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ABSTRACT: Predicting the effect of a single point mutation on protein thermodynamic
stability (ΔΔG) is an ongoing challenge with high relevance for both fundamental and
applicable aspects of protein science. Drawbacks that limit the predictive power of stability
prediction tools include the lack of representations for the explicit energetic terms of the
unfolded state. Using coarse-grained simulations and analytical modeling analysis, we
found that a mutation that involves the breaking of long-range contacts may lead to an
increase in the unfolded state entropy, which can lead to an overall destabilization of the
protein. A bioinformatics analysis indicates that the effect of mutation on the unfolded
state is greater for hydrophobic or charged (compared with polar) residues that participate in long-range contacts through a
loop length longer than 18 amino acids and whose formation probabilities are relatively high.

■ INTRODUCTION
Protein structure and stability are strongly linked to the protein
amino acid sequence. The stability of a protein is often
particularly sensitive to mutations. Similarly, protein function
can also be affected by mutations that may even lead to
undesirable diseases via various mechanisms, among them
reducing stability, protein misfolding and aggregation, change
in allosteric flexibility, or a change in the network of
interactions with other biomolecules. Protein mutagenesis is
a common means to probe the role of a specific site in protein
function, structure, folding kinetics, and stability.1−4 Under-
standing the effect of substituting various amino acids at a
single site is valuable for the ongoing effort to engineer and
design proteins with improved or even novel function.
Change in the thermodynamic stability of a protein upon

mutation, ΔΔG = ΔGmutant − ΔGwild‑type, where ΔG is the
difference between the free energies of the folded and unfolded
states, was measured experimentally for various proteins, at
various sites, and with different substitutions.5 A point
mutation with ΔΔG > 0 indicates destabilization. However,
determining the thermodynamic stability of protein mutants
through experimentation is very time-consuming; therefore,
computational approaches to estimate the effect of mutations
on stability are essential and of high practical value. Many
methods have been developed to estimate ΔΔG, but this
remains challenging because of the complex nature of the
physical interactions in folded proteins and the accuracy
needed to predict thermodynamic parameters, as discussed
below.
The heart of a prediction algorithm is the energy function,

which is often simplified by a force-field that encompasses
different terms that together should be able to predict correctly
the stability of a given protein mutant. Many prediction
algorithms for protein stability have been developed, with most
relying on a 3D structure as their starting point. Thermody-
namic stability prediction algorithms can be classified into
three main groups: physical-based algorithms, knowledge-

based models, and training-based models. The physical-based
models, which aim to calculate ΔΔG from simulations
involving detailed atomistic models that capture all of the
physical interactions in proteins, are computationally too
intense to be applied to a large number of mutations.6−10 The
knowledge-based potentials derived from known protein
structure databases have been used to estimate ΔΔG with
reasonable accuracy.11−14 The existing methods vary in the
structural information used to estimate ΔΔG. In training-based
models, the parameters of the scoring functions are compared
with a small database of experimental values that is used to
train the parameters. For example, the energy function of Fold-
X15 includes terms for van der Waals (VDW) interactions,
solvation, water bridges, and intramolecular hydrogen bonds,
all based on empirical data. Additional terms that account for
entropy and electrostatic interactions are included. All
components of the Fold-X energy function have weights,
which were tuned against a training set of >300 mutants.
Many of the stability prediction tools exhibit correlations of

0.6 to 0.8 with experimentally measured ΔΔG.16 However,
despite the success of the various algorithms in predicting the
effect of single-point mutations on protein stability, many of
them have limited performance and suffer from caveats.17,18

The knowledge-based predictors often ignore protein dynam-
ics and flexibility, although some mutations are expected to
introduce strains in proteins’ backbone. Furthermore, training
the energy function using a small experimental ΔΔG database
may limit the transferability of the method and its accuracy. A
common drawback in many of the prediction algorithms is an
overly simplified representation of the unfolded state. These
methods thus assume that the unfolded state can be
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represented as a uniform reference state when estimating the
free-energy gap between the folded and unfolded states. In
some cases, this limitation was identified as a source for the
limited predictive power.8,10,15

Protein destabilization (ΔΔG > 0) upon mutation is often
considered to originate from the loss of contacts in the folded
state due to imperfect packing, leading to an increase in the
enthalpy of the folded state (ΔHF > 0). Whereas the enthalpy
of the folded state can be modified by mutations, other
scenarios for a change in ΔG are also possible. For example,
recently it was illustrated that increased stability can be
achieved by changing the entropy of the folded state (ΔSF >
0).19,20 In principle, a mutation may lead to destabilization by
increasing the entropy of the unfolded state (ΔSU > 0, Figure
1, left panel). It was suggested that glycans (i.e., a

polysaccharide conjugate21) may induce destabilization by
favoring local interactions over nonlocal interactions and so
inducing a change in entropy−enthalpy compensation in the
unfolded state.22

Explicit calculation of the entropy of the unfolded state is
nontrivial because it demands a quantification of its structural
ensemble, which is defined by transient interactions, both
native and non-native. One may estimate the entropy of the
unfolded state by examining the sequence separation between
each native pairwise interaction, referred to here as “loop
length” (denoted by L). A native contact between residues
with a large L value will have a greater entropic effect on the
unfolded state (Figure 1, left panel) than a contact with a
smaller L value (Figure 1, right panel). Consequently, deleting
a long-range contact (e.g., by mutation of amino acid X to Ala
(or to Gly)) may lead to a greater increase in the entropy of
the unfolded state than the deletion of a short-range contact. It
is noteworthy that the difference in loop length is not expected
to affect the folded state of a protein significantly because it is
dominated by enthalpically stabilizing contacts.
The role of long-range contacts in protein folding has been

studied extensively. Long-range (i.e., nonlocal) interactions
were shown to be very prevalent in many proteins from
different structural classes, suggesting that they contribute to

protein stability.23−25 Various global measures for the degree of
long-range interactions in the native states (e.g., contact order)
were shown to be correlated with the folding rates of proteins
having different folds.24,26,27 The loop length of each of the
native contacts was used to present a free-energy functional for
the calculation of protein folding pathways and kinetics.28−32

Whereas the contact order of different proteins was found to
be uncorrelated with their ΔG, it was shown that the mean
loop length (⟨L⟩) of a mutated site in a studied protein is
correlated with the relative stability of the mutants.33 However,
the effect that deletion of long-range contacts will have on the
stability of the unfolded state of a protein remains elusive.
In this study, we explored the effect of long-range contacts

on protein stability. Our hypothesis was that mutating a site
that is involved in long-range contacts may result in greater
destabilization than mutating a site that participates in shorter
range contacts because of the larger entropic effect of the
former on the unfolded state. The effect on thermodynamic
stability of a mutation affecting short- and long-range contacts
to different degrees was studied using coarse-grained molecular
dynamics simulations (CG-MD). The effect of eliminating
contacts on the enthalpy and entropy of the unfolded state was
further quantified using a free-energy functional model for the
protein folding energy landscape.29,34 Finally, the effect of
long-range contacts on ΔΔG was examined for hundreds of
experimentally measured mutants. Not only did ΔΔG correlate
with the number of long-range contacts, but also the stability
predictor struggled to capture this additional destabilization
from the entropic changes of the unfolded state.

■ METHODS
Determination of Protein Stability Using Coarse-

Grained Molecular Dynamics Simulations. The effect of
mutation on ΔΔG was studied computationally for the SH3
and CI2 domains (PDB IDs: 1SRL and 2CI2). The proteins
were represented using a coarse-grained model in which each
residue was represented by a single bead at the position of its
Cα atom. The force field applied in our simulations used a
native-topology-based potential.35−39 The potential in this
model rewarded conformations that resemble the native fold
and ensured a funnel-like energy landscape40−44 by excluding
nonnative interactions.
The potential of a particular conformation V(Γ, Γ0), where

Γ denotes a particular conformation and Γ0 denotes the native
conformation along the coarse-grained simulation trajectory,
consists of the following terms
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where Kbonds = 100 kcal mol−1 Å−2, Kangles = 20 kcal mol−1, and
Kdihedrals, Kcontacts, and Krepulsion are each valued at 1 kcal mol−1.
The term bij is the distance (in Å) between bonded beads i−j,

Figure 1. Entropy−enthalpy compensation in protein unfolded state.
Unfolded proteins often have some residual structure, represented
here by contacts that are far apart in sequence (a long-range contact,
red beads) and contacts that are close in sequence (cyan beads). The
deletion of a long-range contact leads to an increase in the protein’s
conformational flexibility (left side, blurred beads) and the entropy of
its unfolded state (ΔSU > 0, left side), whereas the deletion of a short-
range contact leads to a minor change in the conformational flexibility
and entropy of the unfolded state (ΔSU ≅ 0, right side). The enthalpic
change due to the deletion of contacts in both cases is similar, and
thus the free energy of the unfolded state is expected to be lower
when removing contacts that are long range (i.e., with larger Li).
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and bij
0 is the distance (in Å) between bonded beads i−j in the

native conformation. The term θijk is the angle (in radians)
between sequentially bonded beads i−j−k, and θijk

0 is the angle
between subsequently bonded beads i−j−k in the native
conformation. The term φijkl is the dihedral angle (in radians)
between subsequently bonded backbone beads i−j−k−l, and
φijkl
0 is the dihedral angle between subsequently bonded

backbone beads i−j−k−l in the native conformation. The
native contact interactions are modeled using the Lennard-
Jones potential. Aij is the native distance (in Å) between beads
i−j that are in contact with each other, and rij is the distance
(in Å) between beads i−j in a given conformation along the
trajectory. Values of the native conformation parameters were
calculated from the atomic coordinates of the X-ray structures.
Cij is the sum of radii for any two beads not forming a native
contact; the repulsion radius of the backbone bead was 2.0 Å.
Electrostatic interactions45 between charged residues of the
proteins were not included in this study.
Mutations were introduced by the removal of native

contacts. We constructed five variants of both SH3 and CI2,
each with four native contacts deleted per variant. The deleted
contacts in a specific variant all had the same sequence
separation between contacting residues. The variants of SH3
had sequence separations of 5, 10, 15, 18, and 22 amino acids,
and the CI2 variants had sequence separations of 5, 8, 12, 17,
and 20 amino acids. Eliminating the same number of native
contacts that differ in their loop length minimizes enthalpic
effects and enabled us to focus on the entropic consequences.
We note that because of the simplicity of the model used in
this study, the calculated enthalpy is effective and does not
refer quantitatively to the experimentally measured values.
Similarly, the estimate of entropy lacks the contribution of the
solvent entropy, and therefore it refers to configurational
entropy.
Similar native-topology-based models have been successfully

used previously to capture the essential details of the folding of
various proteins, including modified proteins.46−51 Further
details can be found in previous studies.39,45 The folding of
each protein mutant was studied at a temperature range that
covers transitions from unfolded to folded states. The
thermodynamic properties of each mutant were obtained by
the weighted histogram analysis method (WHAM).52 In
particular, the specific heat capacity, CV, as a function of
temperature was used to identify the folding temperature, TF
(the peak of the CV curve), as a measure for the relative
stability of each protein variant. The effect of mutations (i.e.,
e l iminating contacts) on stabi l i ty is defined as

T (%) 100%T T
TF

F
Mut

F
WT

F
WTΔ = ·−

Analytical Model for the Thermodynamic Character-
ization of the Unfolded State. To obtain a quantitative
measure of the competition between the changes in entropy
and enthalpy of the unfolded state of the proteins, we used an
analytical model based on the geometrical properties of the
protein. This model was applied to the coarse-grained
simulations of SH3 and CI2 and successfully reproduced
many of their folding characteristics.29−32,34,53 The entropy of
a specific state of the protein, defined by the fraction of
contacts in that state, Q (0 < Q < 1), is given by the following
expression

S Q NS S Q S Q( ) ( ) ( )tot 0 bond route= + + (1)

where N is the number of residues in the protein (57 and 64
for SH3 and CI2, respectively), S0 is the entropy of a residue
when no contacts are formed, and Sbond is the entropic cost due
to the formation of native contacts along the folding pathway.
Sbond is given by

S S K M Q L
3
2

(log( ))bond MF B δ δ= − ⟨ ⟩
(2)

where SMF is the entropy calculated using a mean-field
approximation, and the second term in eq 2 reflects a decrease
in entropy due to loop−loop fluctuations (L is the loop length
between two residues that form a native contact). The exact
term for SMF is
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M is the total number of contacts in the protein (M = 137
and 142 for SH3 and CI2, respectively), ⟨L⟩ is the mean loop
length, and kB is the Boltzmann constant. The second term in
eq 2 is given by

M Q L Q Q L L(log( )) ( )(log log )
i

M

i i
1

∑δ δ⟨ ⟩ = − −
= (4)

where Qi is the probability of formation of a specific contact
and Li is the loop length of that contact. Sroute is the entropy
gained from all of the different ways to arrange a specific set of
MQ contacts in a specific state and is given by

S k Q Q Q Q Q( ) log (1 ) log(1 )
i

M

i i i iroute B
1

∑λ= [− − − − ]
=

(5)

The function λ(Q) accounts for the decrease in entropy due
to the connectivity of the polypeptide chain (further details can
be found elsewhere31). The effective enthalpy of a specific state
is governed by the fraction of contacts in that state and is given
by

H Q Q( )
i

M

i i
1

∑= − ϵ
= (6)

The exact values of S0 and ϵi were tailored by Suzuki et al.,31

specifically to be compatible with the native-topology-based
simulations of SH3 and CI2; therefore, the same values are
applied here. For SH3, ϵi = 1.1 kcal mol−1 and S0= 2.49 kcal
mol−1, and for CI2, ϵi = 1.13 kcal mol−1 and S0= 2.34 kcal
mol−1. Given that this study focuses on the unfolded state, a
three-body term31 that accounts for the cooperativity was
excluded.

Structural Characterization of Protein Mutants. In this
study, a set of 607 mutants with experimentally measured
ΔΔG, which were collected and summarized by Guerois et
al.,15 was used to examine the effect of long-range contacts on
protein thermodynamic stability. This set includes mutants of
33 proteins in which mutations are to either Ala or Gly. For
each mutant, ⟨L⟩ was calculated based on the 3D structure of
the WT protein. For that purpose, the mutated residue was
considered to be in contact with another residue if the
distance, d, between any side-chain heavy atom of the mutated
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amino acid and any other heavy atom in the protein was
shorter than 5 Å. (In mutations to Ala, the Cβ atoms were not
included for counting contacts with neighboring residues.) The
value of ⟨L⟩ for each mutant was calculated by averaging the
loop length, Li (i.e., the sequence separation between the pair
of residues that constitute each native contact), of its N

contacts per mutated amino acid L
L

N
i
N

i1= ∑ = . Note that only

residues that had two or more interactions with the mutated
amino acid were included in the contact list. The same
definition of ⟨L⟩ was used for the analysis of the mutations of
the ribosomal protein S6.54

Each mutant was also characterized by the number of long-
range contacts with neighboring residues. Using the same
definition for contacts described above, a contact was
considered “long” if it satisfies 15 < Li < 35. When counting
long-range contacts, only a single contact was considered
between any pair of amino acids, even if their interaction was
stabilized by multiple contacts. We note that there are other
alternative ways to estimate the number of long-range contacts
in the unfolded state. We classified the amino acids into three
groups: hydrophobic (Ala, Val, Leu, Ile, Phe, Trp, Pro),
charged (Lys, Arg, Glu, Asp), and polar (Gly, Ser, Thr, Cys,
Tyr, Asn, Gln, Met).

■ RESULTS AND DISCUSSION
Contact Deletion Leads to Loop Length-Dependent

Protein Destabilization. Because various energetic and
structural features may affect protein thermodynamic stability,
isolating the contribution of a single feature to protein stability
is a complex task. Here CG-MD simulations were used to
highlight the effect of the contact loop length, Li, on protein
stability. Although CG-MD simulations are too simplified to
predict experimental ΔG values, because they represent the
protein at low resolution, both molecularly and energetically,
they are nevertheless a powerful tool to dissect the
contributions of topological parameters to the overall protein
stability. To capture the effect of different loop lengths while
minimizing changes to other aspects of protein stability, we
constructed five variants of the src homology domain SH3 and
the chymotrypsin inhibitor CI2, and in each variant, we deleted
four native contacts. The deleted contacts in every variant all
had the same loop length.
Contact deletion led to protein destabilization in a loop-

length-dependent manner for both the SH3 and CI2 domains
(Figure 2). Deletions of contacts with larger Li resulted in
greater destabilization. Because these variants differ only in the
loop length of the deleted contacts, it is plausible that the
driving force for the loop-length-dependent destabilization is
entropic rather than enthalpic. In addition, because all variants
had the same number of contacts, it is unlikely that the stability
of the folded state will be significantly different between the
variants. A similar effect of modification resulting in entropi-
cally driven protein destabilization was reported for other
systems.46,49,55

Deletion of Long-Range Contacts Leads to Entropy-
Driven Stabilization of the Protein Unfolded State. To
directly probe the effect of loop length on the free energy of
the unfolded state of proteins, we used an analytical model
with an energy functional that explicitly takes into account the
loop length of each native contact29−31,34 (see the Methods for
details). This model was tailored such that it could be
compared to the results of CG-MD simulations of SH3 and

CI2.31 We focused on the unfolded state of the SH3 and CI2
proteins, defined here as the ensemble of conformations in
which 20% of the native contacts were formed (i.e., Q = 0.2).
To mimic the effect of mutations on the unfolded state, we
deleted each native contact one at a time and recalculated the
free energy of the unfolded state (i.e., ΔGU = GU

Mut − GU
WT). We

found that ΔGU decreases as loop length increases, and this
trend is independent of the probability of contact formation.
Interestingly, when the probability of contact formation in the
unfolded state is Qi > 0.5 (Figure 3A,C, yellow circles) and Li >
18, the unfolded state experiences overall stabilization, as
reflected by ΔGU < 0 (Figure 3A,C, shaded area). We then
sought to determine whether this stabilization of the unfolded
state is entropic or enthalpic in origin.
Decomposition of ΔGU into its enthalpic (ΔHU) and

entropic (TΔSU) components reveals that the stabilization is,
indeed, entropic (Figure 3B,D). The diagonal lines in Figure
3B,D represent full compensation between entropy and
enthalpy (ΔHU = TΔSU). For clarity, we shaded the area
that corresponds to TΔSU > ΔHU to highlight the parameters
for which ΔGU < 0 (shaded gray areas in Figure 3A,C).
Interestingly, the data points above the diagonal, which
represent entropic stabilization, correspond to the deletion of
long-range contacts with Li ≥ 18. By contrast, the points below
the diagonal, which represent enthalpic destabilization of the
unfolded state, represent shorter range contacts with Li < 18.
Hence, we conclude that the deletion of long-range contacts
leads to entropic stabilization of the unfolded state, which can
explain the overall destabilization of the proteins, as was
observed in the CG-MD simulations (Figure 2).
It is noteworthy that loop length alone is insufficient to

explain the stabilization of the unfolded state upon the deletion
of nonlocal interactions. The main reason for the increase in
entropy when deleting a long-range contact is the removal of a
configurational constraint. However, if the probability of the
formation of a long-range contact is too low, then removing a
long-range contact will not contribute much to the entropy of
the unfolded state. This argument is reflected in eq 4, in which
the contribution of long-range interactions (Li) is coupled to
the probability of contact formation, Qi, between them. In
Figure 4, we demonstrate that when Qi is low (Figure 4 left

Figure 2. Effect of short- and long-range contacts on protein stability.
The effect of deleting contacts of different loop lengths was studied by
coarse-grained native-topology-based simulations for the SH3 domain
(white circles, PDB ID 1SRL) and the CI2 domain (black circles,
PDB ID 2CI2). Five variants were constructed for each of SH3 and
CI2 by deleting four native contacts per variant, all with the same loop
length, Li, as indicated in the x axis. The stability of the variants was
measured by the change in their folding temperature, TF, relative to
that of the corresponding wild-type protein. The degree of
destabilization increases as the loop length of the deleted contact
increases.
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panel), the increase in entropy is smaller compared with when
Qi is high (Figure 4 right panel).
Loop Length Can Explain the Extent of the Effect of

Mutation on Experimentally Determined Stability. Our
observation that the deletion of long-range contacts leads to

entropic stabilization of the unfolded state and overall
destabilization of CI2 and SH3 (Figures 2 and 3) may suggest
that this is a general feature in protein mutants. To explore this
aspect more thoroughly, we analyzed the relationship between
the loop length and the thermodynamic stability of 607
mutants (from 33 proteins) with single-point mutations to
either Ala or Gly (data extracted from ref 15). We defined a
critical loop length, LC, such that mutants are classified as
“long” if L > LC and as “short” otherwise. Using this definition,
it appears that long mutants are less stable than short mutants
(Figure 5A). However, when increasing LC, this difference
disappears for Lc ≈ 30, presumably because this value is high
enough that both groups include long-range contacts that
contribute similarly to the entropy of the unfolded state. A
similar trend was found when analyzing thermodynamic
stability data from 111 mutants of the ribosomal protein S6
and its circular permutants (Figure 5B).33,54

To further characterize the structural properties of
mutations that result in larger ΔΔG, we calculated the number
of long-range contacts in which each of the mutated amino
acids participates (see the Methods for details). We found that
mutants with a greater number of long-range contacts exhibit
greater destabilization (i.e., have higher values of ΔΔG ) than
mutants with fewer long-range contacts (Figures 5C,D).
Interestingly, the slope of the plot of ΔΔG versus the number
of long-range contacts is slightly higher for the S6 mutants than
the slope for the larger data set of 607 mutants. This difference
may be due to the fact that the S6 mutants are almost
exclusively mutations of hydrophobic amino acids to Ala.
Therefore, this may indicate that the correlation between the
degree of lost long-range contacts and the magnitude of
protein destabilization is more profound for hydrophobic
amino acids. To further examine the linkage between the loss
of long-range contacts and protein stability, we classified the
607 mutants into three groups: hydrophobic, charged, and
polar amino acids. It appears that for all three groups of amino
acids there is a positive correlation between ΔΔ G and the
number of long-range contacts (Figure 6, top panels).
Taken together, the analysis of experimental data supports

our conclusions that the deletion of long-range contacts
enhances thermodynamic destabilization, which originates
from an increased unfolded state entropy.

Destabilization by Mutations Might Be Underesti-
mated by Current Predictors. One question remains open:
To what extent can the removal of long-range interactions due
to a mutation be applied to improve the performance of
protein stability predictions? For that purpose, we calculated
the difference between the calculated and experimental ΔΔG,

Figure 3. Deletion of long-range contacts leads to entropy-driven
stabilization of the unfolded state of the protein. The thermodynamic
properties of the unfolded state of SH3 and CI2 were calculated based
on an analytical model that explicitly takes into account the loop
length formed by a pair of interacting residues (see main text and the
Methods for details). (A,C) Change in free energy of the unfolded
state (ΔGU) upon contact deletion is shown as a function of the loop
length (Li) of the deleted contact for SH3 (A) and CI2 (C). The
deleted contacts are grouped into three groups based on the
probability of their contact formation, Qi, and colored differently, as
indicated in the Figure legend. Only the unfolded state, which was
defined as the state in which 20% of the native contacts were formed
(i.e., conformations with Q = 0.2), was included in this analysis. The
area in which the unfolded state is stabilized is shaded gray. (B,D)
Contact deletion leads to changes in the entropy (TΔSU, y axis) and
enthalpy (ΔHU, x axis) of the unfolded states of SH3 (B) and CI2
(D). The black diagonal line represents full compensation between
entropy and enthalpy (i.e., TΔSU = ΔHU). Hence, in the data points
above the diagonal, the unfolded state is entropically stabilized
(shaded gray), whereas in the data points below the diagonal, the
unfolded state is enthalpically destabilized. Note that entropic
stabilization of the unfolded state occurs for variants that are
characterized by long loop length (Li ≥ 18, red circles), whereas
enthalpic destabilization occurs for variants with short loop length (Li
< 18, blue circles).

Figure 4. Effect of the probability of contact formation on the entropy−enthalpy compensation due to deletion of a contact of loop length Li. The

entropic term that is mostly affected by a single mutation is M⟨δQδ(log(L))⟩ = Q Q L L( )(log log )i
M

i i1∑ − −= . The entropic gain (TS, solid line)
due to deleting a single contact with varying loop length, Li (x axis), depends on the probability of the formation of that specific contact. In this
Figure, we used the value of ⟨L⟩ = 10. The enthalpy (H, open circles) associated with breaking a contact depends only on its Qi and not on its Li.
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namely, ΔΔΔG = ΔΔGcalc − ΔΔGexp. In this study, we used
the Fold-X predictor15,56 to calculate protein stability
(ΔΔGcalc). Using this notation, mutants whose destabilization
is underestimated by the predictor will have ΔΔΔG < 0.
Figure 6 plots the value of ΔΔΔG for each mutant as a
function of the number of long-range contacts at its mutation
site. We found that for hydrophobic and charged residues,
ΔΔΔG is negatively correlated with the number of long-range
contacts. This means that for hydrophobic and charged amino
acids, the underestimation of ΔΔG upon their mutation can be
attributed to the loss of long-range contacts that affect the
entropy of the unfolded state. The limited success of Fold-X in
accurately predicting the stability for mutations that involve a
larger number of long-range contacts might be linked to the
lack of an explicit representation of the unfolded state in this
model.15 The ΔΔΔG values for the mutation of polar residues
do not seem to be correlated with the number of long-range
contacts, most likely because they are less involved in contact
formation in the unfolded state. Hydrophobic and charged
residues, however, are expected to be more involved in contact
formation in the unfolded state. As concluded from the
theoretical analysis (Figures 3 and 4), a long-range contact is
expected to result in an increase in the entropy of the unfolded
state only if the probability of contact formation, Qi, is

sufficiently high. It is possible that the unfolded state Qi value
is high enough for hydrophobic and charged amino acids but
not for polar amino acids.
We note that the correlations presented in Figure 6 are

relatively weak for several reasons that are related to the
simplification of characterizing the entropy of the unfolded
state by a crude structural characterization based on the
number of native long-range contacts. There are various ways
to count long-range contacts that may contribute to the
residual structure of the unfolded state. As argued above, it is
not trivial to estimate the formation probabilities of these
contacts. Furthermore, additional non-native long-range
interactions can also affect the unfolded state entropy. Thus
the bioinformatics analysis can serve solely as a support for the
reported biophysical effect of long-range contacts on stability,
and further quantitative analysis demands a more refined
description of the unfolded state.
The effect of long-range contacts on protein stability can be

nicely demonstrated for the case of the villin headpiece, a small
helical protein. Because three Phe residues are closely packed
in its hydrophobic core and interact with each other with
different loop lengths (Li) between them, the villin headpiece
can serve as a good model system to demonstrate our main
hypothesis. The mutation of different Phe residues leads to
destabilization of the villin headpiece in a way that depends on
⟨L⟩ of the deleted contacts (Figure 7, left y axis, circles).57

However, Fold-X56 does not capture the experimentally
observed trend (Figure 7, right y axis, triangles). Hence, the
villin headpiece serves as another demonstration that deletion
of long-range contacts can lead to larger destabilization of a
protein and that this effect is difficult to predict using the
existing prediction algorithm for the effect of mutation on
protein stability.

■ CONCLUSIONS
Predicting the effect of a single point mutation on protein
thermodynamic stability is an ongoing challenge. Although
current prediction algorithms exhibit good performance, with a
correlation between predicted and measured ΔΔG of ∼0.8,
there are still several biophysical aspects that are not
understood and are not explicitly represented in the energy
functions for the calculation of thermodynamic stability.58 The
success of the current knowledge-based stability prediction
tools is most likely linked to training their scoring functions,
which indirectly leads to their capturing complex biophysical
effects. Drawbacks limiting the predictive power of ΔG
predictor tools include that they lack representation of explicit
energetic terms for the unfolded state.15,59 The free energy of
the unfolded state can, in principle, be affected by mutations
that modify its configurational entropy, primarily by disruption
of long-range interactions. Although the role of long-range
contacts was studied extensively in protein folding23,24,27,60−65

the effect of such contacts on the mutants ΔG remains elusive.
In this study, we used a combination of CG-MD simulations

together with analytical and bioinformatic analysis to study the
effect of long-range contacts on the stability of protein
mutants. CG-MD simulations showed that contact deletion
leads to loop length-dependent destabilization for both the
SH3 and CI2 domains. The deletion of long-range contacts
results in a larger destabilization than when shorter range
contacts are deleted. An analytical model illustrates that this
effect originates from the increased entropy of the unfolded
state. Similarly to the CG-MD simulations, the analytical

Figure 5. Correlation between the experimentally measured stability
of mutants and the number of long-range contacts at the mutation
site. The analysis was performed for two sets of mutants: a set of 607
mutants (of 33 different proteins, obtained from ref 15) (A,C) and a
set of 111 circular permutants of S633 (B,D). All of the mutations are
to either Ala or Gly. Each mutant is classified as a “long-range mutant”
(red) if ⟨L⟩ ≥ LC or as a “short-range mutant” otherwise (blue),
where LC is the critical loop length. For both sets of mutants, the
“long-range” mutants are more destabilized than the shorter range
ones (A,B). Each mutant is also characterized by the number of long-
range contacts in which it participates. Black circles represent the
ΔΔG of all individual mutants, and the red circles represent the
average ΔΔG for all mutants having an identical number of long-
range contacts (C,D). The red line is a linear fit of the mean ΔΔG
with slopes of 0.21 and 0.33 and R values of 0.92 and 0.84 for panels
C and D, respectively. These positive slopes indicate an increase in
destabilization as the number of long-range contacts in the mutant
increases.
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calculations also suggest that the ΔΔG of mutants depends on
the loop length of the deleted contacts, where contacts with
loop length of L > 18 have the largest effect on the unfolded
state entropy upon their deletion. Moreover, analysis of the
experimentally measured ΔΔG of various protein mutants
reveals that those with contacts that are more long-range tend
to be more destabilized than mutants with shorter-range
contacts. We note that estimating the unfolded state entropy
by counting native long-range contacts is too simple and may
depend on how a long-range contact is defined.
Contact loop length is not the only criterion for entropic

stabilization of the unfolded state by a mutation. A pronounced
change in protein stability also demands that the long-range
contacts at the mutation site have a high formation probability
(e.g., Qi > 0.5). Accordingly, the deletion of such long-range
contacts results in the removal of configurational constraints

and therefore a higher entropy of the unfolded state that
exceeds the change in its enthalpy. However, if the formation
probability of the long-range contacts is low, then their
deletion by a mutation will lead to only a small entropic gain,
which is also compensated by the enthalpic change,66 and thus
will have no significant effect on protein stability. Hydrophobic
or charged residues are expected to be more prevalent in the
unfolded state than polar residues. Indeed, both electro-
static67−73 and hydrophobic74,75 interactions were reported to
affect protein stability by modulating the unfolded state. The
effect of hydrophobic and charged residues on the unfolded
state entropy and thus on ΔΔG is supported by the limited
success of Fold-X in predicting the effect of mutating these
residues, especially when they participate in long-range
contacts. ΔΔG calculations for mutants that may undergo
changes in their unfolded state entropy must be examined in
the future using other computational methods.
The principal finding of this study is that a mutation that

breaks long-range contacts may lead to an increase in the
unfolded state entropy, which can lead to an overall
destabilization of the protein. Introducing this finding into
prediction algorithms could be valuable because current
algorithms need improvement in modeling the effect of the
unfolded state on the stability of mutant proteins. Whereas
modeling the unfolded state can be simplified by assuming that
its entropy is affected mostly by hydrophobic and electrostatic
interactions, it may involve long-range native as well as non-
native interactions whose frequencies are difficult to predict
computationally.74,76−80 Accordingly, incorporating the free
energy of the unfolded state into prediction algorithms is not
trivial. Some NMR techniques, such as paramagnetic
resonance enhancements (PREs)81,82 residual dipolar coupling
(RDCs), and long-range nuclear Overhauser effects
(NOEs)82,83 can provide such information on inter-residue
distances in unfolded states, which can be translated into
probabilities of contact formation.84 An accurate estimation of

Figure 6. Correlation between ΔΔG and ΔΔΔG and the number of long-range contacts lost following mutation. (Top panels) Similar analysis as
in Figure 5C,D, but here we classified the mutants into three groups: hydrophobic, charged, and polar. (Bottom panels) ΔΔΔG (=ΔΔGcalc −
ΔΔGexp) is plotted against the number of long-range contacts in each mutant. We note that for ΔΔΔG plots, we only analyze data for mutants with
ΔΔΔG < −0.75 (kcal mol−1) because these are cases where Fold-X significantly underestimated the degree of destabilization upon mutation. The
slopes of the red lines of ΔΔG for the hydrophobic, charged, and polar mutants are 0.13, 0.18, and 0.41, respectively. The R values of the red lines
of ΔΔG for the hydrophobic, charged, and polar mutants are 0.75, 0.73, and 0.98, respectively. The slopes of the red lines of ΔΔΔG for the
hydrophobic, charged, and polar mutants are −0.03, −0.17, and 0.03, respectively. The R values of the red lines of ΔΔΔG for the hydrophobic,
charged, and polar mutants are −0.56, −0.74, and 0.36, respectively

Figure 7. Correlation between ΔTm and loop length of deleted
contacts in the villin headpiece. Right panel: Three Phe residues (47
(orange), 51 (red), and 58 (pink)) in the hydrophobic core of the
villin headpiece (PDB ID 1VII) form contacts with different loops
lengths, as indicated on the Figure. Left panel: Degree of
thermodynamic destabilization depends on the mean loop length of
the deleted contacts (circles, left y axis). However, Fold-X does not
predict the experimentally determined trend (right y axis, triangles).
Here ⟨L⟩ is defined as ⟨L⟩ = 0.5ΣLi where Li is 4, 7, or 11.
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the probabilities of long-rang contacts can be used to improve
the performance of existing prediction algorithms.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: Koby.Levy@weizmann.ac.il. Tel: 972-8-9344587.

ORCID

Yaakov Levy: 0000-0002-9929-973X
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the Benoziyo Fund for the
Advancement of Science and by the Kimmelman Center for
Macromolecular Assemblies. Y.L. is The Morton and Gladys
Pickman professional chair in Structural Biology.

■ REFERENCES
(1) Fersht, A. R.; Shi, J. P.; Knilljones, J.; Lowe, D. M.; Wilkinson, A.
J.; Blow, D. M.; Brick, P.; Carter, P.; Waye, M. M. Y.; Winter, G.
Hydrogen-Bonding And Biological Specificity Analyzed By Protein
Engineering. Nature 1985, 314 (6008), 235−238.
(2) Jackson, S. E.; Fersht, A. R. Folding Of Chymotrypsin Inhibitor-
2 0.1. Evidence For A 2-State Transition. Biochemistry 1991, 30 (43),
10428−10435.
(3) Matouschek, A.; Kellis, J. T.; Serrano, L.; Bycroft, M.; Fersht, A.
R. Transient Folding Intermediates Characterized By Protein
Engineering. Nature 1990, 346 (6283), 440−445.
(4) Obara, M.; Kang, M. S.; Yamada, K. M. Site-Directed
Mutagenesis Of The Cell-Binding Domain Of Human Fibronectin -
Separable, Synergistic Sites Mediate Adhesive Function. Cell 1988, 53
(4), 649−657.
(5) Bava, K. A.; Gromiha, M. M.; Uedaira, H.; Kitajima, K.; Sarai, A.
Protherm, Version 4.0: Thermodynamic Database For Proteins And
Mutants. Nucleic Acids Res. 2004, 32, D120−D121.
(6) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.;
Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating
Structures And Free Energies Of Complex Molecules: Combining
Molecular Mechanics And Continuum Models. Acc. Chem. Res. 2000,
33 (12), 889−897.
(7) Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A. Free-
Energy Calculations By Computer-Simulation. Science 1987, 236
(4801), 564−568.
(8) Benedix, A.; Becker, C. M.; De Groot, B. L.; Caflisch, A.;
Bockmann, R. A. Predicting Free Energy Changes Using Structural
Ensembles. Nat. Methods 2009, 6 (1), 3−4.
(9) Pokala, N.; Handel, T. M. Energy Functions For Protein Design:
Adjustment With Protein-Protein Complex Affinities, Models For
The Unfolded State, And Negative Design Of Solubility And
Specificity. J. Mol. Biol. 2005, 347 (1), 203−227.
(10) Yin, S.; Ding, F.; Dokholyan, N. V. Eris: An Automated
Estimator Of Protein Stability. Nat. Methods 2007, 4, 466−467.
(11) Dehouck, Y.; Grosfils, A.; Folch, B.; Gilis, D.; Bogaerts, P.;
Rooman, M. Fast And Accurate Predictions Of Protein Stability
Changes Upon Mutations Using Statistical Potentials And Neural
Networks: Popmusic-2.0. Bioinformatics 2009, 25 (19), 2537−2543.
(12) Gilis, D.; Rooman, M. Popmusic, An Algorithm For Predicting
Protein Mutant Stability Changes. Application To Prion Proteins.
Protein Eng., Des. Sel. 2000, 13 (12), 849−856.
(13) Gilis, D.; Rooman, M. Predicting Protein Stability Changes
Upon Mutation Using Database-Derived Potentials: Solvent Acces-
sibility Determines The Importance Of Local Versus Non-Local
Interactions Along The Sequence. J. Mol. Biol. 1997, 272 (2), 276−
290.

(14) Gilis, D.; Rooman, M. Stability Changes Upon Mutation Of
Solvent-Accessible Residues In Proteins Evaluated By Database-
Derived Potentials. J. Mol. Biol. 1996, 257 (5), 1112−1126.
(15) Guerois, R.; Nielsen, J. E.; Serrano, L. Predicting Changes In
The Stability Of Proteins And Protein Complexes: A Study Of More
Than 1000 Mutations. J. Mol. Biol. 2002, 320, 369−387.
(16) Dehouck, Y.; Kwasigroch, J. M.; Gilis, D.; Rooman, M.
Popmusic 2.1: A Web Server For The Estimation Of Protein Stability
Changes Upon Mutation And Sequence Optimality. BMC Bioinf.
2011, 12, 151.
(17) Yin, S.; Ding, F.; Dokholyan, N. V. Modeling Backbone
Flexibility Improves Protein Stability Estimation. Structure 2007, 15
(12), 1567−1576.
(18) Kulshreshtha, S.; Chaudhary, V.; Goswami, G. K.; Mathur, N.
Computational Approaches For Predicting Mutant Protein Stability. J.
Comput.-Aided Mol. Des. 2016, 30 (5), 401−412.
(19) Dagan, S.; Hagai, T.; Gavrilov, Y.; Kapon, R.; Levy, Y.; Reich,
Z. Stabilization Of A Protein Conferred By An Increase In Folded
State Entropy. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (26), 10628−
33.
(20) Gavrilov, Y.; Dagan, S.; Levy, Y. Shortening A Loop Can
Increase Protein Native State Entropy. Proteins: Struct., Funct., Genet.
2015, 83 (12), 2137−2146.
(21) Shental-Bechor, D.; Levy, Y. Folding Of Glycoproteins: Toward
Understanding The Biophysics Of The Glycosylation Code. Curr.
Opin. Struct. Biol. 2009, 19, 524−533.
(22) Gavrilov, Y.; Shental-Bechor, D.; Greenblatt, H. M.; Levy, Y.
Glycosylation May Reduce Protein Thermodynamic Stability By
Inducing A Conformational Distortion. J. Phys. Chem. Lett. 2015, 6
(18), 3572−3577.
(23) Gromiha, M. M.; Selvaraj, S. Importance Of Long-Range
Interactions In Protein Folding. Biophys. Chem. 1999, 77, 49−68.
(24) Gromiha, M. M.; Selvaraj, S. Comparison Between Long-Range
Interactions And Contact Order In Determining The Folding Rate Of
Two-State Proteins: Application Of Long-Range Order To Folding
Rate Prediction. J. Mol. Biol. 2001, 310 (1), 27−32.
(25) Gromiha, M. M.; Siebers, J. G.; Selvaraj, S.; Kono, H.; Sarai, A.
Intermolecular And Intramolecular Readout Mechanisms In Protein-
DNA Recognition. J. Mol. Biol. 2004, 337 (2), 285−294.
(26) Ivankov, D. N.; Garbuzynskiy, S. O.; Alm, E.; Plaxco, K. W.;
Baker, D.; Finkelstein, A. V. Contact Order Revisited: Influence Of
Protein Size On The Folding Rate. Protein Sci. 2003, 12 (9), 2057−
62.
(27) Plaxco, K. W.; Simons, K. T.; Baker, D. Contact Order,
Transition State Placement And The Refolding Rates Of Single
Domain Proteins. J. Mol. Biol. 1998, 277 (4), 985−94.
(28) Plotkin, S. S.; Onuchic, J. N. Structural And Energetic
Heterogeneity In Protein Folding. I. Theory. J. Chem. Phys. 2002, 116
(12), 5263−5283.
(29) Plotkin, S. S.; Onuchic, J. N. Understanding Protein Folding
With Energy Landscape Theory - Part I: Basic Concepts. Q. Rev.
Biophys. 2002, 35 (2), 111−167.
(30) Plotkin, S. S.; Onuchic, J. N. Investigation Of Routes And
Funnels In Protein Folding By Free Energy Functional Methods. Proc.
Natl. Acad. Sci. U. S. A. 2000, 97 (12), 6509−6514.
(31) Suzuki, Y.; Onuchic, J. N. Modeling The Interplay Between
Geometrical And Energetic Effects In Protein Folding. J. Phys. Chem.
B 2005, 109 (34), 16503−16510.
(32) Suzuki, Y.; Noel, J. K.; Onuchic, J. N. An Analytical Study Of
The Interplay Between Geometrical And Energetic Effects In Protein
Folding. J. Chem. Phys. 2008, 128 (2), 025101.
(33) Lindberg, M.; Tan̊grot, J.; Oliveberg, M. Complete Change Of
The Protein Folding Transition State Upon Circular Permutation.
Nat. Struct. Biol. 2002, 9, 818−822.
(34) Plotkin, S. S.; Onuchic, J. N. Understanding Protein Folding
With Energy Landscape Theory - Part II: Quantitative Aspects. Q.
Rev. Biophys. 2002, 35 (3), 205−286.
(35) Giri Rao, V. V.; Gosavi, S. The Multi-Domain Protein
Adenylate Kinase, Domain Insertion Facilitates Cooperative Folding

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b07379
J. Phys. Chem. B 2018, 122, 11450−11459

11457

mailto:Koby.Levy@weizmann.ac.il
http://orcid.org/0000-0002-9929-973X
http://dx.doi.org/10.1021/acs.jpcb.8b07379


While Accommodating Function At Domain Interfaces. PLoS Comput.
Biol. 2014, 10 (11), e1003938.
(36) Noel, J. K.; Levi, M.; Raghunathan, M.; Lammert, H.; Hayes, R.
L.; Onuchic, J. N.; Whitford, P. C. SMOG 2: A Versatile Software
Package For Generating Structure-Based Models. PLoS Comput. Biol.
2016, 12 (3), e1004794.
(37) Noel, J. K.; Whitford, P. C.; Sanbonmatsu, K. Y.; Onuchic, J. N.
SMOG@Ctbp: Simplified Deployment Of Structure-Based Models In
GROMACS. Nucleic Acids Res. 2010, 38, W657−W661.
(38) Clementi, C.; Nymeyer, H.; Onuchic, J. N. Topological And
Energetic Factors: What Determines The Structural Details Of The
Transition State Ensemble And ″En-Route″ Intermediates For
Protein Folding? An Investigation For Small Globular Proteins. J.
Mol. Biol. 2000, 298 (5), 937−953.
(39) Levy, Y.; Cho, S. S.; Onuchic, J. N.; Wolynes, P. G. A Survey Of
Flexible Protein Binding Mechanisms And Their Transition States
Using Native Topology Based Energy Landscapes. J. Mol. Biol. 2005,
346 (4), 1121−1145.
(40) Onuchic, J. N.; Luthey-Schulten, Z.; Wolynes, P. G. Theory Of
Protein Folding: The Energy Landscape Perspective. Annu. Rev. Phys.
Chem. 1997, 48, 545−600.
(41) Bryngelson, J. D.; Onuchic, J. N.; Socci, N. D.; Wolynes, P. G.
Funnels, Pathways, And The Energy Landscape Of Protein-Folding -
A Synthesis. Proteins: Struct., Funct., Genet. 1995, 21 (3), 167−195.
(42) Leopold, P. E.; Montal, M.; Onuchic, J. N. Protein Folding
Funnels: A Kinetic Approach To The Sequence-Structure Relation-
ship. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 8721−8725.
(43) Onuchic, J. N.; Socci, N. D.; Luthey-Schulten, Z.; Wolynes, P.
G. Protein Folding Funnels: The Nature Of The Transition State
Ensemble. Folding Des. 1996, 1, 441−450.
(44) Wolynes, P. G.; Thirumalai, D.; Wolynes, P.; Whitford, P. C.;
Chahine, J.; Han, W.; Wang, E.; Onuchic, J. N.; Leite, V. B. P. Folding
Funnels And Energy Landscapes Of Larger Proteins Within The
Capillarity Approximation. Proc. Natl. Acad. Sci. U. S. A. 1997, 94,
6170−6175.
(45) Azia, A.; Levy, Y. Nonnative Electrostatic Interactions Can
Modulate Protein Folding: Molecular Dynamics With A Grain Of
Salt. J. Mol. Biol. 2009, 393, 527−542.
(46) Sokolovski, M.; Bhattacherjee, A.; Kessler, N.; Levy, Y.;
Horovitz, A. Thermodynamic Protein Destabilization By GFP
Tagging: A Case Of Interdomain Allostery. Biophys. J. 2015, 109
(6), 1157−1162.
(47) Bigman, L. S.; Levy, Y. Entropy-Enthalpy Compensation In
Conjugated Proteins. Chem. Phys. 2018, DOI: 10.1016/j.chem-
phys.2018.04.007.
(48) Gavrilov, Y.; Hagai, T.; Levy, Y. Nonspecific Yet Decisive:
Ubiquitination Can Affect The Native-State Dynamics Of The
Modified Protein. Protein Sci. 2015, 24 (10), 1580−1592.
(49) Hagai, T.; Levy, Y. Ubiquitin Not Only Serves As A Tag But
Also Assists Degradation By Inducing Protein Unfolding. Proc. Natl.
Acad. Sci. U. S. A. 2010, 107 (5), 2001−2006.
(50) Shental-Bechor, D.; Levy, Y. Effect Of Glycosylation On
Protein Folding: A Dose Book At Thermodynamic Stabilization. Proc.
Natl. Acad. Sci. U. S. A. 2008, 105 (24), 8256−8261.
(51) Shental-Bechor, D.; Levy, Y. Communication: Folding Of
Glycosylated Proteins Under Confinement. J. Chem. Phys. 2011, 135
(14), 141104.
(52) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.;
Kollman, P. A. The Weighted Histogram Analysis Method For Free-
Energy Calculations On Biomolecules. I. The Method. J. Comput.
Chem. 1992, 13 (8), 1011−1021.
(53) Suzuki, Y.; Noel, J. K.; Onuchic, J. N. A Semi-Analytical
Description Of Protein Folding That Incorporates Detailed Geo-
metrical Information. J. Chem. Phys. 2011, 134 (24), 245101.
(54) Haglund, E.; Lindberg, M. O.; Oliveberg, M. Changes Of
Protein Folding Pathways By Circular Permutation Overlapping
Nuclei Promote Global Cooperativity. J. Biol. Chem. 2008, 283 (41),
27904−15.

(55) Arviv, O.; Levy, Y. Folding Of Multidomain Proteins:
Biophysical Consequences Of Tethering Even In Apparently
Independent Folding. Proteins: Struct., Funct., Genet. 2012, 80 (12),
2780−2798.
(56) Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.;
Serrano, L. The Foldx Web Server: An Online Force Field. Nucleic
Acids Res. 2005, 33, W382−W388.
(57) Frank, B. S.; Vardar, D.; Buckley, D. A.; Mcknight, C. J. The
Role Of Aromatic Residues In The Hydrophobic Core Of The Villin
Headpiece Subdomain. Protein Sci. 2002, 11 (3), 680−687.
(58) Potapov, V.; Cohen, M.; Schreiber, G. Assessing Computa-
tional Methods For Predicting Protein Stability Upon Mutation:
Good On Average But Not In The Details. Protein Eng., Des. Sel.
2009, 22, 553−560.
(59) Kellogg, E. H.; Leaver-Fay, A.; Baker, D. Role Of Conforma-
tional Sampling In Computing Mutation-Induced Changes In Protein
Structure And Stability. Proteins: Struct., Funct., Genet. 2011, 79, 830−
838.
(60) Abkevich, V. I.; Gutin, A. M.; Shakhnovich, E. I. Impact Of
Local And Non-Local Interactions On Thermodynamics And Kinetics
Of Protein Folding. J. Mol. Biol. 1995, 252, 460−471.
(61) Noivirt-Brik, O.; Unger, R.; Horovitz, A. Analysing The Origin
Of Long-Range Interactions In Proteins Using Lattice Models. BMC
Struct. Biol. 2009, 9, 4.
(62) Go, N.; Taketomi, H. Respective Roles Of Short-Range And
Long-Range Interactions In Protein Folding. Proc. Natl. Acad. Sci. U.
S. A. 1978, 75 (2), 559−563.
(63) Munoz, V.; Serrano, L. Local Versus Nonlocal Interactions In
Protein Folding And Stability - An Experimentalist’s Point Of View.
Folding Des. 1996, 1 (4), R71−R77.
(64) Onuchic, J. N.; Lutheyschulten, Z.; Wolynes, P. G. Theory Of
Protein Folding: The Energy Landscape Perspective. Annu. Rev. Phys.
Chem. 1997, 48, 545−600.
(65) Kaya, H.; Chan, H. S. Contact Order Dependent Protein
Folding Rates: Kinetic Consequences Of A Cooperative Interplay
Between Favorable Nonlocal Interactions And Local Conformational
Preferences. Proteins: Struct., Funct., Genet. 2003, 52 (4), 524−533.
(66) Chodera, J. D.; Mobley, D. L. Entropy-Enthalpy Compensa-
tion: Role And Ramifications In Biomolecular Ligand Recognition
And Design. Annu. Rev. Biophys. 2013, 42, 121−142.
(67) Grimsley, G. R.; Shaw, K. L.; Fee, L. R.; Alston, R. W.;
Huyghues-Despointes, B. M.; Thurlkill, R. L.; Scholtz, J. M.; Pace, C.
N. Increasing Protein Stability By Altering Long-Range Coulombic
Interactions. Protein Sci. 1999, 8 (9), 1843−9.
(68) Pace, C. N.; Alston, R. W.; Shaw, K. L. Charge-Charge
Interactions Influence The Denatured State Ensemble And Contrib-
ute To Protein Stability. Protein Sci. 2000, 9 (7), 1395−8.
(69) Cho, J. H.; Sato, S.; Horng, J. C.; Anil, B.; Raleigh, D. P.
Electrostatic Interactions In The Denatured State Ensemble: Their
Effect Upon Protein Folding And Protein Stability. Arch. Biochem.
Biophys. 2008, 469 (1), 20−8.
(70) Dill, K. A.; Shortle, D. Denatured States Of Proteins. Annu. Rev.
Biochem. 1991, 60, 795−825.
(71) Shortle, D.; Chan, H. S.; Dill, K. A. Modeling The Effects Of
Mutations On The Denatured States Of Proteins. Protein Sci. 1992, 1
(2), 201−15.
(72) Cho, J. H.; Raleigh, D. P. Electrostatic Interactions In The
Denatured State And In The Transition State For Protein Folding:
Effects Of Denatured State Interactions On The Analysis Of
Transition State Structure. J. Mol. Biol. 2006, 359 (5), 1437−46.
(73) Stigter, D.; Alonso, D. O.; Dill, K. A. Protein Stability:
Electrostatics And Compact Denatured States. Proc. Natl. Acad. Sci. U.
S. A. 1991, 88 (10), 4176−80.
(74) Nabuurs, S. M.; De Kort, B. J.; Westphal, A. H.; Van Mierlo, C.
P. M. Non-Native Hydrophobic Interactions Detected In Unfolded
Apoflavodoxin By Paramagnetic Relaxation Enhancement. Eur.
Biophys. J. 2010, 39 (4), 689−698.
(75) Nabuurs, S. M.; Westphal, A. H.; Van Mierlo, C. P. M.
Extensive Formation Of Off-Pathway Species During Folding Of An

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b07379
J. Phys. Chem. B 2018, 122, 11450−11459

11458

http://dx.doi.org/10.1016/j.chemphys.2018.04.007
http://dx.doi.org/10.1016/j.chemphys.2018.04.007
http://dx.doi.org/10.1021/acs.jpcb.8b07379


Alpha-Beta Parallel Protein Is Due To Docking Of (Non)Native
Structure Elements In Unfolded Molecules. J. Am. Chem. Soc. 2008,
130 (50), 16914−16920.
(76) Cho, J. H.; Sato, S.; Raleigh, D. P. Thermodynamics And
Kinetics Of Non-Native Interactions In Protein Folding: A Single
Point Mutant Significantly Stabilizes The N-Terminal Domain Of L9
By Modulating Non-Native Interactions In The Denatured State. J.
Mol. Biol. 2004, 338 (4), 827−37.
(77) Mor, A.; Haran, G.; Levy, Y. Characterization Of The Unfolded
State Of Repeat Proteins. HFSP J. 2008, 2 (6), 405−415.
(78) Nishimura, C.; Dyson, H. J.; Wright, P. E. Identification Of
Native And Non-Native Structure In Kinetic Folding Intermediates
Of Apomyoglobin. J. Mol. Biol. 2006, 355 (1), 139−56.
(79) Shan, B.; Eliezer, D.; Raleigh, D. The Unfolded State Of The C-
Terminal Domain Of The Ribosomal Protein L9 Contains Both
Native And Non-Native Structure. Biochemistry 2009, 48, 4707.
(80) Shental-Bechor, D.; Smith, M. T. J.; Mackenzie, D.; Broom, A.;
Marcovitz, A.; Ghashut, F.; Go, C.; Bralha, F.; Meiering, E. M.; Levy,
Y. Nonnative Interactions Regulate Folding And Switching Of
Myristoylated Protein. Proc. Natl. Acad. Sci. U. S. A. 2012, 109
(44), 17839−17844.
(81) Clore, G. M.; Iwahara, J. Theory, Practice, And Applications Of
Paramagnetic Relaxation Enhancement For The Characterization Of
Transient Low-Population States Of Biological Macromolecules And
Their Complexes. Chem. Rev. 2009, 109 (9), 4108−39.
(82) Dyson, H. J.; Wright, P. E. Unfolded Proteins and Protein
Folding Studied by NMR. Chem. Rev. 2004, 104 (8), 3607−3622.
(83) Zhang, O.; Forman-Kay, J. D.; Shortle, D.; Kay, L. E. Triple-
Resonance NOESY-Based Experiments With Improved Spectral
Resolution: Applications To Structural Characterization Of Unfolded,
Partially Folded And Folded Proteins. J. Biomol. NMR 1997, 9, 181−
200.
(84) Huang, J. R.; Grzesiek, S. Ensemble Calculations Of
Unstructured Proteins Constrained By RDC And PRE Data: A
Case Study Of Urea-Denatured Ubiquitin. J. Am. Chem. Soc. 2010,
132 (2), 694−705.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.8b07379
J. Phys. Chem. B 2018, 122, 11450−11459

11459

http://dx.doi.org/10.1021/acs.jpcb.8b07379

