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ABSTRACT: Protein backbone alternation due to insertion/deletion or mutation operation often results in a change of
fundamental biophysical properties of proteins. The proposed work intends to encode the protein stability changes associated
with single point deletions (SPDs) of amino acids in proteins. The encoding will help in the primary screening of detrimental
backbone modifications before opting for expensive in vitro experimentations. In the absence of any benchmark database
documenting SPDs, we curate a data set containing SPDs that lead to both folded conformations and unfolded state. We
differentiate these SPD instances with the help of simple structural and physicochemical features and eventually classify the
foldability resulting out of SPDs using a Random Forest classifier and an Elliptic Envelope based outlier detector. Adhering to
leave one out cross validation, the accuracy of the Random Forest classifier and the Elliptic Envelope is of 99.4% and 98.1%,
respectively. The newly defined database and the delineation of SPD instances based on its resulting foldability provide a head

start toward finding a solution to the given problem.
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1. INTRODUCTION

Amino acid insertions/deletions (InDels) and mutations in the
protein sequence may alter protein structure. However, as
InDels result in the readjustment of the protein backbone, they
introduce substantial leaps in the protein fitness landscape and
are considered as a critical facilitator of the evolution
process.””” Perturbations in the protein structure are often
accompanied by noticeable changes in the biophysical
properties, substrate specificity, and registry shifts in case of
defined secondary structures.” InDels can act as a causative
agent for many Mendelian disorders,” cystic fibrosis,®
leukemia, and other types of cancers.” In spite of being a
crucial evolutionary modification process and the reason
behind multiple human diseases, the study of protein stability
and function due to InDels is one of the most challenging and
less explored protein engineering problems. Therefore, it is
imperative to analyze and encode the effect of such InDel
operations.
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Limited experimental studies help us to understand the
effect of InDels, on the folding, thermodynamic stability, and
specific activity of the proteins. Mostly the InDels were
performed on the N- and C-terminal regions of the
proteins.” """ The deletion of entire domains and its role in
the modular protein evolution has been discussed by Weiner et
al."” Lusetti et al.'’ established the presence of extensive
bonded and nonbonded interactions between the C-terminal
region and the other parts of the protein by C-terminal
deletion mutations of different sizes (ranging from 6 to 25) in
the Rec A protein of Escherichia coli. The critical role of N- and
C-terminal contact in protein folding and stability has been
investigated for a family 10 Xylanase protein.'* Therein the
deletion of select terminal residues has been shown to result in
loss of stability and function under given experimental
conditions. The prevalence of compensatory amino acid
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323572 Protein Sequences (chain-wise) from PDB
Annotated solvent accessibility, secondary structure

!

26549 Pairwise alignments using BLASTP
Cutoff: e-value<1073, Sequence coverage=50%, at least one InDel in otherwise
100% matched sequence

!

24046 Protein pairs with InDel in ProfeinL

Contiguous single stretch InDel

!

713 Unique protein pairs
Identified sequence pairs after duplicate removal
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!

132 SPD instances that lead to folded structures in ProfeinL
and in ProteinS

Removed protein pairs with high structural irregularities

162 SPD instances
Added 30 ProteinLs that lead to unfolded structures (literature based)

Figure 1. Curation of SPD Database from PDB and literature evidence.

substitutions following InDel operations to arrive at energeti-
cally fit conformations have been studied for generic protein
structures” and Drosophila proteins. In an unusual observa-
tion regarding intrinsically disordered proteins, Light et al.
suggested that InDel events do not induce disorders but are
instead accumulated in intrinsically disordered regions of the
corresponding proteins.15

Although there are experimental studies that deal with
InDels in protein structures, in-silico analysis of the same is
limited. Pascarella et al.'® performed computational analysis on
the backbone mutations to deduce that the InDels occurring at
loop regions or the N- or C-terminals prefer to be 1-5
residues long. Benner et al.'” observed that the probability of
InDels in a homologous pair of protein sequences was found to
increase with an increase in the evolutionary distance between
two homologs and thus suggested that a protein of length 30 to
40 amino acids remains, on average, undisrupted by InDels
during divergent evolution. An inductive logic programming
based machine learning approach was proposed to predict
disease-causing nonframeshift (NFS) InDels.'® The foldability
encoding'’ of 72 instances of single point deletions (SPDs) in
amino acids of the enhanced green fluorescent protein (eGFP)
corroborated well with the experimental findings.” The effect
of loop length modification on the thermodynamic stability of
human muscle acylphosphatase protein was explored using
both computational and experimental approaches.”” In a
similar kind of work, the effect of loop length shortening on
native state dynamics was also investigated using all-atom
molecular dynamics (MD) simulations in the solvent-exposed
loop region for four different protein structures.”’ However, a
generic computational framework to predict the InDel effect
on the thermodynamic stability of any given protein is
unavailable until date. The primary impediment is the absence
of a standardized database. Unlike Protherm,”” a mutation
database, there are very few experimental findings and no
existing database that lists InDels along with their respective
changes in thermodynamic stability parameters. The absence
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of such reportage makes a generic computational framework
that predicts the effect of InDels even more elusive.

There are SPD instances described from the helix, sheet, and
loop regions that both lead to stable folded conformations and
the unfolded state. Lusetti et al. reported that the InDels are
most likely to occur in the loop regions of proteins.”> A
majority of loop region InDels may introduce minimum
structural changes but some of them result in unfolded
conformations, and the observation demonstrates that the loop
region InDels are fascinating. In this work, we consider SPDs
from all secondary structures with an emphasis on the loop
regions. In process, we introduce a new database for the
classification and analysis of SPDs in proteins. Our database
consists of 162 SPD instances out of which 132 positive
instances leading to folded conformations are curated from the
Protein Data Bank (PDB)*’ and the remaining 30 SPDs
(negative instances) leading to unfolding are identified from
existing literature information. For each positive SPD instance,
we have protein pair ProteinL and ProteinS, where ProteinL and
ProteinS are the experimentally derived structures (present in
the PDB) without and with the SPD.

We analyze the SPD database to derive crucial insights
regarding the structural and physicochemical properties of the
SPD instances delineating the folded conformations and
unfolded state. Next, we use an adaptive sampling based
oversampling technique to mitigate the class imbalance and
utilize the distribution of the SPDs in the feature space to
prepare simple classification frameworks discerning foldability.
We construct a Random Forest (RF)** classifier exploiting the
distribution of the delineating parameters in the feature space
in both the original and the class balanced database. On the
class balanced data set, our proposed RF classifier reports an
average accuracy of 97% (98% on the original data set) and an
average Mathews correlation coefficient (MCC) of 0.90 (0.93
on the original data set) over 100 iterations of three-fold cross-
validation (CV). Using the leave one out cross validation
(LOOCYV) protocol, our RF classifier reports an accuracy of
99.4% with no misclassification of any negative sample when
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Figure 2. Distribution of positive (black filled triangles) and negative (gray filled circles) data when the feature space is mapped to the three
principal components. (A) Classification data (total 162 instances; 132 positives and 30 negatives), (B) augmented classification data (264
instances) with 102 class balancing synthetic data as generated using ADASYN.

trained and tested using both the class balanced and the
original data set. Acknowledging the difficulty in obtaining the
negative samples, we develop an additional elliptic envelope
(EE)™ based outlier detection system trained on only the
positive SPD instances. The accuracy of the system in
detecting protein foldability is 98.1% while adhering to the
same LOOCYV protocol.

The proposed work introduces a new database and two
orthogonal foldability classification systems corresponding to
SPDs in protein structures. In the absence of any such existing
practice, the approaches and algorithms presented provide a
head start toward finding a solution to the given problem. The
classification framework and the database of SPDs can be
downloaded from http://cse.iitkgp.ac.in/~pralay/resources/
SPD_Pred/.

2. MATERIALS AND METHODS

2.1. Database Preparation

The SPD instances that result in adequately folded
conformations were identified from the PDB using the
sequence of steps provided in Figure 1. The curation started
by compiling 323 572 single chain protein sequences
corresponding to all the PDB entries. We used STRIDE*® to
assign solvent accessibility and secondary structure information
for each of the protein chains. Next, we probed for identical
protein sequences from our compiled 323 572 chain-wise
protein sequence data using BLASTP*” (V2.2.30). A sequence
pair composed of the query sequence and the aligned sequence
was considered if the expectation value of BLAST alignment
was less than 107 and sequence coverage was more than 50%.

1404

Barring the insertion/deletion sites, 100% sequence identity
between query and the aligned sequence was considered for
further shortlisting. Double entries with the interchanged
query and aligned sequences were regarded as one for further
shortlisting. Out of the 26 549 shortlisted pairs, we identified
24 046 pairs that had a single contiguous deletion in either
protein sequence. At this step, multiple deletion cases were
omitted, and instances with a single contiguous deletion
stretch in either protein sequence were considered. Next,
pairwise duplicate entries with the same sequence (or sequence
segments) but belonging to different PDB IDs were pruned
down. After duplicate removal, we got 713 unique protein pairs
where there is deletion in either one of the pairs.

It should be noted that structural irregularities like missing
backbone coordinates are an issue for structure-based
computations. Thus, proteins with minor structural irregu-
larities were rectified using ITASSER,*® whereas proteins with
significant structural irregularities were removed from our
database. Finally, we considered 132 protein pairs with an SPD
in either sequence in a pair. As presented in the Introduction,
we will refer to each protein pair as ProteinL and ProteinS
where ProteinL is the PDB structure without SPD and ProteinS
is the PDB structure with an SPD in ProteinL. These 132
protein pairs are considered as positive samples where a
protein can sustain an SPD.

To enable our database for the biclassification problem, we
included negative instances, where an SPD in a protein leads to
an unfolded state. We identified 30 such cases from the
literature. Twenty-eight of them were selected from the
analysis of Arpino et al.’ from the 87 (42 functional and 45
nonfunctional) deletion instances in enhanced green fluo-
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rescent mutant protein (eGFP; PDB ID: 4EUL). The crystal
structure of eGFP consists of a chromophore that forms the
protein’s characteristic green phenotype. For our present
structure-based analysis, we accommodated the original
residues: Thr65, Tyr66, Gly67 in place of the chromophore
by using the I-TASSER®® web server. The remaining two
instances of SPDs were considered as per experimental
evidence.'* The article discusses the role of N- and C-terminal
residues in protein stability and folding of a family 10 Xylanase
(BSX) (PDB ID: 2FGL) under extreme conditions and reports
that the removal of Trp6 and Tyr343 affects the in vivo folding
and activity of the protein.

A detailed summary of the 162 SPD instances is included in
Supplementary Tables S1 and S2. The SPD database contains
proteins from five different classes as classified by the SCOP*
database. Lengthwise, the shortest protein is 23 residues long,
and the longest protein consists of 605 residues. This
substantiates the diversity in our database and justifies the
robustness of our classification and analysis. The entire
database of SPDs composed of the curated PDB files for
both ProteinL and ProteinS along with a description of each
SPD is available at http://cse.iitkgp.ac.in/~pralay/resources/
SPD_Pred/ for further research. We also maintain a script that
will automatically update our SPD database in synchronization
with the PDB update.

2.2, Class Balancing Using ADASYN

Most classification algorithms expect balanced data sets, and
consequentially, the presence of imbalanced class distributions
may fail to represent the distinguishing characteristics of the
database adequately. In the present context, we performed
oversampling of the negative SPD samples in the defined
feature space using the Adaptive Synthetic (ADASYN)
sampling approach for imbalanced learning. ADASYN
generated more synthetic data corresponding to minority
samples that were difficult to learn thereby shifting the
classification decision boundary toward them. The use of K
nearest neighbor (in our case K = 7) to generate synthetic
negative samples ensured that the generated samples
successfully represents the distribution of the negative data
set. Figure 2 depicts the augmented data set and that of the
original data set following principal component analysis and
mapping the feature space to the three principal components.
The imbalanced-learn open-source python toolbox”" was used
for the present implementation. The positive (132) and the
negative (30) SPD instances were used as input to the
ADASYN framework. The distribution of the SPDs in the
feature space was utilized to generate 102 additional synthetic
negative SPD instances.

In the following sections, we will refer experimentally
verified SPD instances (162 including 132 positive and 30
negative) as the classification database, and the ADASYN
enhanced instances (264 with additional 102 negative cases) as
augmented classification database.

2.3. SPD Site Features

We considered a total of 11 features to describe the structural,
evolutionary and physicochemical environment of the residue
involved in the SPD of ProteinL. The weighted contact number
(WCN)*** measure reflects the density of the neighboring
residues with respect to the residue in consideration and is also
an indicator of the contact number of a residue. The
evolutionary conservation score (ECS) represents how well a
residue is conserved in its position concerning the structural
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homologs of ProteinL. Considering the residue facing SPD, the
aromatic cluster score (ACS) indicates the size of the aromatic
cluster to which the residue belongs. The hydrophobic core score
(HCS) and the hydrophobic buried core score (HBCS) measure
the percentage of residues that are hydrophobic and are solvent
inaccessible (along with hydrophobic) out of the total number
of residues present in the vicinity of a given residue. The
chemical bond information (CBI) lists the number of hydrogen
bonds, ionic bonds, and disulfide bonds formed by the residue
facing deletion. The long-range contact order (LRCO) reflects
the number of long-range interactions involving the residue
under consideration. Finally, the hinge residue and flexible
residue information (HFRI) as proposed by Emekli et al.** has
been used to identify whether the residue undergoing SPD is a
part of a hinge or a flexible region. The detailed formulations of
all the features are provided in the Supporting Information.

2.4. Random Forest Based Classification

The RF classifier uses an ensemble of decision tree classifiers
constructed on various subsamples of the database. A diverse
set of decision tree classifiers are created by considering
random subsets of the feature space. The randomness
introduced during the process controls the overfitting and
improves predictive accuracy. We considered scikit-learn®
implementations of the RF algorithm for the classification. The
algorithm in its present form considers the average of the
probabilistic prediction of each of the classifier to predict the
class of a sample. Our RF confidence score measures the
proportion of decision trees voting in favor of the desired class
label and the proportion of decision trees voting against it.

We considered both stratified three-fold CV and LOOCV
approaches to assess the efficacy of the classification algorithm.
The cross-validated classification was carried out using only the
experimentally verified instances in the augmented classifica-
tion database.

2.5. Elliptic Envelope for Outlier Detection

The EE* based outlier detection technique was adopted to
construct an outlier detection framework that would serve as
an alternative in the absence of sufficient negative samples. The
idea was to establish the SPD instances that point to folding as
inliers which in turn would help us to identify the negative
SPD instances as outliers. In the present case, the positive SPD
instances (the inliers) are considered from diverse protein
structures, and the outlier detection system helps in preparing
a classifier based on only the distribution of the inliers in the
feature space. While the negative SPD instances are only used
for testing, the classification of the positive instances
concerning the distribution of the inliers also informs us
about the fitness of the classifier. The elliptic envelope was fit
to the central data points (constituting the inliers) based on a
robust covariance estimate computed from the distribution of
the SPDs in the feature space. The EE implementation from
scikit-learn® was used to construct the outlier detector, while
the cross-validation of the one-class classifier was carried out
sticking to the LOOCYV protocol.

3. RESULTS AND DISCUSSIONS

3.1. Inferences from SPD Database

We considered a set of 162 SPD instances (Table S2) to
classify the foldability of the protein conformations resulting
from backbone modifications. Out of the 162 instances, for
132 SPD instances, we have protein structures with and
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without the SPD available in the PDB. Whereas, for the
remaining 30 instances, literature evidence informs the
existence of a protein structure (in PDB), whose SPD leads
to unfolding. Interestingly, the majority of the SPDs reported
are in the nonterminal regions. Corroborating with the
observation of Lusetti et al,> the majority of the positive
SPDs is reported from the loop regions (88 cases), whereas 31
and 13 cases are located at the helix and sheet regions,
respectively. For negative SPDs, the data distribution is 2, 20,
and 8 at the helix, sheet, and loop regions of the protein
structures. Overall, 59% SPDs are reported at the protein loop
regions.

While analyzing the database, we found that there was no
evidence of positive SPD in which glutamine was deleted. In
the case of loop regions, none of the SPD data was reported
that involved cysteine or glutamine. The distribution of amino
acids in the tolerated SPDs (Figure 3A) indicates that mostly
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Figure 3. Distribution of amino acids in positive and negative SPD
instances (A) for the entire SPD database and (B) for SPD at loop
regions.

alanine (22%), glycine (14.4%), and glutamic acid (11.4%)
were deleted from a protein. The same trend is reflected for the
loop region SPDs, where mostly alanine (20.4%), glycine
(17%), and glutamic acid (10.2%) were deleted. The
remaining amino acids were each reported in less than 10%
cases in the entire database. In the case of negative SPDs, the
deletion of leucine (16.7%) was maximally reported. While for
the loop region SPDs, in which the deletions were not
accepted, we noted two instances each of leucine and tyrosine,
and one instance each of tryptophan, aspartic acid, serine, and
arginine (Figure 3B). Fascinatingly, for the positive SPDs, we
observed that in 39 (out of 132) cases the deleted amino acid
was the same as the amino acid preceding or succeeding it.
Considering the solvent accessibility (SA) of the deleted
residue, we found that 17 (11), 81 (19), and 34 (0) positive
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(negative) SPD examples were in the buried (SA < 9%),
intermediately buried (9% < SA < 64%), and exposed (SA >
64%) environment, respectively. We identified that chance of
foldability is least when the SPD takes place at the buried
regions, and all the proteins facing SPDs folded if it is in the
exposed area.

We assessed the segregation capability of the WCN, ECS,
HBCS, and LRCO features using two population hypothesis
testing (2-tail tests)* before classifying the foldability of
proteins subject to SPDs. For all the four features, the null
hypothesis H, suggests that the population mean , of the SPD
instances that lead to folding is equal to the population mean
U, of the instances of SPD that lead to unfolding. The
alternative hypothesis H, suggests that they are unequal. The
summary of the two population hypothesis testing (consider-
ing both 6, = 6> and 6> # 6,%) is provided in Table 1. The

Table 1. Two Population Hypothesis Testing (2-Tail Tests)

0’ = 0,5, a = 0.05 0,° # 0, a = 0.05

features  DoF“ Ity .. It ~DoE” Ity Ity

WCN 160 1.97 4.81 114 1.98 7.80
ECS 160 1.97 7.58 59 2.00 9.46
HBCS 160 1.97 7.15 38 2.02 6.22
LRCO 160 1.97 8.37 144 1.98 14.79

“Degrees of freedom (DoF). YRounded fractional DoF.

hypothesis testing strongly asserted in favor of the alternative
hypothesis and confirmed the segregation capability of the
selected features. Our hypothesis testing revealed that the SPD
of residues with higher WCN, higher ECS, higher HBCS, and
lower LRCO can result in a possible unfolding of the protein
structure. Out of the four features, LRCO turns out to be the
best indicator of protein foldability considering SPD sites in
ProteinL. Further, we present the box plots of 4 selected
features chosen to construct the binary classifier discerning
foldability (Figure 4). The box plots of the same features
corresponding to SPDs in the loop region are provided in
Figure S1. The ACS and HBI features have not been
considered for hypothesis testing as the measure does not
follow a normal distribution. However, as the box plots
suggest, SPDs associated with an aromatic cluster or with more
numbers of hydrogen bonds have a greater tendency of
unfolding. For SPDs in the loop region, considering the hinge
residue feature, we found that two out of eight negative SPDs
was a hinge residue whereas the count was nine out of 88 for
positive SPDs. In case of flexible residue information, none of
the negative SPDs belonged to a flexible loop region, whereas
in 24 out of 88 instances the residue fitted to a flexible loop
region for positive SPDs. The data justify that proteins with
SPDs in a flexible loop region have a greater chance of folding.

3.2. Classifying Protein’s Foldability Subject to SPD

Once we have established the segregation capabilities of the
chosen features, we classified the deletion instances as folding
or nonfolding with the help of simple classification frameworks.
To alleviate the problems arising from the lesser number of
negative SPD instances, we used the augmented classification
database to construct an RF-based classifier and prepared an
EE based outlier detector using only the positive SPD
instances.

The RF classifier is usually immune to overfitting’” that
makes it quite efficient to work with small databases. Initially,
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Table 2. Evaluation of Classification and Outlier Detection with LOOCV

positive (%)

negative (%)

training data set classification method true
augmented classification database random forest 99.2
experimental data set elliptic envelope 97.7

false true false accuracy (%) misclassified SPD instances
0 100 0.8 99.4 P114
0 100 2.3 98.1 P73, P82, P126

we performed a stratified three-fold cross-validation (CV)
using RF classifier on the augmented classification database.
During CV, the database was randomly partitioned into three
parts with proportional representation from the positive and
negative instances. The third part was tested based on the
model developed using the other two parts. We carried out 100
iterations of three-fold CV to minimize the bias resulting out of
the random partitioning of the training and test databases. The
MCC measure, which varies from —1 to +1, is regarded as a
reliable measure even in situations of a higher class imbalanced
database. Considering the relatively smaller size of the training
set, the result of our classifier on the classification data (MCC
score: 0.90 and accuracy: 97%) is encouraging. There were
only five instances (P73, P81, P114, P132, and N1) out of 162
that were misclassified in more than 20 iterations of three-fold
CV. Training was performed using both the original and
oversampled instances, whereas testing was carried out only on
the experimentally verified data.

Misclassified instance N1 reports the deletion of a
tryptophan (Trp6) in the N-terminal of 10 Xylanase leads to
the unfolding of the protein. We observed the existence of an
aromatic cluster comprising of Trp6, Phe4, and Tyr343
residues. The aromatic cluster involving long-range inter-
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actions provides stability to the protein and is a significant
feature that determines the final folded conformation of the
protein. Hence, it might be intuitive that removal of bulky
Trp6 breaks the aromatic cluster which in turn destroys the
protein. ACS is an important feature and was included as one
of the SPD site features but was not represented well in the
smaller training set created due to three-fold CV.

To address the inadequacy arising out of a smaller training
set in three-fold CV as well as for better generalization error
estimation, we carried out LOOCV on the RF classifier using
the augmented classification database. Without misclassifica-
tion of any negative instance, the RF classifier reported a
classification accuracy of 99.4% while adhering to the LOOCV
protocol (Table 2). The number of decision trees in the RF
voting in favor of correct positive classification was 0.93 and in
favor of a negative classification was 0.81 when averaged over
the 192 LOOCYV classifications. The result is a good indication
of the robustness of our features and the generalizability of the
RF-based classification framework. We wish to report that
while using the RF classifier, the accuracy increased a little if
we did not augment our database. For three-fold CV, the
increase was 1% due to the lesser number of negative instances
in comparison to the augmented database. The averaged MCC
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score repeated over 100 iterations for three-fold CV increased
to 0.93 while using the experimental classification database.
Still, the average number of decision trees in the RF voting in
favor of a correct positive classification remained the same
whereas the average number of decision trees voting in favor of
a negative classification reduced to 0.72. The result indicates
that the augmented classification database aids in more robust
classification.

Considering the difficulty in curating the negative SPD
instances, we developed an outlier detection system using only
the positive SPDs from the classification database. The outlier
detection framework fits the distribution of the features in the
positive database in an EE. This framework relies solely on the
distribution of the data in the feature space and serves as a
robust orthogonal classification system, which in addition to
the RF classifier can be used to check the foldability of SPDs in
a given protein structure. The result of the outlier detection
framework with only three misclassified instances (P73, P82,
and P126) indicates good accuracy (Table 2).

3.3. Analyzing Classification

The segregation capability of the individual features has been
discussed in the previous section and the combined capacity of
the features to delineate the positive SPDs from the negative
ones is reflected by the robustness of the RF and EE based
classification frameworks. The feature vectors of the synthetic
negative samples added by the ADASYN sampling approach in
the augmented classification database give rise to a well-
balanced database. The RF classifier makes use of this balanced
database to prepare an ensemble of decision trees and
aggregate the probabilistic prediction of each tree to predict
the class of a sample eventually. While assessing the
importance of the individual features, we found that the
LRCO measure contributes maximally (31%) to the delin-
eation process. The deletion of a residue participating in too
many long-range interactions makes a protein particularly
vulnerable to unfolding. In accordance with the findings of
hypothesis testing, the WCN, ECS, and HBCS measure also
contributed 20%, 26%, and 9%, respectively, to the delineation
process. The remaining features working in tandem with the
four measures scaled up the classification accuracy of the RF
classifier to 99.4% (while adhering to LOOCV). Distinct
distribution of the positive and negative SPD instances was
observed while performing hypothesis testing of the WCN,
ECS, HBCS, and the LRCO measures (see the previous
section). These measures along with the remaining features
were used to represent the distribution of the positive SPD
instances in the EE based outlier detection system which
reported an average classification accuracy of 98.1%.

The P13 instance, corresponding to the deletion of the
His73 residue of the actin protein, reports a high WCN and a
low LRCO value quite similar to the negative SPD examples.
The participation of the histidine in two hydrogen bonds and
the presence of glutamate and two aspartates in the residues
structural vicinity indicate toward a possible ionic interaction.
However, the deletion of His73 does not lead to unfolding.
The RF-based classification framework, as well as the EE based
outlier detection system; both correctly predicted the
foldability of the P13 instance. The foldability of the N1
instance, misclassified in multiple iterations of three-fold CV of
the RF classification framework, was anticipated precisely by
the RF classification framework adhering to the LOOCV
protocol. The augmented classification database leads to an

1408

adequate representation of the ACS measure hence leading to
the correct classification. Interestingly in N1, the EE based
outlier detector also correctly predicts the unfolding of 10
Xylanase resulting due to the deletion of Trp6 from the N-
terminal region. These two techniques following two entirely
distinct approaches together give rise to a robust classification
framework.

At the individual level, we found that P114 is being
misclassified by the RF classifier. We observed that the WCN,
HBCS, and the LRCO scores for P114 (deletion of Ala222 in
Green Fluorescent Protein) are similar to the negative SPD
instances. However, in P114, alanine is deleted, and as
observed earlier, the deletion of alanine is well tolerated in
SPD instances. However, the P73, P82, and P126 entries were
wrongly misclassified by the outlier detection framework.
Considering the consensus of the two frameworks, we find that
no SPD instance is being misclassified by both the classifiers.
Regarding the classification of SPDs in the loop region, the RF
classifier misclassifies none whereas the outlier detection
framework misclassifies the foldability of two (P73 and P82)
instances.

4. CONCLUSION

A single point InDel or a mutation may cause a pivotal change
in the stability and functionality of any protein structures.
However, the impact of InDel operations on a protein
structure is relatively less explored as opposed to the effect
of mutation operations. The absence of databases listing the
impact of SPDs on the thermodynamic stability of a protein
and lack of computational frameworks to infer the effect of
such InDels are significant impediments in primary screening
before opting for expensive in vitro experiments. The lack of
study makes the problem even more elusive. Nevertheless, the
importance of the problem remains pertinent.

We curated the entire PDB to prepare a database consisting
of 132 instances of SPDs that lead to folded conformations and
listed another 30 SPD instances that point to unfolding. Given
the constraints due to the limited information regarding the
deletion instances, it allowed us to establish basic classification
frameworks distinguishing the two classes of data. The deletion
of a residue in the presence of the same amino acid preceding
or succeeding it in 39 out of 132 instances and the presence of
the deleted residue in the flexible loop region of the protein in
24 out of 88 instances, all resulting in folded conformations
indicated toward exciting patterns in the database. The WCN,
ECS, HBCS, and LRCO all performed well on two-population
hypothesis testing and were well delineated in the positive and
negative SPD instances.

The database was further used to prepare two frameworks:
an RF classifier utilizing both the positive and negative SPD
samples and an EE based outlier detection system using only
the positive SPD instances. The RF classifier ensured
minimum overfitting and was trained on the class balanced
database. The RF classifier with LOOCYV reports high accuracy
(99.4%) without any misclassified negative sample. Even the
EE based outlier detection system trained on positive examples
shows high accuracy (98.1%) without any misclassification on
negative data. The foldability classification of the SPDs in a
given protein structure with the help of two orthogonal
classifiers indicates a robust classification framework. We
believe that our database can be enriched with the new
experimental findings, and the approaches enlisted address
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significant issues associated with such structural modifications
of the protein backbone.
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