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ABSTRACT

Summary: Protein structures can be viewed as networks of
contacts (edges) between amino-acid residues (nodes). Here we
dissect proteins into sub-graphs consisting of six nodes and
their corresponding edges, with an edge being either a backbone
hydrogen bond (H-bond) or a covalent interaction. Six thousand
three hundred and twenty-two such sub-graphs were found in a large
non-redundant dataset of high-resolution structures, from which 35
occur much more frequently than in a random model. Many of these
significant sub-graphs (also called network motifs) correspond to
sub-structures of α helices and β-sheets, as expected. However,
others correspond to more exotic sub-structures such as 310 helix,
Schellman motif and motifs that were not defined previously. This
topological characterization of patterns is very useful for producing
a detailed differences map to compare protein structures. Here
we analyzed in details the differences between NMR, molecular
dynamics (MD) simulations and X-ray structures for Lysozyme, SH3
and the lambda repressor. In these cases, the same structures
solved by NMR and simulated by MD showed small but consistent
differences in their motif composition from the crystal structures,
despite a very small root mean square deviation (RMSD) between
them. This may be due to differences in the pair-wise energy
functions used and the dynamic nature of these proteins.
Availability: A web-based tool to calculate network motifs is
available at http://bioinfo.weizmann.ac.il/protmot/.
Contact: gideon.schreiber@weizmann.ac.il; koby.levy@weizmann
.ac.il
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Proteins are made out of hundreds of amino acids folded to a well-
defined structure that is stabilized by thousands of interactions.
Discretization of the 3D structure of proteins can be done in many
ways. Bystroff and Baker (1998) constructed a library of sequence-
structure motifs, which was the base for the Bayesian separation of
the total energy score into components that describe the likelihood
of a particular structure. Unger et al. (1989) as well as others (de
Brevern et al., 2000; Kolodny et al., 2002; Micheletti et al., 2000;
Oliva et al., 1997; Wintjens et al., 1996) analyzed short oligopeptides

∗To whom correspondence should be addressed.

and showed that their structure tends to concentrate in specific
clusters rather than to vary continuously. A discrete repertoire of
standard structural building blocks taken from these clusters was
suggested as representative of all folds, and is often referred to as
‘fold motifs’.

High resolution data of a protein can be represented as a
contiguous stretch of 3D points, or alternatively as a mathematical
graph based on the atomic contact map in which a contact is defined
based on a predetermined threshold (typically of 8–10 Å between
non-adjacent Cα atoms). Dokholyan et al. (2002) used the graph
connectivity to predict folding probability. Huan et al. (2004, 2006)
developed a frequent subgraph mining algorithm, and applied it
to the contact map. The authors defined a subgraph as frequent,
if it occurs in some predefined fraction of the studied proteins.
The algorithm facilitates automated annotation of structures with
unknown function. Later, the same methodology proved successful
in mining RNA tertiary motifs (Wang et al., 2007).

Contact maps discretize at the level of interatomic contacts,
enabling a refinement of the contact map definition by discrimination
of interactions according to their chemical nature (e.g. H-bonds,
electrostatics). For comparing structures, this gives the overlay of
contact maps a clear advantage over the RMSD of distance. The
advantage here is the possibility of rationally choosing thresholds,
by studying the contact chemical properties. Using such a refined
contact map definition, we previously found that contact maps
encapsulate the information necessary to detect the secondary
structure (Raveh et al., 2007). In another study we used the refined
contact map definition to establish a novel notion of modularity in
proteins interfaces (Reichmann et al., 2005), and further used this
scheme to study the evolution of protein interfaces (Rahat et al.,
2008).

A widely used scheme of systems biology suggests that networks
are made up of a small set of recurring patterns, called network
motifs. These are frequent subgraphs, where a probability is assigned
to each subgraph individually, based on some background model
of a random network. Furthermore, analysis of the significance
profile (SP) of these motifs is suggested as a device to identify the
networks design principles (Milo et al., 2004). An SP is the vector
of occurrences of the network motifs, which can be thought of as a
fingerprint of a network. SP is fruitful mostly when it reveals novel,
non-trivial design principles of the underlying network.

In this work we studied the architecture of protein folds as
represented in the network of backbone H-bonds (hence other types
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of interactions were omitted). We compiled a representative dataset
of non-redundant proteins with high-resolution crystal structures.
For each structure, we calculated all the backbone H-bonds and
searched for significant network motifs. The motifs found include
the known fold motifs (α-helix, β-sheet, 310 helix, etc.) as well
as novel ones. To understand motifs dynamics, we performed MD
simulations on a number of proteins. We found that the trajectories
preserved both the number of H-bonds, and the major organization
of the α-helices and the β-sheets. Yet, we observed differences
in motifs that form the surroundings of both the α-helix and the
β-sheet. Finally, we provide examples of how the motives may help
to analyze protein structures.

2 METHODS

2.1 H-Bonds definition
Each structure is enriched with backbone H-bonds by using BndLst version
1.6 (http://kinemage.biochem.duke.edu/software/utilities.php). The critical
step is to correctly position the backbone hydrogen atoms. For this purpose
Reduce is used (Word et al., 1999). The accuracy of various methods for
positioning hydrogen atoms in protein structures was assessed previously by
Forrest and Honig (2005), based on ultra-high resolution structures in which
hydrogen positions are determined experimentally (over 1000 hydrogen
atoms from seven different structures). Nearly 100% of the tetrahedral
NH-type and the planar pNH-type hydrogen atoms were placed within
0.2 Å of the respective experimental atomic positions by most methods,
including Reduce. Once the hydrogen atoms are positioned, bonds are
assigned efficiently using a spherical probe that is rolled around the van
der Waals surface of each atom, and leaves a dot when the probe touches
another ‘not-covalently-bonded’ atom (we used default parameters: probe
radius = 0, radius scale factor = 1, C = O carbon VDW scaled by 0.943 to a
radius of 1.65 Å).

2.2 Graphs of proteins
Each protein structure (solved by X-ray crystallography) was embedded in a
mathematical graph G = (V ,E,C) in which the amino acid residues are the
vertices V , the backbone interactions are the edges E and C is the edges
(bonds) colors: ‘black’ for a covalent bond, ‘thin red’ for a single H-bond
and ‘thick red’ for a double H-bond (see examples in Fig. 1). Note, that the
‘thick red’here is considered a different color than the ‘thin red’. The analysis
was performed on a representative set of 2521 proteins of known structure
(852 561 amino-acid residues), ‘culled down’ from the PDB (Berman et al.,
2000) using a list precompiled by PISCES (Wang and Dunbrack, 2003) to
represent all the known structures as of Jan. 2007, such that the (pair-wise)
sequence identity is<20%, the resolution is<2.0 Å and the R factor is<0.25.

2.3 Network motifs
A graph H = (W ,F,D) is a subgraph of G= (V ,E,C), if W ⊂V ,F ⊂E, and
D⊂C. It is defined as an induced subgraph, if in addition it preserves the
following property of the structure of G:F =E∩(W ×W ) (i.e. if an edge
of G connects nodes of the subgraph H, the edge itself also exists in the
subgraph H). For each network, all the edge-colored induced subgraphs of six
nodes were enumerated by the FANMOD algorithm (Wernicke and Rasche,
2006) using full enumeration. Two subgraphs with different edge colors are
considered different (see for example motifs β-sheet S10 and S27 in Figure 1,
three different motifs which differ only in the ‘thick’ versus ‘thin’ red color).
FANMOD enumerates the subgraphs by iterating the vertices, and at each
step extending on to include subgraphs which were not enumerated earlier.
To calculate the probability that a subgraph is a recurrent motif, we use a
novel random model described below.

2.4 The random model
To capture the uniqueness of protein graphs, we developed the following
random network generator algorithm, given a real protein Ptreal. We first
create a 3D self-avoiding random walk on grid points, with a shape of an
ellipsoid and the minimal size that envelops Ptreal. For each protein, the
procedure is repeated until a self-avoiding walk is obtained. Each point of
the walk is a node in the random protein Ptrand, and we furnish Ptrand with
edges in three steps. First, a ‘black’ color (which corresponds to a covalent
bond in Ptreal) is automatically added for each two neighboring nodes on the
random walk (that is, nodes n and n+1). Second, for two nodes of Ptrand

with distance d in the 3D space, a ‘thin red’ color is added at random using
a biased coin with a probability R, where R is the probability that two nodes
in Ptreal with distance d have a ‘red’ edge (using normal fit for the edge-
distance distribution). Third, we pick at random T ‘thin red’ edges of Ptrand

and convert their color to ‘thick red’, where T is the number of ‘thick red’
edges in Ptreal. We use this procedure to create one random network per
real protein, that preserves the number of nodes, edges, degree distribution,
radius of gyration and community structure.

For each subgraph M, we check the null hypothesis that the distribution of
M occurrence in real proteins is the same as the distribution of M occurrence
in random proteins, using the Kolmogorov–Smirnov test for two samples
(explained e.g. in DeGroot, 1975). The probability P(M) with which we can
reject the null hypothesis is approximated from the statistic by the kstest2
implementation of matlab version 7.3.0.267 (R2006b). The occurrence of
M is defined as <M>= (# residues in which M occurs)/N , where N = total
number of residues = 852 561. Note, that we ignore motifs which contain
leaves, that is, vertices with at most one edge. The probability P of only eight
subgraphs, namely subgraphs #36–#43, is such that 6.2×10−9 ≤ P<0.05.
These subgraphs were ignored. For subgraphs #44 and on, P>0.05. The 35
motifs analyzed here have a P of < 6.2×10−9 and thus a statistical fix for
multiple comparisons such as False Discovery Rate, has been omitted herein.

2.5 MD simulations
The dynamics of motifs were studied by simulating three proteins for
4 ns using molecular dynamics simulations. The selected proteins were:
Lysozyme (pdb 1rfp), SH3 domain (pdb 1srl) and the 434 repressor (pdb
1r69). The simulations were performed at room temperature using the
CHARMM (Brooks et al., 1983) package using the charmm27 force field
and time step of 2 fs. To explore the sensitivity of the motif stabilities to the
details of the force field, each protein system was simulated using explicit
and implicit solvent models. Initially, each protein was minimized using 200
steepest-descent steps and 400 adopted basis Newton–Raphson. The studied
protein was then placed in a TIP3 water box with a water layer of 20 Å
surrounding the proteins and were minimized for additional 500 adopted
basis Newton–Raphson. The temperature was equilibrated using 50 ps MD
simulation to reach a temperature of 300 K. Constant temperature simulation
was collected for 5 ns with dielectric constant of 1 and a 14 Å energy cutoff.
The implicit solvent simulations were performed using the Generalized-Born
(GB) models. For each trajectory we calculated the number of H-bonds, and
the RMSD from the native structure.

3 RESULTS
We compiled a list of 2521 protein structures (see ‘Methods’
section), for which we calculated the contact map, and further
furnished the set of contacts (edges) with colors, to distinguish
between covalent interactions of the polypeptide chain (‘black’
edges), and H-bonds (‘red’, Fig. 1A). We then retrieved all the
subgraphs of six nodes (see ‘Discussion’ section). To evaluate
the statistical significance of each subgraph, we developed a
novel random model (detailed in the ‘Methods’ section). Next, we
searched for subgraphs in the random graphs, and calculated the
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Fig. 1. Proteins described as mathematical graphs. (A) Various presentations of the standard motifs: α-helix (H9, top row, caturing a non-countiguous six
residues motif, see also Supplementary Fig. S1), 310 Helix (H18) explained by an H-bond of residues n and n+3. The ‘10’ stands for the distances in backbone
atoms in the chain nitrogen–carbon–carbon (NCC). The standard α-helix is 413. Below: β-sheet (anti-parallel, S3, S10 and S27) and parallel (S15). A covalent
interaction in black, a single H-bond in normal red, and a double H-bond in thick red. See Supplementary Figure S1 for a visualization of all the motifs.
(B) Examples of a 4-helix bundle (pdb 1tqg, top) and a β-barrel (GFP, pdb 1oxe, bottom) proteins. The left column depicts the contact map as a matrix with
covalent bonds and backbone H-bonds. The middle column shows the contact map planar drawing with vertices positions based on the observed motifs:
helices are represented by the box-shaped motif H9, while a β–sheet resembles the beehive shape of S3 hexagons. Regions with no motif are displayed in
green. The figures were drawn using PyMOL (DeLano, 2002, http://www.pymol.org/).

probability of each subgraph to occur in similar numbers in the
random protein network and in real proteins. If this probability is
low we consider the subgraph as a network motif. Thus, network
motifs are backbone H-bond patterns that occur in experimentally
determined structures of proteins much more often than in random
proteins with similar local connectivity and size.

In the set of 2521 structures, we found 6322 different subgraphs,
out of which <43 are network motifs. Not surprisingly, the most
significant network motifs include the α-helix and the β-sheet
(Fig. 1A). For example, α-helix is represented by the box shaped
motif number 9 (called H9, ‘H’ for helix and the number 9 is
the position when sorted by probabilities). The same motif is also

captured by H6 (see Supplementary Fig. S1). Anti-parallel β-sheet
sub-categorizes into S3, S10 and S27 with 4, 3 and 2 H-bonds,
respectively (see Fig. 1A, the ‘S’ stand for Sheet). It is interesting
to note the inverse correlation between the number of H-bonds
in these motifs and the probability to observe them at random,
suggesting that unsaturated H-bonds are rare in our dataset, and so
the structures used are of high quality. Examples for contact maps
of two proteins with mostly helical and sheet structures are given
in Figure 1B using both the adjacency matrix and the alternative
planar drawing, based on the observed motifs (see ‘Discussion’
section). A graphical representation of all the motifs is given in
Supplementary Figure S1, while the motifs probabilities are depicted
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Fig. 2. Motifs probabilities (log-scale) versus DSSP annotations (Kabsch
and Sander, 1983). Six-thousand three-hundred and twenty-two different
subgraphs exist in the 2521 proteins structures analyzed. For each subgraph,
we calculated the probability P that the subgraph is a network motif, and
sorted the motifs by P (see ‘Methods’ section). The first 10 motifs occur with
probability P<10−315. (Inset), the probability of the next 14 motifs, using
a normal scale. Motifs 36–43 are less significant, with 6.2×10−9 ≤P<0.05
(see ‘Methods’ section). For subgraphs #44 and on, P>0.05. For subgraphs
#49 and on, P>0.5.

in Figure 2. Sorted by their probability, a clear distinction can be
made between the first ten motifs (P<10−316) and the next 25
motifs. The first 10 motifs overlap with the standard α-helix and
anti-parallel β-sheet, while the next 25 motifs include other known
secondary structure motifs as well as novel ones. For example,
motif number 14 (M14) is the Schellman motif (Schellman, 1980).
This motif is found in many C-caps of helices (see Fig. 3A for a
typical example). Using network motifs analysis, we found that the
same motif connects an α-helix and a β-sheet (Fig. 3B), or two
β-strands to a sheet (Fig. 3C). S15 and S21 are two alternative
representations of the parallel β-sheet. H18 is the 310 helix with
occurrence <H18>=0.96%. Many novel fold motifs were found,
including H13, T17 and H22 which are prevalent in helix caps.
Figure 3D and 3E visualize H13, called here the B10 helix, a
bifurcated 310-like helix. Another set of motifs, namely T2, T7,
T20, T26 and T29, appear as a part of a turn, which is found
in various surroundings. For example, a turn might connect two
beta-strands or two loops. Each one of these four novel motifs
represents a different surrounding of a turn, and is also prevalent
in helix caps.

To visualize the motifs on protein structures, and compare
between different structures in an interactive manner, we created
a web tool, protmot (http://bioinfo.weizmann.ac.il/protmot/).
In addition to the graphical interface, protmot provides also textual
information on the location of all the motifs for further analysis.
In Supplementary Figure S2, we provide a case study of how the
motif composition of different p21-activated kinases teaches us
about the differences between these similar apo and holo enzyme
structures. Supplementary Figure S3 shows the apo versus the holo
structures of Sir2, which apparently have a RMSD of 12 Å, but show
high structural and SP similarity.

SP of homologues protein structures is expected to be similar.
Therefore, we were surprised to see that the SP of Deer Hemoglobin
(structure solved to 1.98 Å resolution) is highly different from all
other mammalian Hemoglobins (Supplementary Fig. S4, compared
to Human, Maned wolf and Horse), while the RMSD relative to
human is only 0.9 Å (Supplementary Fig. S4A). This suggests that
the structure of Deer hemoglobin has local dissimilarities from all

CB

1

2

3

4

5 Gly
61

2

3
5 Gly

6

1

3

4

5

6

ED

4

1 2

36

5 4
2

1

A

5G

1 2

3

4

6

1

2
3

45 Gly

6

Fig. 3. Various surroundings of the Schellman and the novel B10 motifs.
(A–C) The Schellman motif, previously considered only in helices caps,
is shown here in various surroundings. Note the Glycine preference at
position 5. (A) Classical helix cap, residues 16–21, pdb 1taf. (B) Connecting
an α-helix and a β-sheet, residues 50–55, pdb 2d37. (C) As a part of a
β-sheet, residues 99–109 of pdb 2fd6 (two overlapping instances of the motif,
numbering is given only for the second). (D) Visualization of the novel B10

helix (Motif H13), a bifurcated 310-like helix, using cartoon; and (E) all
atoms. The motif is more prevalent than the 310 helix (Fig. 1, occurrence of
0.23 versus 0.2%). Yet, the 310 helix is widely represented in the literature
as an alternative helix, due to its ‘nice’ shape (pdb 1taf residue 62–67).

the others. Interestingly, a high percentage of this structure is out
of the Ramachandran allowed region [Supplementary Fig. S4C, see
also Morris et al. (1992)]. Apparently, the reason for the discrepancy
is a strained backbone of this old structure, resulting in incorrect
H-bonds parameters (distance and angle), and hence the motifs
are not found although realistically they must be. These examples
show that SP reveals local differences between structures even when
globally the structures seem to be identical.

3.1 SP as a fingerprint of a protein structure
Proteins are dynamic in nature, as is evident by comparing multiple
NMR or X-ray solutions of the same structure. SP is a natural tool
to analyze these differences, as well as following the time evolution
of SP in atomistic MD. The SP is studied globally (count of each
motif in the entire protein). Although localization may relate some
helical motifs to sequence properties, we are more interested in
the global architecture. We followed the pattern of the motifs as
a function of time and compared their average population along the
trajectories to those found in X-ray and NMR structures for three
model proteins: Lysozyme, SH3 and the amino terminal domain of
the 434 repressor (Fig. 4). We simulated each protein along 4 ns
at room temperature, starting from the crystal structure. During this
time frame the global fold did not change. To observe high-resolution
variation, we constructed the SP (i.e. the motifs’occurrences vector).
To examine the effect of the force-field on the SP, we simulated
the proteins using two different water models, Generalized-Born
(GB), and explicit solvent. The SP obtained when simulating the
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Fig. 4. Significance profiles (SP). Frequencies of motifs in experimental
structures (solid line) compared to MD simulation trajectories (bars with
error) of 4 ns. High correlation is observed in motifs 1–10, but a significant
deviation can be seen for motifs 11–30. (A) Lysozyme. X-ray (n = 7,
average with error) compared to NMR (n = 50) and two MD (n = 100
snapshots) simulations, using General Born (GB) and explicit water models
(see ‘Methods’ section). (B) The NMR structure of SH3 domain: motifs S3,
S10 and S27 are hexagons which form a β-sheet (see Fig. 1). These motifs
have a rather similar SP in the MD simulation versus the NMR (although
somewhat overrepresented in the MDs). However, the less frequent motifs
(H16, T29, and M33) do not exist at all in the MDs. The inset shows the
time behavior of S10 in the SH3 domain MD simulations. The curve depicts
the number of residues in which S10 occurs. After ∼45% of the simulation
time (equivalent to 1.6 ns), S10 occurrence increases from ∼18 to ∼24. S3,
as shown in Figure 1A, is the most stable β-sheet. The higher occurrence of
this motif may compensate for the loss of S16, T29 and M33. (C) The 434
repressor.

proteins using the GB and the explicit solvent models were within
the standard deviation for most motifs (Fig. 4), and therefore we
focus hereafter on GB.

The first system studied, Lysozyme, is a helical protein of 129
amino acids (Figs 4A, 5C and 6), in which many motifs are observed
beside the α helix, including the 310 helix and the Schellman motif.
Moreover, the wealth of available structural data for Lysozyme
makes it possible to calculate motif conservation in different
crystal forms, as well as to compare them to NMR. Figure 4A
shows the SP occurrence in the crystal structures (minimum and
maximum of seven crystal structures) versus the MD trajectory
(100 conformations sampled along the 4 ns trajectory) and NMR
structures (50 minimized models). A high correlation is observed
for the first 10 motifs; however, a significant deviation between the
three methods is observed for motif number 11 and on. Furthermore,
motifs that show a high average correlation do vibrate significantly
over time; see for example the α-helix (H5) in Supplementary
Figure S5. The second system studied is the SH3 domain, a small
β-sheets protein domain that served as a model for numerous
structural studies. As can be seen in Figure 4B, H16, T29 and M33
are underrepresented in the MD versus the X-ray structure. These
motifs disappeared in the initial minimization step of the simulation.
Furthermore, the motifs show a possible cooperativity between them
(see ‘Discussion’ section and Fig. 4B, inset).

SH3-Domain

434-Repressor

434434--Repressor(1r69):Repressor(1r69): GreenGreen
MD snapshot 2ns:MD snapshot 2ns: Pale GreenPale Green

Lysozyme Crystal Structure 
Overlaid on an  MD Sample

RMSD = 1.2ÅLysozyme(1rfp):Lysozyme(1rfp): GreenGreen
MD snapshot 1.6ns:MD snapshot 1.6ns: Pale GreenPale Green

--Helix (H5): RedHelix (H5): Red

--Sheet (S10): BlueSheet (S10): Blue

Schellman (M14): Schellman (M14): 
YellowYellow

H16: CyanH16: Cyan

331010 helix (H18): helix (H18): 
OrangeOrange

Others: GreenOthers: Green

RMSD = 0.5Å

Gly

3.06Å

3.60Å

Gly 16

434-Repressor Crystal Structure 
Overlaid on an MD Sample

A B

C D

bb

aa

Fig. 5. Motifs visualization. Motifs are visualized by color-coding on the
three protein structures analyzed in details in this study. (A) SH3-domain. (B)
434-repressor. (C) Lysozyme crystal structure overlaid on an MD sample.
(D) 434-repressor crystal structure overlaid on an MD sample.

Fig. 6. Lysozyme contact map. (A) X-ray crystal structure, compared to (B),
a snapshot from the MD (using GB) at 1.6 ns. Although the major secondary
structure elements are conserved, some H-bonds break (arrows), caused by
(C) a backbone perturbation of as small as 0.63 Å.

The third system studied is the 434 repressor, a small protein
domain of 69 residues, which consists of five short α-helices (H5,
red in Fig. 5B). Two of the helices end with the Schellman motif
(M14, yellow), and H16 is found in the short 2-turns helix. The
average number of H-bonds along the trajectory is similar to that in
the X-ray structure (Fig. 4C, inset) and only a small change in the
RMSD is observed during the simulation. Furthermore, Figure 4C
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presents a comparison of the motifs occurrence in the X-ray structure
and their average population along the simulation, demonstrating
a good correlation for the most common motifs (motifs 1–10),
which corresponds to the α-helix and β-sheet. On the other hand,
similarly to the previous two systems, a poor correlation is observed
between the population of the novel motifs (motif 11 and on) in the
MD conformations and the X-ray structure. The lower population
of some motifs in the MD simulations is due to their relatively
low stabilities (e.g. M14 and M19). Other motifs have short life-
times (<1 ns) and their population significantly fluctuates in the
room temperature simulations. This results in an averaged lower
occurrence in comparison to the crystal structure (Supplementary
Fig. S6).

4 DISCUSSION
Abstraction of structural data through the use of fold motifs as
building blocks is common. These methods use clustering algorithms
that are applied to the continuous space of folds. While impressive
results were achieved using these approaches, it relies on proper
clustering, a process which is not easy to assess (Unger et al.,
1989). Moreover, the positions of the protein atoms are in many
cases less robust than the interactions they induce. Therefore, inter-
residue contact maps (or networks) are likely to be informative by
capturing cooperative elements that maintain complex biological
architectures.

Networks can be represented either as an adjacency matrix or
alternatively as a planar drawing (Fig. 1). Note that the planar
drawing is not unique, as the position of each point does not
relate to the actual 3D position of the amino acid it represents.
Huan et al. (2004, 2006) developed and applied an algorithm to
mine subgraphs of bio-molecules contact maps (represented as a
mathematical graphs). In this manner, the question of defining
the boundaries between clusters is reduced to the definition of an
interaction, defined based on a distance threshold of 10 Å between
non-adjacent Cα atoms. The authors further binned the interactions
according to the distance.

Here, we focus on networks of backbone–backbone H-bonds in
proteins, and their network motifs (which can be assigned accurately
from the structure: see ‘Methods’ section, Forrest and Honig, 2005).
Inter backbone H-bonds are included in the first bin of the previous
contact map definitions. However, we suggest that by focusing on
validated backbone–backbone H-bonds we can study the general
architecture of a protein, and obtain unambiguous raw data (see
Fig. 1, and the sharp probability threshold in Fig. 2). The method
can be adapted to side chains as well. Here, however, we explore how
much only an analysis of backbone hydrogen bonding can elucidate
in and between protein structures.

For self-consistency, we limit the motifs to a fixed number
of nodes. At least six nodes are needed to capture both α-helix
and β-sheet motifs (H9 and S3). More than six nodes may better
distinguish between certain turn conformations, such as helical and
non-helical turns. However, to raise the number of nodes would
significantly increase the complexity of the results.

To check if a certain motif is family-specific, Huan et al.
(2006) calculated the probability with which they can reject
the null hypothesis that the motif is prevalent in two distinct
families of structural homology. The randomized entity here is the
assignment of structures to families. Here, based on the assumption

that important subgraphs occur in high numbers, we draw a
different null hypothesis: that a specific subgraph occurs in similar
numbers in proteins with experimentally solved structures, and in
random, i.e. we check if a motif is overrepresented in proteins
structures. To calculate the probability with which we can reject
the null hypothesis, we developed a novel random model for
proteins. Moreover, we used an algorithm that count exactly all the
occurrences of each motif in each network (see ‘Methods’ section).
This is unlike the previous work, which only finds motifs occurring
in a high portion of the networks, and hence may overlook motifs
which occur in a high number but are limited to a narrow family
of proteins. Network motifs can simplify the task of planar drawing,
as is demonstrated in Figure 1B. Still, one should be aware that
network motifs are the fingerprints of a fold, and it is possible for
two different network motifs to co-exist in the same fold motif, as
is the case for S15 and S21 (parallel β-sheet).

A major strength of the method presented here is the ability
to characterize sequence propensity of novel fold motifs, which
are otherwise classified as a random coil. In this context, the 35
network motifs found here (Fig. 2 and Supplementary Fig. S1),
which include all the known motifs and some novel ones can be
studied individually. Surprisingly, analyzing these network motifs
using DSSP (Kabsch and Sander, 1983) shows that all the motifs
include a high percentage of ordered secondary structure (α-helix or
β-sheet or both, see Fig. 2) in addition to some percentage of coil.
In other words, every H-bonds network motif has the potential to be
embedded in an α-helix or in a β-sheet, and no motif is exclusively
related to a random coil. This suggests that knowledge of the local
H-bonding pattern is not enough to determine the local fold. Indeed,
for certain sequences the secondary structure depends on the global
fold and not on its H-bond pattern (Minor and Kim, 1996). It should
be noted that some of the random coil (according to DSSP) has no
motif attached to it, as their occurrence is not higher than in random.

The helix cap is an extensively studied structure identified from
sequence-structure relations as a fold motif (for a review, see Aurora
and Rose, 1998). We suggest that network motif analysis provides
a way to define helices caps using backbone–backbone hydrogen
bonds, which has not been done previously. Harper and Rose (1993)
suggested that complete understanding of the fold motifs requires
analysis of side-chains. Richardson and Richardson (1998) gave a
geometrical definition for helices caps, asserting that a backbone-H-
bonds-based definition would be too sensitive to small perturbations.
They observed a 33% Glycine propensity at the C-cap of a helix.
In fact, C-caps have a few possible forms: 23% are the Schellman
motif (Fig. 3A–C) while the rest are 310 helix, the novel B10 helix
(Fig. 3D–E, see below), and others. While helices ending with the
Schellman motif have a Glycine propensity of 66% in position 5
of the motif, the rest of the helices have a Glycine propensity of as
low as 10% (see also Nagarajaram et al., 1993). The high Glycine
propensity in this motif was shown recently to be due to the ability
of Glycine to adopt a positive φ/ψ conformation, rather than the
enhanced solvation related with the lack of a side chain in Glycine
(Bang et al., 2006). We also found that the Schellman network motif
is prevalent in the surroundings of β-sheets (see Fig. 3A–C).

H18 is the 310 helix (see Fig. 2), which is observed for about 1%
of the amino acid residues, and always consists of <2 helical turns.
Should this motif be considered as another variant of helix kink,
or as a special, though rare sort of a helix? Comparing H18 with
other motifs such as B10 (Fig. 3D–E, a more prevalent motif that
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was not documented as a distinct helix type previously, possibly
due to its less elegant H-bonding pattern) suggests that α-helices
have various fold motifs coexisting at helices caps and kinks. The
variation is driven by a bifurcated H-bond between the carbonyl
oxygen of residue i and the nitrogens of residues i+3, i+4, giving
rise to motifs such as H13, M14, H18 and others. While bifurcated
H-bonds have been previously observed in helices (Niimura, 2001;
Richardson, 1981, 2004–2006), their high prevalence shown here is
unforeseen.

SP is a powerful tool to compare structures of high similarity.
RMSD of 0.5 Å is usually considered to be within the experimental
fluctuations of X-ray structures. However, a distance change of 0.5 Å
causes an H-bond to break. Unlike RMSD, SP analysis makes it
possible to distinguish between concerted movements that do not
affect bond patterning and specific movements that do. For example,
Figure 4C shows that the Schellman motif (M14) is poorly populated
in the MD simulation of the 434 repressor. Figure 5D reveals that
the short life time of this motif is due to the break of a single
H-bond occurring close to the start of the MD simulation, in a place
which otherwise seems to be identical to the X-ray structure. In
a second example, a snapshot at 1.6 ns of the MD simulation of
Lysozyme shows a structure that is almost identical to the X-ray
structure (Fig. 5C). However, the deviation in the SP (Fig. 4A, M14
and H18) is explained by the break of a small number of H-bonds
in significant positions. Figure 6 compares the crystal structure of
Lysozyme (A), to a snapshot from the MD at 1.6 ns (B). Although
the major fold is conserved (reflected by a small RMSD of 1.2 Å),
the elimination of some H-bonds results in the disappearance of a
few motifs. Another inherent problem of comparing proteins using
RMSD relates to the global nature of this method, which causes
a hinge movement to have a tremendous effect. Although SP is
presented here globally, we calculate the motifs occurrence locally
for each position, and hence two proteins with similar interaction
will have similar SP, despite hinge-like movements. The SP during
the simulation is far from being static. Motifs are broken and
formed (inset in Fig. 4B and Supplementary Figs S5–S7), and
deviate away from the starting crystal structure. Interestingly, the
SP of crystal structures shows high self-consistency (among various
crystal solutions of the same structure) but a significant deviation
from that of the different NMR datasets (Fig. 4A, motifs number 1,
5, 12, 18, 22–24), possibly due to different energy minimization
potentials. The deviation is predominantly in motifs 11 and on,
where motifs are highly significant, appearing in the proximity
of standard α-helices and β-sheets. In a few cases, motifs break
in the initial dynamics simulation phase, and do not reappear
in the 4 ns simulation, including the Schellman motif (M14) at
the 434 repressor (also underrepresented in Lysozyme), 310 helix
(H18) in Lysozyme, and H16, T29 and M33 of the SH3 domain.
Moreover, motifs anti-correlation was observed between H6 and
S27 in Lysozyme (Supplementary Fig. S7), and also in the SH3
domain. Another two examples for using SP to compare proteins
are given in Supplementary Figure S2 (PAK) and S4 (Hemoglobin).
Here, SP reveals significant local differences between homologues
proteins. In the case of PAK, this explains the structural basis for
the observed biological differences between the related proteins.

In summary, we applied here a method from graph theory to
the vast amount of structural data available to understand the high-
order patterns prevalent in bio-molecules. Exploring the repertoire
of contact map motifs allows for the unsupervized discovery of new

fold patterns that are no longer limited to a continuous stretch. The
advantage is that subsequent mining of structural data can base on
a simpler unified framework, eliminating the need for separated
analysis for helices and for sheets. SP analysis is suggested as a
novel scheme to study 3D structures, and their dynamics and folding
trajectories, where a large number of snapshots have to be compared.
Furthermore, the method can be used to track protein folding through
the development of native motifs. For example, one may use this
method to investigate which motifs are formed already during the
early stages of folding, and how folding is being developed.
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