ATP hydrolysis, in order to establish the extent of 'individuality' of the various subunits. Our results show that these identical mutations lead to dramatically different phenotypes. For example, Saccharomyces cerevisiae yeast cells with the mutation in subunit CCT2 display heat sensitivity and cold sensitivity for growth, have an excess of actin patches, and are the only strain here generated that is pseudo-diploid. By contrast, cells with the mutation in subunit CCT7 are the only ones to accumulate juxtanuclear protein aggregates that may reflect an impaired stress response in this strain. System-level analysis of the strains using RNA microarrays reveals connections between CCT and several cellular networks, including ribosome biogenesis and TOR2, that help to explain the phenotypic variability observed.
-
(2010) Proceedings of the National Academy of Sciences of the United States of America. 107, 14, p. 6270-6274 Abstract
The molecular chaperone GroEL exists in at least two allosteric states, Tand R, that interconvert in an ATP-controlled manner. Thermodynamic analysis suggests that the T-state population becomes negligible with increasing ATP concentrations, in conflict with the requirement for conformational cycling, which is essential for the operation of molecular machines. To solve this conundrum, we performed fluorescence correlation spectroscopy on the single-ring version of GroEL, using a fluorescent switch recently built into its structure, which turns "on," i.e., increases its fluorescence dramatically, when ATP is added. A series of correlation functions was measured as a function of ATP concentration and analyzed using singular-value decomposition. The analysis assigned the signal to two states whose dynamics clearly differ. Surprisingly, even at ATP saturation, similar to 50% of the molecules still populate the T state at any instance of time, indicating constant out-of-equilibrium cycling between T and R. Only upon addition of the cochaperonin GroES does the T-state population vanish. Our results suggest a model in which the T/R ratio is controlled by the rate of ADP release after hydrolysis, which can be determined accordingly.
2009
-
(2009) PLoS Computational Biology. 5, 12, e1000592. Abstract
Two different strategies for stabilizing proteins are (i) positive design in which the native state is stabilized and (ii) negative design in which competing non-native conformations are destabilized. Here, the circumstances under which one strategy might be favored over the other are explored in the case of lattice models of proteins and then generalized and discussed with regard to real proteins. The balance between positive and negative design of proteins is found to be determined by their average "contact- frequency", a property that corresponds to the fraction of states in the conformational ensemble of the sequence in which a pair of residues is in contact. Lattice model proteins with a high average contact-frequency are found to use negative design more than model proteins with a low average contact-frequency. A mathematical derivation of this result indicates that it is general and likely to hold also for real proteins. Comparison of the results of correlated mutation analysis for real proteins with typical contact-frequencies to those of proteins likely to have high contactfrequencies (such as disordered proteins and proteins that are dependent on chaperonins for their folding) indicates that the latter tend to have stronger interactions between residues that are not in contact in their native conformation. Hence, our work indicates that negative design is employed when insufficient stabilization is achieved via positive design owing to high contact-frequencies.
-
(2009) Journal of Biological Chemistry. 284, 41, p. 28198-28203 Abstract
The 60-kDa heat shock protein (mHsp60) is a vital cellular complex that mediates the folding of many of the mitochondrial proteins. Its function is executed in cooperation with the cochaperonin, mHsp10, and requires ATP. Recently, the discovery of a new mHsp60-associated neurodegenerative disorder, Mit-CHAP-60 disease, has been reported. The disease is caused by a point mutation at position 3 (D3G) of the mature mitochondrial Hsp60 protein, which renders it unable to complement the deletion of the homologous bacterial protein in Escherichia coli (Magen, D., Georgopoulos, C., Bross, P., Ang, D., Segev, Y., Goldsher, D., Nemirovski, A., Shahar, E., Ravid, S., Luder, A., Heno, B., Gershoni-Baruch, R., Skorecki, K., and Mandel, H. (2008) Am. J. Hum. Genet. 83, 30-42). The molecular basis of the MitCHAP-60 disease is still unknown. In this study, we present an in vitro structural and functional analysis of the purified wild-type human mHsp60 and the MitCHAP-60 mutant. We show that the D3G mutation leads to destabilization of the mHsp60 oligomer and causes its disassembly at low protein concentrations. We also show that the mutant protein has impaired protein folding and ATPase activities. An additional mutant that lacks the first three amino acids (N-del), including Asp-3, is similarly impaired in refolding activity. Surprisingly, however, this mutant exhibits profound stabilization of its oligomeric structure. These results suggest that the D3G mutation leads to entropic destabilization of the mHsp60 oligomer, which severely impairs its chaperone function, thereby causing the disease.
-
(2009) Bmc Structural Biology. 9, 4. Abstract
Background. Long-range communication is very common in proteins but the physical basis of this phenomenon remains unclear. In order to gain insight into this problem, we decided to explore whether long-range interactions exist in lattice models of proteins. Lattice models of proteins have proven to capture some of the basic properties of real proteins and, thus, can be used for elucidating general principles of protein stability and folding. Results. Using a computational version of double-mutant cycle analysis, we show that long-range interactions emerge in lattice models even though they are not an input feature of them. The coupling energy of both short- and long-range pairwise interactions is found to become more positive (destabilizing) in a linear fashion with increasing 'contact-frequency', an entropic term that corresponds to the fraction of states in the conformational ensemble of the sequence in which the pair of residues is in contact. A mathematical derivation of the linear dependence of the coupling energy on 'contact-frequency' is provided. Conclusion. Our work shows how 'contact-frequency' should be taken into account in attempts to stabilize proteins by introducing (or stabilizing) contacts in the native state and/or through 'negative design' of non-native contacts.
2008
-
(2008) Bioconjugate Chemistry. 19, 7, p. 1339-1341 Abstract
We describe the design of an optical switch in the chaperonin GroEL that is opened and closed by its ATP- and cochaperonin GroES-driven conformational changes. The switch, based on a fluorophore and a quencher, is engineered into the single-ring variant of the chaperone, and shows dramatic modulation of its fluorescent intensity in response to the transition of the protein between its allosteric states. It, therefore, forms a sensitive probe for the dynamics of the allosteric transitions of this machine, both in the bulk and in single molecules.
-
(2008) Journal of Molecular Biology. 380, 4, p. 717-725 Abstract
The chaperonin GroEL assists protein folding by undergoing ATP-induced conformational changes that are concerted within each of its two back-to-back stacked rings. Here we examined whether concerted allosteric switching gives rise to all-or-none release and folding of domains in a chimeric fluorescent protein substrate, CyPet-YPet. Using this substrate, it was possible to determine the folding yield of each domain from its intrinsic fluorescence and that of the entire chimera by measuring Förster resonance energy transfer between the two domains. Hence, it was possible to determine whether release of one domain is accompanied by release of the other domain (concerted mechanism), or whether their release is not coupled. Our results show that the chimera's release tends to be concerted when folding is assisted by a wild-type GroEL variant, but not when assisted by the F44W/D155A mutant that undergoes a sequential allosteric switch. A connection between the allosteric mechanism of this molecular machine and its biological function in assisting folding is thus established.
-
(2008) Journal of Molecular Biology. 377, 2, p. 469-477 Abstract
Saccharomyces cerevisiae yeast cells containing the chaperonin CCT (chaperonin-containing t-complex polypeptide 1 (TCP-1)) with the G345D mutation in subunit CCT4 (anc2-1) are temperature-sensitive for growth and display defects in organization of actin structure, budding and cell shape. In this first structure-function analysis of CCT, we show that this mutation abolishes both intra- and inter-ring cooperativity in ATP binding by CCT. The finding that a single mutation in only one subunit in each CCT ring has such drastic effects highlights the importance of allostery for its in vivo function. These results, together with other kinetic data for wild-type CCT reported in this study, provide support for the sequential model for ATP-dependent allosteric transitions in CCT.
2007
-
(2007) Bioinformatics. 23, 24, p. 3276-3279 Abstract
Motivation: Theoretical considerations have indicated that the amount of chaperonin GroEL in Escherichia coli cells is sufficient to fold only ∼5° of newly synthesized proteins under normal physiological conditions, thereby suggesting that only a subset of E.coli proteins fold in vivo in a GroEL-dependent manner. Recently, members of this subset were identified in two independent studies that resulted in two partially overlapping lists of GroEL-interacting proteins. The objective of the work described here was to identify sequence-based features of GroEL-interacting proteins that distinguish them from other E.coli proteins and that may account for their dependence on the chaperonin system. Results: Our analysis shows that GroEL-interacting proteins have, on average, low folding propensities and high translation efficiencies. These two properties in combination can increase the risk of aggregation of these proteins and, thus, cause their folding to be chaperonin-dependent. Strikingly, we find that these properties are absent in proteins homologous to the E.coli GroEL-interacting proteins in Ureaplasma urealyticum, an organism that lacks a chaperonin system, thereby confirming our conclusions.
-
(2007) Bioinformatics. 23, 13, p. i240-i248 Abstract
Motivation: The folding of many proteins in vivo and in vitro is assisted by molecular chaperones. A well-characterized molecular chaperone system is the chaperonin GroEL/GroES from Escherichia coli which has a homolog found in the eukaryotic cytosol called CCT. All chaperonins have a ring structure with a cavity in which the substrate protein folds. An interesting difference between prokaryotic and eukaryotic chaperonins is in the nature of the ATP-mediated conformational changes that their ring structures undergo during their reaction cycle. Prokaryotic chaperonins are known to exhibit a highly cooperative concerted change of their cavity surface while in eukaryotic chaperonins the change is sequential. Approximately 70% of proteins in eukaryotic cells are multi-domain whereas in prokaryotes single-domain proteins are more common. Thus, it was suggested that the different modes of action of prokaryotic and eukaryotic chaperonins can be explained by the need of eukaryotic chaperonins to facilitate folding of multi-domain proteins. Results: Using a 2D square lattice model, we generated two large populations of single-domain and double-domain substrate proteins. Chaperonins were modeled as static structures with a cavity wall with which the substrate protein interacts. We simulated both concerted and sequential changes of the cavity surfaces and demonstrated that folding of single-domain proteins benefits from concerted but not sequential changes whereas double-domain proteins benefit also from sequential changes. Thus, our results support the suggestion that the different modes of allosteric switching of prokaryotic and eukaryotic chaperonin rings have functional implications as it enables eukaryotic chaperonins to better assist multi-domain protein folding.
-
(2007) Biochemistry. 46, 11, p. 3476-3481 Abstract
The interaction between the yeast G protein-coupled receptor (GPCR), Ste2p, and its α-factor tridecapeptide ligand was subjected to double-mutant cycle scanning analysis by which the pairwise interaction energy of each ligand residue with two receptor residues, N205 and Y266, was determined. The mutations N205A and Y266A were previously shown to result in deficient signaling but cause only a 2.5-fold and 6-fold decrease, respectively, in the affinity for α-factor. The analysis shows that residues at the amine terminus of α-factor interact strongly with N205 and Y266 whereas residues in the center and at the carboxyl terminus of the peptide interact only weakly if at all with these receptor residues. Multiple-mutant thermodynamic cycle analysis was used to assess whether the energies of selected pairwise interactions between residues of the α-factor peptide changed upon binding to Ste2p. Strong positive cooperativity between residues 1 through 4 of α-factor was observed during receptor binding. In contrast, no thermodynamic evidence was found for an interaction between a residue near the carboxyl terminus of α-factor (position 11) and one at the N-terminus (position 3). The study shows that multiple-mutant cycle analyses of the binding of an alanine-scanned peptide to wild-type and mutant GPCRs can provide detailed information on contributions of inter- and intramolecular interactions to the binding energy and potentially prove useful in developing 3D models of ligand docked to its receptor.
-
-
(2007) Proceedings of the National Academy of Sciences of the United States of America. 104, 9, p. 3119-3124 Abstract
The double-ring chaperonin GroEL mediates protein folding, in conjunction with its helper protein GroES, by undergoing ATP-induced conformational changes that are concerted within each heptameric ring. Here we have examined whether the concerted nature of these transitions is responsible for protein substrate release in an all-or-none manner. Two chimeric substrates were designed, each with two different reporter activities that were recovered after denaturation in GroES-dependent and independent fashions, respectively. The refolding of the chimeras was monitored in the presence of GroEL variants that undergo ATP-induced intraring conformational changes that are either sequential (F44W/D155A) or concerted (F44W). Our results show that release of a protein substrate from GroEL in a domain-by-domain fashion is favored when the intraring allosteric transitions of GroEL are sequential and not concerted.
2006
-
(2006) Protein Science. 15, 6, p. 1270-1276 Abstract
The ATPase activity of many types of molecular chaperones is stimulated by polypeptide substrate binding via molecular mechanisms that are, for the most part, unknown. Here, we report that such stimulation of the ATPase activity of GroEL is abolished when its conserved apical domain residue Glu257 is replaced by alanine. This mutation is also found to convert the ATPase profile of GroEL, a group I chaperonin, into one that is characteristic of group II chaperonins. Steady-state and transient kinetic analysis indicate that both effects are due, at least in part, to a reduction of the affinity of GroEL for ADP. This finding indicates that nonfolded proteins stimulate ATP hydrolysis by accelerating the off-rate of the ADP formed, thereby allowing more rapid cycles of ATP binding and hydrolysis.
-
(2006) Rendiconti Lincei. 17, 1-2, p. 115-131 Abstract
Chaperonins mediate protein folding in an ATP-dependent manner. ATP binding and hydrolysis by chaperonins are subject to both homotropic and heterotropic allosteric regulation. In the case of GroEL and CCT, homotropic regulation by ATP is manifested in nested cooperativity, which involves positive intra-ring cooperativity and negative inter-ring cooperativity in ATP binding. Both types of cooperativity are modulated by various heterotropic allosteric effectors, which include nonfolded proteins, ADP, Mg2+, monovalent ions such as K+, and cochaperonins in the case of type I chaperonins such as GroEL. Here, the allosteric properties of chaperonins are reviewed and new results of ours are presented with regard to allosteric effects of ADP. The role of allostery in the reaction cycle and folding function of chaperonins is discussed.
2005
-
(2005) Current Opinion in Structural Biology. 15, 6, p. 646-651 Abstract
Chaperonins are molecular machines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space by complex allosteric regulation. Recently, progress has been made in describing the various functional (allosteric) states of these machines, the pathways by which they interconvert, and the coupling between allosteric transitions and protein folding reactions. However, various mechanistic issues remain to be resolved.
-
(2005) Protein Engineering Design & Selection. 18, 5, p. 247-253 Abstract
Direct or indirect inter-residue interactions in proteins are often reflected by mutations at one site that compensate for mutations at another site. Various bioinformatic methods have been developed for detecting such correlated mutations in order to obtain information about intra- and inter-protein interactions. Here, we show by carrying out a correlated mutation analysis for non-interacting proteins that the signal due to inter-residue interactions is of similar magnitude to the 'noise' that arises from other evolutionary processes related to common ancestry. A new method for detecting correlated mutations is presented that reduces this evolutionary noise by taking into account evolutionary distances in the protein family. It is shown that this method yields better signal-to-noise ratios and, therefore, can much better resolve, for example, correlated mutations that reflect true inter-residue interactions.
-
(2005) Nature Structural & Molecular Biology. 12, 3, p. 233-237 Abstract
The eukaryotic cytoplasmic chaperonin containing TCP-1 (CCT) is a hetero-oligomeric complex that assists the folding of actins, tubulins and other proteins in an ATP-dependent manner. To understand the allosteric transitions that occur during the functional cycle of CCT, we imaged the chaperonin complex in the presence of different ATP concentrations. Labeling by monoclonal antibodies that bind specifically to the CCTα and CCTδ subunits enabled alignment of all the CCT subunits of a given type in different particles. The analysis shows that the apo state of CCT has considerable apparent conformational heterogeneity that decreases with increasing ATP concentration. In contrast with the concerted allosteric switch of GroEL, ATP-induced conformational changes in CCT are found to spread around the ring in a sequential fashion that may facilitate domain-by-domain substrate folding. The approach described here can be used to unravel the allosteric mechanisms of other ring-shaped molecular machines.
2004
-
(2004) Journal of Molecular Biology. 338, 5, p. 979-988 Abstract
Different concentrations of ATP were mixed rapidly with single-ring or double-ring forms of GroEL containing the Phe44→Trp mutation and the time-resolved changes in fluorescence emission, upon excitation at 295 nm, were followed. Two kinetic phases that were previously found for double-ring GroEL are also observed in the case of the single-ring version: (i) a fast phase with a relatively large amplitude that is associated with the T→R allosteric transition; (ii) and a slow phase with a smaller amplitude that is associated with ATP hydrolysis. In the case of weak intra-ring positive cooperativity, the rate constant corresponding to the T→R allosteric switch of single-ring GroEL displays a bi-sigmoidal dependence on ATP concentration that may reflect parallel pathways of the allosteric transition. The slow phase is absent when double-ring or single-ring forms of GroEL are mixed with ADP or ATP without K+, and it has a rate constant that is independent of ATP concentration. A third fast phase that is still unassigned is observed for both single-ring and double-ring GroEL when a large amount of data is collected. Finally, a fourth phase is observed in the case of double-ring GroEL that is found to be absent in the case of single-ring GroEL. This phase is here assigned to inter-ring communication by (i) determining its dependence on ATP concentration and (ii) based on its absence from single-ring GroEL and the Arg13→Gly, Ala126→Val GroEL mutant, which is defective in inter-ring negative cooperativity. The value of the rate constant corresponding to this phase is found to increase with increasing intra-ring positive cooperativity, with respect to ATP. This is the first report of the rate of ATP-mediated inter-ring communication in GroEL, in the presence of ATP alone, which is crucial for the cycling of this molecular machine between different functional states.
2003
-
(2003) Proceedings of the National Academy of Sciences of the United States of America. 100, SUPPL. 2, p. 13797-13802 Abstract
The reaction cycle of the double-ring chaperonin GroEL is driven by ATP binding that takes place with positive cooperativity within each seven-membered ring and negative cooperativity between rings. The positive cooperativity within rings is due to ATP binding-induced conformational changes that are fully concerted. Herein, it is shown that the mutation Asp-155 → Ala leads to an ATP-induced break in intra-ring and inter-ring symmetry. Electron microscopy analysis of single-ring GroEL particles containing the Asp-155 → Ala mutation shows that the break in intra-ring symmetry is due to stabilization of allosteric intermediates such as one in which three subunits have switched their conformation while the other four have not. Our results show that eliminating an intra-subunit interaction between Asp-155 and Arg-395 results in conversion of the allosteric switch of GroEL from concerted to sequential, thus demonstrating that its allosteric behavior arises from coupled tertiary conformational changes.
-
(2003) Journal of Molecular Biology. 326, 4, p. 981-987 Abstract
The chaperonin CCT (chaperonin containing t-complex polypeptide 1 (TCP-1)) from bovine testis was mixed rapidly with different concentrations of ATP and the time-resolved change in fluorescence emission, upon excitation at 280nm, was followed. Two kinetic phases were observed and assigned by (i) analyzing the dependence of the corresponding observed rate constants on ATP concentration; and (ii) by carrying out mixing experiments also with ADP, ATPγS and ATP without K+. The values of the observed rate constants corresponding to both phases are found to be dependent on ATP concentration. The observed rate constant corresponding to the fast phase displays a bi-sigmoidal dependence on ATP concentration with Hill coefficients that are similar to those determined in steady-state ATPase experiments. This phase most likely reflects ATP binding-induced conformational changes. The rate constant of the conformational change in the presence of excess ATP is about 17s-1 (at 25°C) and is tenfold slower than the corresponding rate constant of GroEL. The observed rate constant corresponding to the second slower phase displays a hyperbolic dependence on ATP concentration. This phase is not observed in mixing experiments of CCT with ADP, ATPγS or ATP without K+ and it, therefore, reflects a conformational change associated with ATP hydrolysis. Taken together, our results indicate that the kinetic mechanism of the allosteric transitions of CCT differs considerably from that of GroEL.
2002
-
(2002) Proceedings of the National Academy of Sciences of the United States of America. 99, 22, p. 14095-14097 Abstract
What are the mechanisms of ligand-induced allosteric transitions in proteins? A powerful method to characterize pathways and transition states of reactions is φ value analysis. A φ value is the ratio between the changes on a perturbation (e.g., mutation) in the activation and equilibrium free energies of a reaction. Here, φ value analysis is used to characterize the ATP-induced allosteric transitions of GroEL by using changes in ATP concentration as perturbations. GroEL consists of two stacked back-to-back heptameric rings that bind ATP with positive cooperativity within rings and negative cooperativity between rings. Evidence is presented for the existence of parallel pathways for the allosteric transition of each ring. In both allosteric transitions, there is an abrupt ATP-dependent switch from a pathway with ATP-binding sites in the transition state that are very similar to those of the initial T state (φ = 0) to a pathway with a φ value of ≡0.3. The φ value procedure outlined here should be useful in mapping the energy landscape of allosteric transitions of other proteins.
-
(2002) Proteins-Structure Function And Genetics. 48, 4, p. 611-617 Abstract
An interesting example of an allosteric protein is the chaperonin GroEL. It undergoes adenosine 5-triphosphate-induced conformational changes that are reflected in binding of adenosine 5-triphosphate with positive cooperativity within rings and negative cooperativity between rings. Herein, correlated mutations in chaperonins are analyzed to unravel routes of allosteric communication in GroEL and in its complex with its co-chaperonin GroES. It is shown that analysis of correlated mutations in the chaperonin family can provide information about pathways of allosteric communication within GroEL and between GroEL and GroES. The results are discussed in the context of available structural, genetic, and biochemical data concerning short- and long-range interactions in the GroE system.
-
(2002) Biochemistry. 41, 18, p. 5938-5944 Abstract
A kinetic analysis of the ATP-dependent dissociation of wild-type GroEL and mutants from immobilized GroES was carried out using surface plasmon resonance. Excellent fits of the data were obtained using a double-exponential equation with a linear drift. Both the fast and slow observed dissociation rate constants are found to have a sigmoidal dependence on the concentration of ATP. The values of the Hill coefficients corresponding to the fast and slow observed rate constants of dissociation of wild-type GroEL and the Arg197→Ala mutant are in good agreement with the respective values of the Hill coefficients previously determined for these proteins from plots of initial rates of ATP hydrolysis as a function of ATP concentration, in the presence of GroES. Our results are consistent with a kinetic mechanism for dissociation of the GroEL-GroES complex according to which GroES release takes place after an ATP-induced conformational change in the trans ring that is preceded by ATP hydrolysis and a subsequent conformational change in the cis ring. It is shown that the rate of complex dissociation increases with increasing positive cooperativity in ATP binding by the GroEL ring distal to GroES in the GroEL-GroES complex.
2001
-
(2001) Protein Science. 10, 2, p. 445-449 Abstract
Initial rates of ATP hydrolysis by the chaperonin containing TCP-1 (CCT) from bovine testis were measured as a function of ATP concentration. Two allosteric transitions are observed: one at relatively low concentrations of ATP (
-
(2001) Journal of Structural Biology. 135, 2, p. 104-114 Abstract
Chaperonins mediate protein folding in an ATP-dependent manner. ATP binding and hydrolysis by chaperonins are subject to both homotropic and heterotropic allosteric regulation. In the case of GroEL and CCT, homotropic regulation by ATP is manifested in nested cooperativity, which involves positive intra-ring cooperativity and negative inter-ring cooperativity in ATP binding. Both types of cooperativity are modulated by various heterotropic allosteric effectors, which include nonfolded proteins, ADP, Mg2+, monovalent ions such as K+, and cochaperonins in the case of type I chaperonins such as GroEL. Here, the allosteric properties of chaperonins are reviewed and new results of ours are presented with regard to allosteric effects of ADP. The role of allostery in the reaction cycle and folding function of chaperonins is discussed.
2000
-
(2000) Journal of Biological Chemistry. 275, 48, p. 37951-37956 Abstract
Escherichia coli cells that produce only plasmid-encoded wild-type or mutant GroEL were generated by bacteriophage P1 transduction. Effects of mutations that affect the allosteric properties of GroEL were characterized in vivo. Cells containing only GroEL(R197A), which has reduced intra-ring positive cooperativity and inter-ring negative cooperativity in ATP binding, grow poorly upon a temperature shift from 25 to 42 °C. This strain supports the growth of phages T4 and T5 but not phage λ and produces light at 28°C when transformed with a second plasmid containing the lux operon. In contrast, cells containing only GroEL(R13G, A126V) which lacks negative cooperativity between rings but has intact intra-ring positive cooperativity grow normally and support phage growth but do not produce light at 28 °C. In vitro refolding of luciferase in the presence of this mutant is found to be less efficient compared with wild-type GroEL or other mutants tested. Our results show that allostery in GroEL is important in vivo in a manner that depends on the physiological conditions and is protein substrate specific.
-
(2000) Proceedings of the National Academy of Sciences of the United States of America. 97, 4, p. 1521-1524 Abstract
GroEL is an allosteric protein that facilitates protein folding in an ATP-dependent manner. Herein, the relationship between cooperative ATP binding by GroEL and the kinetics of GroE-assisted folding of two substrates with different GroES dependence, mouse dihydrofolate reductase (mDHFR) and mitochondrial malate dehydrogenase, is examined by using cooperativity mutants of GroEL. Strong intra-ring positive cooperativity in ATP binding by GroEL decreases the rate of GroEL-assisted mDHFR folding owing to a slow rate of the ATP-induced transition from the protein-acceptor state to the protein- release state. Inter-ring negative cooperativity in ATP binding by GroEL is found to affect the kinetic partitioning of mDHFR, but not of mitochondrial malate dehydrogenase, between folding in solution and folding in the cavity underneath GroES. Our results show that protein folding by this 'two-stroke motor' is coupled to cooperative ATP binding.
-
(2000) Bulletin of Mathematical Biology. 62, 2, p. 241-246 Abstract
A frequently used measure for the extent of cooperativity in ligand binding by allosteric proteins is the Hill coefficient. Hill coefficients can be measured for steady-state kinetic data and also for transient kinetic data. Here, the relationship between the two types of Hill coefficients is analysed. It is shown that a value of 1 for the ratio of the two Hill coefficients is a test for a concerted ligand-induced transition between two conformations of the protein, in accordance with the Monod-Wyman-Changeux model. A value of 1 for this ratio has recently been observed for a series of chaperonin GroEL mutants suggesting that ATP-induced allosteric transitions in this protein are concerted. (C) 2000 Society for Mathematical Biology.
-
(2000) European Journal of Biochemistry. 267, 3, p. 767-779 Abstract
The 0.5β monoclonal antibody is a very potent strain-specific HIV- neutralizing antibody raised against gp120, the envelope glycoprotein of HIV- 1. This antibody recognizes the V3 loop of gp120, which is a major neutralizing determinant of the virus. The antibody-peptide interactions, involving aromatic and negatively charged residues of the antibody 0.5β, were studied by NMR and double-mutant cycles. A deuterated V3 peptide and a Fab containing deuterated aromatic amino acids were used to assign these interactions to specific V3 residues and to the amino acid type and specific chain of the antibody by NOE difference spectroscopy. Electrostatic interactions between negatively charged residues of the antibody Fv and peptide residues were studied by mutagenesis of both antibody and peptide residues and double-mutant cycles. Several interactions could be assigned unambiguously: F96(L) of the antibody interacts with Pro13 of the peptide, H52(H) interacts with Ile7, Ile9 and Gln10 and D56(H) interacts with Arg11. The interactions of the light-chain tyrosines with Pro13 and Gly14 could be assigned to either Y30a(L) and Y32(L), respectively, or Y32(L) and Y49(L), respectively. Three heavy-chain tyrosines interact with Ile7, Ile20 and Phe17. Several combinations of assignments involving Y32(H), Y53(H), Y96(H) and Y100a(H) may satisfy the NMR and mutagenesis constraints, and therefore at this stage the interactions of the heavy-chain tyrosines were not taken into account. The unambiguous assignments [F96(L), H52(H) and D56(H)] and the two possible assignments of the light-chain tyrosines were used to dock the peptide into the antibody-combining site. The peptide converges to a unique position within the binding site, with the RGPG loop pointing into the center of the groove formed by the antibody complementary determining regions while retaining the β-hairpin conformation and the type-VI RGPG turn [Tugarinov, V., Zvi, A., Levy, R. and Anglister, J. (1999) Nat. Struct. Biol. 6, 331- 335].
1998
-
-
(1998) Biochemistry. 37, 20, p. 7083-7088 Abstract
GroEL with an intrinsic fluorescent probe was generated by introducing the mutation Phe44 --> Trp. Different concentrations of ATP were rapidly mixed with GroEL containing this mutation, and the time-resolved change in fluorescence emission, upon excitation at 280 nm, was followed. Three kinetic phases were observed: a fast phase with a large amplitude and two slower phases with small amplitudes. The phases were assigned by (i) determining their dependence on ATP concentration; (ii) measuring their sensitivity to the mutation Arg197 --> Ala, which decreases cooperativity in ATP binding; and (iii) by carrying out mixing experiments of GroEL also with ADP, ATP gamma S, and ATP without K+. The apparent rate constant corresponding to the fast phase displays a bi-sigmoidal dependence on ATP concentration with Hill coefficients that are strikingly similar to those determined in steady-state experiments. This phase, which reflects ATP-induced conformational changes, is sensitive to the mutation Arg197 --> Ala in a manner that parallels steady-state experiments. The rate of conformational change in the presence of ATP is > 100 sec(-1), which is fast relative to most protein folding rates, whereas in the absence of ATP it is similar to 0.7 s(-1). The second phase reflects the transition from an ATP-bound state of GroEL to an ADP-bound state. The third phase, with the smallest amplitude, reflects release of residual contaminants. The results in this study are found to be consistent with the nested model for cooperativity in ATP binding by GroEL [Yifrach, O., and Horovitz, A. (1995) Biochemistry 34, 5303-5308].
-
(1998) Current Opinion in Structural Biology. 8, 1, p. 93-100 Abstract
The chaperonin GroEL and its cofactor GroES facilitate protein folding in an ATP-regulated manner. The recently solved crystal structure of the GroEL·GroES·(ADP)7 complex shows that the lining of the cavity in the polypeptide acceptor state is hydrophobic, whereas in the protein-release state it becomes hydrophilic. Other highlights of the past year include the visualization of the allosteric states of GroEL with respect to ATP using cryo-electron microscopy, and an X-ray crystallographic analysis of the interaction between the apical domain of GroEL and a peptide.
1997
-
(1997) Journal of Biological Chemistry. 272, 50, p. 31407-31411 Abstract
The Fv fragment of the 0.5β monoclonal antibody has recently been constructed, expressed, and purified. It binds with nanomolar affinity to the immunogenic RP185 peptide that is derived from the principal neutralizing determinant of HIV-1 in the third hypervariable region of gp120. Here, we analyzed the temperature-dependence of binding of the 0.5β Fv fragment to the RP135 peptide and a series of mutants thereof. Our results show that there is almost complete enthalpyentropy compensation in the effects of mutations in the peptide on binding to the Fv, indicating that the mutations do not change the binding mechanism. There is good correlation, for residues within the antigenic epitope, between mutational effects on ΔC(p) and calculated values of ΔDC(p) based on the extent of burial of polar and non- polar surfaces areas of amino acids. The value of ΔC(p) for the binding of the 0.5β Fv fragment to the wild-type RP135 peptide is found to be -5.0 (±0.9) kcal K-1 mol-1 in the presence of 0.1% Tween-20 but only -0.1 (±0.9) kcal K-1 mol-1 in its absence. This result has important implications for the successful application of the structural parameterization approach to predicting changes in heat capacity that accompany binding reactions carried out in the presence of detergent or protein-stabilizing agents.
-
(1997) Biochemistry. 36, 40, p. 12276-12281 Abstract
Curves of initial rates of ATP hydrolysis by GroEL as a function of ATP concentration, in the presence of fixed concentrations of GroES, were found to deviate from sigmoidal kinetics. Instead of the lag phase typical of sigmoidal curves, a linear phase is observed at low ATP concentrations. Consequently, a good fit of the data to the Hill equation could not be achieved. Such curves could be simulated using a linear combination of Hill equations, thus indicating that more than one allosteric transition is taking place in the ATP concentration range studied. The data were fitted to a fractional saturation equation for ATP binding to GroEL based on a partition function that includes both GroES and ATP-liganded states of GroEL. Using this equation, it was possible to estimate in a reliable manner the value of the allosteric constant, L'2, for the transition of the ring distal to GroES in the GroEL-GroES complex from the low (T)- to the high (R)-affinity state for ATP. The value of L'2 is found to be 4 x 10-5 whereas the value of the allosteric constant, L2, for the transition of the second ring of GroEL from the T to R state is 2 x 10-9 [Yifrach, O., and Horovitz, A. (1995) Biochemistry 34, 5303-5308]. Comparison of these values shows that GroES promotes the T to R transition of the ring distal to GroES in the GroEL- GroES complex. Owing to the relatively low affinity of the R conformation for nonfolded proteins, this transition will lead to release of protein substrates from trans ternary complexes of GroEL, GroES, and protein substrate. The role of this release mechanism may be to assist the folding of relatively large proteins that cannot form cis ternary complexes and/or to facilitate degradation of damaged proteins which cannot fold.
-
(1997) Nature Structural Biology. 4, 9, p. 690-694 Abstract
Combined kinetic and cryo-EM analysis of the R197A mutant of GroEL provides insight into the allosteric switching of GroEL, which is at the heart of the chaperonin mechanism.
-
(1997) Proceedings of the National Academy of Sciences of the United States of America. 94, 5, p. 1698-1702 Abstract
A protein engineering approach for detecting and measuring local conformational changes that accompany allosteric transitions in proteins is described. Using this approach, we can identify interactions that are made or broken during allosteric transitions. The method is applied to probe for changes in pairwise interactions in the chaperonin GroEL during its ATP- induced allosteric transitions. Two pairwise interactions are investigated: one between subunits (Asp-41 with Thr-522) and the other within subunits (Glu-409 with Arg-501). We find that the intraring intersubunit interaction between Asp-41 and Thr-522 changes little during the allosteric transitions of GroEL, indicating that the hydrogen bond between these residues is maintained. In contrast, the intrasubunit salt bridge between Glu-409 and Arg-501 becomes significantly weaker during the ATP-induced allosteric transitions of GroEL. Our results are consistent with the electron microscopy observations of an ATP-induced hinge movement of the apical domains relative to the equatorial domains.
-
(1997) Folding & Design. 2, 6, p. R105-R108 Abstract
A selection of interesting papers published in recent months in those major journals most likely to report significant results in protein and RNA folding and design.
-
(1997) Plant Genetic Conservation. p. 239-253 Abstract
Many of the crop plants that helped to found Western civilization have their origin in an arc of land that connects the valleys of the Euphrates and Tigris with the Jordan and which has been termed the Fertile Crescent by Breasted (1938). The progenitors or close relatives of these crop plants survive to this day in wild populations in those areas. Increasing urbanization and modern farming practices, herbicides, etc., are a threat to the richness of these gene pools or their very survival.
1996
-
(1996) Journal of Biological Chemistry. 271, 23, p. 13829-13833 Abstract
The construction, expression, and purification of an active Fv fragment of the 0.5β monoclonal human immunodeficiency virus type 1 (HIV-1) neutralizing antibody is reported. The interaction between the Fv fragment and the RP135 peptide derived from the V3 loop of gp120 from HIV-1(IIIB) was studied by varying the salt concentration and by mutating arginine residues in the peptide. The mutations R4A, R8A and R11A (which correspond to residues 311,315, and 318 in gp120 of HIV-1(IIIB)) reduce the binding free energy by 0.22 (± 0.20), 4.32 (± 0.16), and 1.58 (± 0.17) kcal mol-1, respectively. The salt-dependent components of their contributions to binding are 0.02 (± 0.22), -0.55 (± 0.18), and -0.97 (± 0.19) kcal mol-1, respectively. The magnitudes of the mutational effects and the extent of shielding by 1 M NaCl suggest that Arg-8 is involved in a buried salt bridge in the peptide-Fv fragment complex, whereas Arg-11 is involved in a more solvent-exposed electrostatic interaction.
-
(1996) Journal of Molecular Biology. 258, 5, p. 732-735 Abstract
The crystal structures of the chaperonin GroEL Arg13 → Gly; Ala126 → Val double mutant, without and in complex with ATPγS, have been determined at atomic resolution. Here, we show that the double mutation Arg13 → Gly; Ala126 → Val disrupts negative co-operativity between GroEL rings, with respect to ATP, but has little effect on the positive co-operativity within each ring. Our results help to explain why the double mutation facilitated the crystallization of GroEL and why breaking of dyad symmetry between rings is not observed in crystal structures of this mutant. Our results may also help to explain why the observed structural differences between the GroEL double mutant and its ATPγS-bound form are small.
-
(1996) Protein Engineering, Design and Selection. 9, 3, p. 315-316 Abstract
Pairwise interactions in proteins can be detected and, in certain circumstances, their strength measured by applying the method of double-mutant cycles. Such cycles comprise wild type protein, two single mutants and the corresponding double mutant The analysis of double-mutant cycles is most straightforward when the mutations are to alanine since interactions are mostly removed without new interactions being formed. Here, ʼnot-to-alanine double-mutant cycles are analysed. It is shown that a ʼnot-to-alanine double-mutant cycle can be decomposed into four double-mutant cycles with mutations only to alanine. The coupling energy corresponding to the ʼnot-to-alanine double-mutant cycle is expressed as a function of the coupling energies of these four cycles.
-
(1996) Journal of Molecular Biology. 255, 3, p. 356-361 Abstract
Co-operativity in ATP hydrolysis by GroEL can be described by a model in which each ring of GroEL is in equilibrium between a low (T) and high (R) affinity state for ATP. According to this model, the GroEL double-ring is in equilibrium between three states: TT, TR and RR. In order to find out which states bind non-folded proteins, we measured the co-operativity in ATP hydrolysis by GroEL in the absence and presence of non-folded α-lactalbumin, under equilibrium conditions between GroEL and the non-folded protein. The non-folded protein is found to bind preferentially the T state of GroEL rings and to stimulate the ATPase activity of GroEL by (1) a direct effect on GroEL rings in the T state and (2) a shift in the equilibrium from the RR state toward the more active TR state. The coupling between co-operativity in ATP hydrolysis by GroEL and protein substrate binding and release by this molecular chaperone is shown.
-
(1996) Folding and Design. 1, 6, p. R121-R126 Abstract
A double-mutant cycle involves wild-type protein, two single mutants and the corresponding double mutant protein. If the change in free energy associated with a structural or functional property of the protein upon a double mutation differs from the sum of changes in free energy due to the single mutations, then the residues at the two positions are coupled. Such coupling reflects either direct or indirect interactions between these residues. Double-mutant cycle analysis can be used to measure the strength of intramolecular and intermolecular pairwise interactions in proteins or protein-ligand complexes with known structure. Double-mutant cycles can also be employed to characterize structures that are inaccessible to NMR and X-ray crystallography, such as those of transition states for protein folding, ligand binding and enzyme catalysis, or of membrane proteins. Multidimensional mutant cycle analysis can be used to measure higher-order cooperativity between intramolecular or intermolecular interactions. In the absence of coupling between residues, prediction of mutational effects is possible by assuming their additivity.
1995
-
(1995) Biochemistry. 34, 16, p. 5303-5308 Abstract
Initial rates of ATP hydrolysis by wild-type GroEL were measured as a function of ATP concentration from 0 to 0.8 mM. Two allosteric transitions are observed: one at relatively low ATP concentrations (⩽ 100μM) and the second at higher concentrations of ATP with respective midpoints of about 16 and 160μM. Two allosteric transitions were previously observed also in the case of the Arg- 196 → Ala GroEL mutant [Yifrach, O., & Horovitz, A. (1994) J. Mol. Biol. 243, 397-401], On the basis of these observations a mathematical model for nested cooperativity in ATP hydrolysis by GroEL is developed in which there are two levels of allostery: one within each ring and the second between rings. In the first level, each heptameric ring is in equilibrium between the T and R states, in accordance with the Monod-Wyman-Changeux (MWC) model of cooperativity [Monod et al. (1965) J. Mol. Biol. 12, 88-118], A second level of allostery is between the rings of the GroEL particle which undergoes sequential Koshland-Nemethy-Filmer (KNF)-type transitions from the TT state via the TR state to the RR state [Koshland et al. (1966) Biochemistry 5, 365-385]. Using our model, we estimate the values of the Hill coefficient for the negative cooperativity between rings in wild-type GroEL and the Arg-196 → Ala mutant to be 0.003 (±0.001) and 0.07 (±0.02), respectively. The inter-ring coupling free energies in wild-type GroEL and the Arg-196 - Ala mutant are -7.5 (±0.4) and -3.9 (±0.3) kcal mol-1, respectively.
-
(1995) Proceedings Of The Royal Society B-Biological Sciences. 259, 1354, p. 85-87 Abstract
An analysis of the relation between cooperativity in ligand binding by an allosteric protein and cooperativity in intramolecular interactions within the protein is presented. An intramolecular interaction between two residues, a and b, may be detected and measured by construction of a double-mutant cycle comprising wild-type protein, two single mutants and the corresponding double mutant. Higher-order interactions between three or more residues may be measured by using multidimensional mutant space. The analogy between the Koshland-Nemethy-Filmer (KNF) model for cooperativity in ligand binding and double-mutant cycles is demonstrated. It is shown that cooperativity in ligand binding due to KNF-type allosteric transitions must involve cooperativity in intramolecular interactions. Thus, in certain ideal cases, the Hill coefficient for cooperativity in ligand binding may be expressed as a function of the extent of cooperativity between interactions in the protein as measured by multidimensional mutant cycles.
1994
-
(1994) Biochemistry. 33, 50, p. 14974-14978 Abstract
The conserved residue Lys-34 in GroES was replaced by alanine and glutamic acid using site-directed mutagenesis. This residue is near the carboxy terminus of the mobile loop in GroES (residues 17-32) which becomes immobilized upon formation of the GroEL/GroES complex [Landry et al. (1993) Nature 364, 255-258]. Both charge neutralization (Lys-34-->Ala) and charge reversal (Lys-34--->Glu) at this position have little effect on the binding constant of GroES to GroEL, but they increase the enhancement by GroES of cooperativity in ATP hydrolysis by GroEL. This is reflected by a change in the Hill coefficient (at 10 mM K+) from 4.10 (+/-0.22) in the presence of wild-type GroES to 5.17 (+/-0.24) and 4.46 (+/-0.14) in the presence of the GroES mutants Lys-34-->Ala and Lys-34-->Glu, respectively. The results are interpreted using the Monod-Wyman-Changeux (MWC) model for cooperativity [Monod et al. (1965) J. Mol. Biol. 12, 88-118]. They suggest that Lys-34 in GroES modulates the allosteric transition in GroEL by stabilizing a relaxed (R)-like state.
-
(1994) Journal of Molecular Biology. 238, 2, p. 133-138 Abstract
A search for co-ordinated amino acid changes in the hsp60 family of chaperonins suggested that cysteine residues at positions 137 and 518 in the Escherichia coli chaperonin GroEL may interact with each other. In order to determine whether this interaction indeed exists we constructed a double-mutant cycle comprising wild-type GroEL, the single mutants Cys137→Ser and Cys518→Ser and the corresponding double mutant. The effects of the two mutations on the function of GroEL, in assisting the refolding of a non-folded protein substrate (rhodanese), are shown to be non-additive. It is also shown that ADP by itself specifically destabilities the Cys518→Ser mutant GroEL particle with this effect being suppressed in the double mutant. The observed pattern of co-ordinated mutations in the hsp60 family of chaperonins is thus shown to reflect a real interaction, though most likely indirect, between Cys137 and Cys518 in GroEL. Our study demonstrates that patterns of co-ordinated mutations combined with double-mutant cycle analysis can provide structural informantion on interactions in a protein without an available three-dimensional structure at atomic resolution.
-
Direct demonstration that ATP is in contact with Cys-137 in chaperonin GroEL(1994) Journal of Biological Chemistry. 269, 1, p. 44-46 Abstract
The nonhydrolyzable ATP analogue ATPγS (adenosine 5'-3-O- (thio)triphosphate) is affinity cross-linked to GroEL by formation of a disulfide bridge in a peroxide-promoted reaction. By replacing with serine each of 3 cysteine residues in GroEL, it is shown that ATPγS specifically cross-links to Cys-137. It is thus demonstrated that the ATP bound to GroEL is in direct contact with Cys-137.
-
(1994) Journal of Molecular Biology. 243, 3, p. 397-401 Abstract
Sequence homology between GroEL and Escherichia coli DNA polymerase I, together with the fact that both proteins bind adenine nucleotides, suggested to us that they may have a similar nucleotide binding site. Arg196 in GroEL corresponds to Arg425 in DNA polymerase I, which is near its nucleotide binding site. Here, we report the striking effects of the mutation Arg196→Ala in GroEL on its kinetic and allosteric properties with respect to ATP The mutation reduces positive co-operativity in ATP hydrolysis found in wild-type GroEL. It also gives rise to strong substrate (ATP) inhibition, which is not apparent in the wild-type protein. The dual effect of the mutation reflects the presence of two lines of allosteric communication between ATP binding sites in GroEL and suggests the existence of nested co-operativity.
1993
-
The N terminus of the molecular chaperonin GroEL is a crucial structural element for its assembly(1993) Journal of Biological Chemistry. 268, 14, p. 9957-9959 Abstract
The Escherichia coli heat-shock protein GroEL is a member of the highly conserved family of tetradecameric chaperonins 60, which assist in the folding and assembly of other proteins. Using site-directed mutagenesis, it is shown that replacement of the absolutely conserved amino acid residue Lys-3 by arginine or isoleucine destabilizes the GroEL particle and that the replacement Lys-3 → Glu completely blocks its formation. The rank order of effects of these mutations on the stability of the GroEL particle correlates with the associated changes in net charge at that position. Our results show that the N terminus of GroEL is a crucial structural element for its assembly.
-
(1993) Journal of Molecular Biology. 231, 1, p. 58-64 Abstract
The mutation Ala2 → Ser in the molecular chaperone GroEL increases positive co-operativity in ATP hydrolysis, as reflected by a change in the Hill coefficient from 2.36(±0.23) for wild-type to 3.19(±0.17) for the mutant. This amino acid replacement destabilizes the oligomeric structure of GroEL. It is shown that adenine nucleotides also have a specific destabilizing effect which is more pronounced in the case of the Ala2 → Ser mutant. Addition of GroES or the non-folded protein ligand rhodanese blocks the destabilizing effect of adenine nucleotides for both wild-type and mutant. The results are interpreted using the Monod-Wyman-Changeux (MWC) model for co-operativity.
1991
-
EVALUATION OF THE WILD-WHEAT STUDY AT AMMIAD(1991) Israel Journal of Plant Sciences. 40, 6-May, p. 501-508 Abstract
A number of lessons can be learned from the Ammiad study of wild tetraploid wheat as presented in the foregoing papers.
1978
1977
1972
-
BULB HABIT AND REPRODUCTION IN DIFFERENT PLOIDY FORMS OF TULIPA-OCULUS-SOLIS IN ISRAEL(1972) Israel Journal of Plant Sciences. 21, 4, p. 185-196 Abstract