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Proteins are subject to various conflicting forces that trade-off

against each other. For example, during folding, the protein

achieves lower enthalpy at the cost of lower entropy. Similarly,

the trade-off for increased stability may be decreased flexibility,

which may abolish allosteric pathways. Accordingly, stability

trades-off against function, which may also trade-off against

folding kinetics and mechanism. Furthermore, attaining

increased stability may reduce a protein’s ability to adopt novel

functions. Understanding the biophysics and function of

proteins requires quantification of the driving forces involved in

each of the trade-offs. Indeed, quantification of the linkages in

the network of trade-offs is essential to obtaining a more

complete understanding of protein structure and function.
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Introduction
Trade-offs have been observed in many areas of life,

including in decision-making problems [1,2], the evolu-

tion of organisms [3], and the microscopic properties of

biomolecules, such as proteins and DNA. Trade-offs

occur when the attainment of two desired outcomes stand

in contradiction to each other. For example, the dilemma

of whether to wear gloves or mittens on a cold winter day

reflects a trade-off between function and warmth. Mit-

tens, in which all fingers are in the same compartment,

keep the hands warmer, but at the expense of function-

ality, in that it is difficult to manipulate objects while

wearing mittens. By contrast, gloves, in which each finger

is in a separate compartment, provide better functionality

but less warmth. In the gloves–mittens example, the

trade-off is simple because it involves only two desired

outcomes. When examining trade-offs in proteins, the

list of desired outcomes is much longer, and therefore

trade-offs in proteins form a complex network. Some of
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the trade-offs are intrinsic to any protein while others may

depend on the protein sequence and structure.

In this opinion, we classify the desired protein outcomes

into three categories: (1) biophysical properties; (2)

functional properties; and (3) evolutionary properties.

Trade-offs are found within these categories but mostly

between them, indicating a potential tag-of-war between

proteins’ biophysics, function and evolution (Figure 1).

In the following sections, we will discuss some of the

common trade-offs within and between these three

categories (Figure 2), and will conclude with strategies

that nature and protein engineers have developed to

circumvent some of the trade-offs inherent in protein

evolution and design.

Entropy–enthalpy trade-off
Since most proteins usually need to adopt a specific

structure to function, they must also be thermodynami-

cally stable and kinetically foldable. For a protein to be

thermodynamically stable, the free energy of its native

state (GN) must be lower than the free energy of its

unstructured ensemble (GU), such that GN� GU= DG < 0.

The low free energy of the native state can be achieved

via low enthalpy or high entropy. However, enthalpy and

entropy often trade-off in what is known as ‘entropy-

enthalpy compensation’ [4] (Figure 3A).

The physical origin of entropy–enthalpy compensation in

protein folding may be the rearrangement of water mole-

cules in the protein’s proximity [5]. That is, a perturbation

that leads to the formation of more water-mediated hydro-

gen bonds in the protein will lead to a decrease in enthalpy

but, at the same time, the new constraints that the water

molecules impose on the protein also decrease the entropy

of the system. Alternatively, entropy–enthalpy compensa-

tion could originate from the properties of the protein itself

[4]. For instance, the formation of non-bonded interactions

in the native state can lead to a decrease in the plasticity of

the protein and hence to an undesired decrease in entropy.

Intuitively, the thermodynamic stability of proteins can be

alteredbymodifyingtheenthalpyof thefoldedstate (e.g.,by

point mutations) or the entropy of the unfolded state (e.g.,

by cyclization or disulfide bond formation). Several studies

have demonstrated mechanisms for trade-offs between

entropy and enthalpy that are less common. For example,

loop truncation is a common protein modification, and it is

suggested that loops have an important role in protein

stability [6] and function [7]. Although, intuitively, loop

truncation can result in higher stability by reducing the

entropy of the unfolded ensemble, loop truncation can also
www.sciencedirect.com
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Figure 1
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Proteins properties are an outcome of a tag-of-war between

biophysical, functional, and evolutionary forces. Some of these forces

might be in conflict and define trade-offs.
lead to an increase in the entropy of the folded state of the

protein due to deletion of interactions loop residues have

with other structural elements in the protein. This can lead

to thermodynamic stabilization of the protein by decreasing

the entropic loss of folding [8–10].

Multi-domain proteins are common in all kingdoms of

life [11]. In some cases, multiple domains are encoded in

the sequence of the proteins, but in other cases the

additional domains are the result of post-translational

modifications (PTMs), such as glycosylation [12], ubi-

quitination [13], or biotechnological applications (label-

ing with GFP). The effect of multiple domains on the

thermodynamic stability of proteins is not always simply

additive, and is system-dependent [14�,15]. In some

cases, tethering a conjugate to a protein can lead to

thermodynamic destabilization of the protein [16,17].

It was shown that destabilization of conjugated proteins

can be caused by an increase in the entropy of the

unfolded state. Moreover, tethering leads to elimination

of residual contacts in the unfolded ensemble (increase

in enthalpy) and to an increase in the configurational

entropy of the protein [18�].

Another surprising example of the trade-off between

entropy and enthalpy is the effect of mutations on protein

thermodynamic stability. Replacing a wild-type protein

residue with alanine can be regarded as the elimination of

a contact between residues i and j. Considering the

enthalpy of the native state, contacts with different

sequence separation (i–j) are expected to have similar
www.sciencedirect.com 
effects on protein stability. Hence, mutating residues

with different sequence separations is expected to pro-

duce similar effects on protein thermodynamic stability.

Surprisingly, there is evidence that deletion of contacts

with large sequence separation (long-range contacts)

leads to greater thermodynamic destabilization than the

deletion of contacts that are near in sequence. Using

computational, theoretical, and bioinformatic tools, it

was found that this contact-length dependent destabili-

zation originates from an increase in the entropy of the

unfolded ensemble, which is not fully compensated for by

an increase in the system’s enthalpy following the elimi-

nation of residual contacts [19�]. Similar findings were

reported for lattice models of proteins [20,21]. In addition,

it was suggested that long-range contacts play an impor-

tant role in increasing the protein folding rate [22–24].

Stability–function trade-off
Proteins are known to be only marginally stable, with

typical DG values in the range of 5–15 kcal/mol [25]. This

marginal stability, which originates from the trade-off

between entropy and enthalpy mentioned above, is also

linked to a trade-off between protein thermodynamic

stability and other desired outcomes (Figure 3B). For

example, in order for a protein to maintain its function in

the native state, the free energy of the native state may be

optimized for function rather than for thermodynamic

stability. Indeed, early studies showed that the presence

of stabilizing mutations in catalytic or binding sites

decreased enzyme activity [26–28]. Similarly, it was

found that stabilizing mutations in the binding sites of

proteins significantly decreased binding affinity [29]. In

another study, a variant of the fibronectin type III (FN3)

protein, being a dimeric glycoprotein involved in several

cellular processes, was constructed with picomolar affinity

(six orders of magnitude more than wild type FN3), but

the large increase in affinity came at the cost of a decrease

in Tm of �30�C [30]. Mutation at binding sites that

enhance affinity of interaction with another biomolecule

may affect function via changes in specificity. Although in

some cases proteins have high affinity only to a

specific ligand (i.e., high affinity and high specificity),

other relationships between affinity and specificity exist

(e.g., high affinity and low specificity or low affinity and

low specificity) [31,32].

Increased stability can also come at the expense of

activity when the stabilizing mutation is distant from

the active/binding site. In these cases, a stabilizing

mutation can lead to an overall decrease in the flexibility

of the proteins and restriction of the conformational

heterogeneity, which may affect the active site via

allosteric pathways [33]. However, it was shown that

stabilizing mutations occurring at locations distant from

the active site do not necessarily lead to a decrease in

function [34–36].
Current Opinion in Structural Biology 2020, 60:50–56
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Figure 2
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(a) Turning on protein trade-offs. Proteins are made of various trade-offs which can be classified as having consequence on protein’s

biophysical (orange), functional (green), or evolutionary (blue) properties. Some of these conflicting forces are inherent in proteins (e.g., trade-off

between enthalpy and entropy); however, some are valid only in some proteins (e.g., trade-offs between folding and function or between stability

and new function). We note that this list of trade-off does not aim to be complete, thus additional trade-offs may exist as well. (b) Proteins are

molecules subject to a network of trade-offs. While balancing the conflicting forces in each protein trade-off is not trivial, one has to consider

cross-talks between the trade-offs because they are linked. For example, the thermodynamic stability is in conflict with protein function, solubility,

specificity and the ability to adopt a new function. This illustrates the complexity of the evolutionary forces on protein stability.
Stability–solubility trade-off
In order for proteins to remain functional in the cell, they

need to remain soluble. When proteins are not sufficiently

soluble, they may form insoluble aggregates. In the

complex energy landscape of proteins, the native struc-

ture does not always reside in its global energy minimum

(Figure 3C). Aggregates of various protein forms, which

often have lower free energies than the protein’s native

structure, are related to more than 50 types of disease [37].

The disease-related proteins, some globular and some

intrinsically disordered, form fibrillar aggregates with a

cross-beta structure, known as amyloids. Under native

conditions, proteins are usually blocked from transition-

ing into the aggregated state by a large free-energy barrier
Current Opinion in Structural Biology 2020, 60:50–56 
[38]. However, the protein energy landscape can be

perturbed by the imposition of various forms of stress

[39,40]. These perturbations can enable protein aggrega-

tion either by permitting the protein to transition to

partially/completely unfolded states, which readily aggre-

gate, or through the effects of even very local protein

unfolding events [41]. In addition, several mutational

studies of the aggregation propensity of globular proteins

show that greater thermodynamic stability in proteins

tends to reduce their aggregation [42,43], even in live

cells [44,45]. Although some studies show that mutations

that decrease net charge [46] or increase hydrophobicity

and the propensity to form beta-sheets [47] increase

aggregation propensity, this is not always the case [42,43].
www.sciencedirect.com
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Figure 3
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Schematic illustrations of trade-offs in proteins. Entropy/enthalpy

trade-off: the high entropy (i.e., low –TS) and high enthalpy in the

unfolded state is exchanged with low entropy and low enthalpy in the

folded state. Stability/function trade-off: Stabilizing the protein may

result in lower affinity to ligands (e.g., the interaction of Dihydrofolate

Reducatse with Dihydrofolate) due to a global change in flexibility and

consequently in allostery. The function/stability trade-off is also

highlighted by the observations that mutating catalytic residues (i.e.,

loss of enzymatic activity) may often increase stability. Stability/

solubility trade-off: increasing stability may reduce protein solubility

and result with aggregation. Folding/function trade-off: Some

domains that are directly involved in function (e.g., binding a ligand,

represented by the blue triangle) increase the free energy barrier for

folding and result in slower folding. Stability/New function trade-off:

increasing protein stability may eliminate the ability to acquire new

functions (e.g., the evolvability to interact with various ligands). The

stability of the protein is introduced by the pink-to-red colorbar.
It appears, therefore, that thermodynamic stability and

solubility do not trade-off in a consistent manner. They

are two sides of the same coin rather than two ends of the

same rope. Nonetheless, when a meta-predictor that

combined 11 different prediction algorithms was used

to design stable proteins, the result was proteins that were

more stable but less soluble. This trade-off occurred
www.sciencedirect.com 
because stabilization was achieved via the addition of

hydrophobic residues to the protein surface [48�]. The

physical origin of stabilization in this case may arise from

hydrophobic side chains that bury more surface area in

the native state than in the unfolded ensemble. Similarly,

it was found that, in the presence of the HSP90 chaper-

one, a viral protein (P1, from poliovirus) undergoes muta-

tions that increase its stability, but also increase its

aggregation propensity. The mutations were found to

involve mostly hydrophobic residues [49].

Folding–function trade-off
One possible strategy by which proteins could minimize

their propensity to aggregate is to fold rapidly down a

smooth energy landscape. Proteins that fold rapidly have

a lower chance of encountering other proteins in the cell

before they fold, and hence a lower aggregation propen-

sity [50]. However, in some cases, fast folding trades-off

against function. For example, it was shown that short-

ening a loop in the pin1 WW domain speeds up protein

folding by up to an order of magnitude in comparison with

the wild-type, but eliminates the ability of the protein to

bind ligands [51]. Similarly, it was suggested that func-

tional constraints lead to the observed ruggedness of the

energy landscape of Im7 [52], farataxin [53] and b-trefoil
protein IL-1b [54,55�]�. Interestingly, the addition of a

function to a functionless motif of IL-1b has a dual effect:

when a function is added through the addition of new

structural elements, folding is slower and more complex

(Figure 3D). The origin of the high free-energy barrier for

folding when a functional domain (b-bulge loop in the

case of IL-1b) is introduced is linked to backtracking that

is required to resolve unproductive folding events associ-

ated with this domain, namely slower folding kinetics

[54,56]. However, when a function is added by using

existing structural elements (e.g., for the protein Hisac-

tophilin that has a b-trefoil structure but folds faster than

IL-1b), the folding is less complex, occurs faster, but the

folded protein is also less stable [55�].

Stability–new function trade-off
An important property of proteins is their ability to evolve

to gain improved or new functions. In accordance with the

observation that protein thermodynamic stability and

function often trade-off, it was shown that mutations that

provide new or improved functions also decrease stability

[57,58] (Figure 3E), often because they lead to the

exposure of polar or charged residues to a hydrophobic

environment. However, these observations may not indi-

cate that there is a general trade-off between stability and

new functions, since most mutations are known to be

destabilizing. A more precise description may be that

mutations leading to new functions are more destabilizing

than mutations that do not bequeath new functions

(neutral mutations) [59,60]. One possible outcome of this

observation is that neutral mutations can increase stability

and hence avoid the loss of stability introduced when
Current Opinion in Structural Biology 2020, 60:50–56
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mutation adds a new function. Another outcome may be

that proteins that are more stable than their counterparts

are more likely to evolve new functions since they can

tolerate more mutations while retaining sufficient ther-

modynamic stability to function [61,62].

Circumventing protein trade-offs
In light of the complex network of trade-offs in proteins

reviewed above, it is interesting to examine what strate-

gies nature uses to navigate within the trade-off network

(Figure 2) and to optimally balance between different

desired outcomes. In the network of trade-offs, thermo-

dynamic stability emerges as a central property that

several other desired outcomes trade-off against. As a

result, globular proteins exhibit a relatively poor thermo-

dynamic stability. Breaking the delicate balance between

the various desired protein properties can lead to unde-

sired outcomes, such as misfolding, aggregation and deg-

radation (which in some cases is not wanted).

One navigation strategy is to favor function over thermo-

dynamic stability. This strategy is adopted by intrinsically

disordered proteins (IDPs), which lack a thermodynami-

cally stable 3D structure, but have an important func-

tional role [63]. IDPs are abundant in the eukaryotic

proteome, are known to serve as hubs in protein interac-

tion networks, and play a central role in the regulation of

signaling pathways.

While some of the trade-offs are intrinsic to proteins

(e.g., entropy-enthalpy trade-off in folded proteins),

others (e.g., stability-function or foldability-function

trade-offs) may depend on the protein sequence and

may originate from the constrained chemical-space

introduced by the 20 amino-acids. PTMs can be viewed

as a means to manipulate these trade-offs by expanding

this chemical space. Indeed, different PTMs such as

phosphorylation [64] glycosylation [65,66] and myristoy-

lation [67] were shown to affect protein stability and

folding, illustrating that the trade-offs can be delicate

and are tunable.

Another strategy to navigate within the trade-off network

is to use molecular chaperones in order to increase the

probability of proteins to reach the thermodynamically

stable, functional state [68]. Most chaperones bind disor-

dered protein regions and use energy from ATP hydroly-

sis to perform their function, which differs between

chaperone families. These functions include disaggre-

gation, translocation across organelle membranes and

assisting protein folding.

In addition to the paths that nature takes in the protein

trade-off network, protein engineers and designers have

embedded knowledge of trade-offs into their design

efforts with the goal of circumventing trade-offs. Several

studies have shown that it is possible to design a protein
Current Opinion in Structural Biology 2020, 60:50–56 
with improved thermodynamic stability and improved

functionality (binding or catalysis) by following specific

structural and/or evolutionary design rules [36,69–71].

One such rule is not to mutate residues located in the

active/binding site of the protein when the aim is to

increase activity/binding. Another is to avoid the intro-

duction of hydrophobic residues onto the protein surface,

as this is known to increase the aggregation propensity.

Conclusions
Various conflicting forces act on proteins and lead to

several trade-offs, suggesting that proteins are frustrated

objects [72]. While the trade-offs describe conflicts in

macroscopic properties of proteins, conflicts can also exist

at the microscopic level as was shown by the local

frustration analysis and their connection to function

[73]. Hence, trade-offs are an inherent property of pro-

teins and are expected to be minimal. This is illustrated

by the minimal frustration principle for protein folding

that address the conflict between folding kinetics and

stability [74,75]. The trade-offs are not only between the

biophysical properties of the proteins but are also linked

to their functional or evolutionary characteristics. A more

complete understanding of protein complexity may

require a ‘Systems protein’ approach that includes a

quantification of their trade-offs. Obviously, optimizing

protein trade-offs is more complex when considering the

network of interaction between the trade-offs and the

opposing forces that may act differently on different

trade-offs. For example, while high stability trades-off

with function as well as with the accumulation of new

function it decreases the tendency to aggregate.

Knowledge about the various trade-offs in proteins has

led to a deep understanding of the complex and delicate

balance between various desired protein properties. How-

ever, most of the work discussed in this review dealt with

small single domain proteins. Multi-domain proteins are

more complex than single domain proteins and, as men-

tioned earlier, their biophysical and functional properties

are not simply additive [14�]. We have shown that the

trade-off between enthalpy and entropy for multi-domain

proteins deviates from that of single-domain proteins

[8,18�]. The trade-offs might be different if the domains

in multi-domain proteins are inserted within another

domain [76]. The magnitude of the trade-offs is expected

to be affected by the protein topology (e.g., knots in the

structure). Describing protein biophysics and function in

terms of a network of trade-offs, especially in cases

of large and multidomain proteins, may allow better

understanding and trigger development of approaches

to manipulate them.
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