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Energy landscapes of conformationally constrained peptides
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~Received 3 July 2000; accepted 9 October 2000!

Conformation constraints are known to affect the flexibility and bioactivity of peptides. In this study
we analyzed the effect of conformation constraints on the topography of the energy landscapes of
three analogous hexapeptides. The three analogs vary in the degree of constraint imposed on their
conformational motion: linear alanine hexapeptide with neutral terminals~Ala6!, linear alanine
hexapeptide with charged terminals~chrg-Ala6!, and cyclic alanine hexapeptide~cyc-Ala6!. It was
found that significantly different energy landscapes characterize each of the three peptides, leading
to different folding behaviors. Since all three analogs would be encoded by the same gene, these
results suggest that nongenomic post-translational modifications may play an important role in
determining the properties of proteins as well as of their folding pathways. In addition, the present
study indicates that the complexity of those energy landscapes that are dominated by funnel
topography can be captured by one or two reaction coordinates, such as conformational similarity
to the native state. However, for more complex landscapes characterized by multiple basins such a
description is insufficient. This study also shows that similar views of the landscape topography
were obtained by principal component analysis~based only on local minima! and by topological
mapping analysis~based on minima and barrier information!. Both methods were able to resolve the
complex landscape topographies for all three peptides. ©2001 American Institute of Physics.
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I. INTRODUCTION

Peptides and proteins are complex molecular syst
with distinct stable three-dimensional structures, which
the key for understanding their biological function. The
structures are determined by the underlying energy la
scape, which in turn is a consequence of the molecule’s c
position. Therefore, the study of protein energy landscape
the context of protein folding has long been a central topic
both theoretical and experimental investigations.1 Experi-
mental evidence concerning the complexity of protein ene
landscapes has been obtained, for example, through the
servation of a multiplicity of relaxation times, the variou
intermediate species, the nonexponential kinetic, and
non-Arrhenius behavior.2 Most notable are the extensiv
studies of the kinetics of CO binding to myoglobin pe
formed by Frauenfelder and collaborators.3–5 The obtained
results have been explained in terms of a hierarchy
minima that are thought to be arranged in tiers correspond
to their energy levels.

Theoretically, polypeptide energy landscapes have b
studied using both simplified models and all-atom simu
tions, with the resulting landscapes being characterized
variety of ways using order parameters, geometrical m
sures, and topological connectivity patterns. Simplified m
els, originally on-lattice and more recently off-lattice, ha
been extensively used to study the energy landscape
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model proteinlike systems. In particular, in many latti
studies it was found that a single variable, which is defin
as the ‘‘fraction of native contacts’’Q, can be used as a
reaction coordinate that well describes the folding proce1

This Q variable, which has a value near zero for the high
denatured conformation and reaches unity for the na
state, describes the progress of the folding reactions in m
els such as the 27-mer model on a cubic lattice.6,7 However,
there are cases where a single progress variable such asQ is
not sufficient to distinguish trajectories that fold directly
the native state from those that go through intermed
traps.8 For example, for a 125-residue model more than o
progress coordinate was required to describe the fold
process.9 The coordinates that were found suitable to d
scribe the folding process in that system monitor the form
tion of the core and the trapping of the chain in long-liv
intermediate states. In cases of complex energy landscap
was found that to study protein folding a kinetic reacti
coordinate was more useful than a thermodynamic reac
coordinate~such as the aboveQ variable!.8,10,11

Recently the study of polypeptide energy landscapes
shifted towards more detailed atomistic simulations. Ho
ever, unlike simplified models in which extensive enume
tion of all possible states is possible, such full enumeratio
not practical for most atomistic polypeptide models~except
for the smallest peptides!. The reason is that similar to th
real system the atomistic models exhibit an extremely la
number of local minima~locally stable conformations! even
in the vicinity of the native structure.12 Therefore, sampling
techniques must be employed to study the energy landsc
underlying atomistic models of even relatively small molec

ss:
© 2001 American Institute of Physics
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lar systems. Atomistic simulations that focus on the analy
of energy landscapes vary both in sampling strategies an
analysis techniques. For example, Sheinerman
Brooks13,14 have used extensive all-atom simulations
sample and to characterize the energy landscape of two s
proteins. The underlying landscape was then describe
terms of two order parameters: one quantifying the colla
of the protein and the other reflecting similarity to the nat
state~equivalent to theQ-order parameter used in simplifie
model studies!. Becker and Karplus15 and Levy and Becker16

used a topological analysis to generate disconnectivity t
constructs that reflect the overall topography of the ene
landscapes of several peptides, highlighting basin conne
ity ~this method was later applied in a similar way to atom
and molecular clusters as well17,18!. Berry and
collaborators19–23constructed specific connectivity pathwa
to characterize the energy landscape of several clusters
tinguishing between good and bad structure seekers. Fin
the principal component analysis was used by several gro
to visualize both molecular dynamics trajectories24–27 and
energy landscapes of peptides and proteins.28–32

Related to the general question of protein folding a
numerous examples in which seemingly small changes in
chemical composition of a molecular system result in la
structural and/or functional changes. Examples are the o
of a disease due to a single point mutation~e.g., prion
diseases33!, metabolic pathway activation following the bind
ing of a small ligand to a receptor, and changes in the m
lecular bioactivity as a result of seemingly small conform
tional constraints. Therefore, the mechanism by which sm
molecular modifications, such as point mutations or geom
ric constraints, affect the biological properties of polype
tides is of interest for chemists and biologists alike. Since
energy landscape underlies the structural, thermodyna
and kinetic properties of any molecule, this question can
reformulated in terms of the energy landscape theory: ‘‘H
do small molecular modifications affect the energy landsc
of peptides and proteins?’’ A preliminary study by Levy a
Becker16 has indicated that the overall topography of t
energy landscape changes as a result of a conformation
straint. Another study by Beckeret al.34 showed that quanti-
tative analysis of conformation space can be directly co
lated with bioactivity of therapeutic peptides.

The goal of the present study is to characterize the ef
of conformation constraints on the topography of molecu
energy landscapes. To address this question the atomic-
energy landscapes of three alanine–hexapeptide ana
were reconstructed and analyzed. The three peptides stu
were the linear~Ala!6, the linear ~Ala!6 with opposite
charges at theC- andN-termini, and the backbone cyclize
~Ala!6. Several different analysis techniques were used
highlight various aspects of the landscapes: connectivity,
pography and order parameters. It has been shown th
consistent and comprehensive characterization of these
ergy landscapes can be obtained by integrating the diffe
views.
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II. MAPPING ENERGY LANDSCAPES

The notion of energy landscapes has an established
tribution to the understanding of the reactions dynamics
small molecules.35 In recent years the energy landscape co
cept, especially that of the proposed funnel topography,
become more prevalent in the discussion of protein foldi
raising a controversy regarding its actual contribution,
most protein folding experiments can be described by sim
two- or three-state models.1,8,36 It should be noted, however
that the term energy landscape is sometimes used for
multidimensional potential energy surface that underlies
molecule’s conformation space, and sometimes for its f
energy profile. In the present study the focus is on the po
tial energy surface. In general, potential energy landsca
can be studied on two detailed levels. On the first deta
level the energy landscape is characterized solely by the
of locally stable conformations, i.e., by the local minim
only. This approach was introduced by Stillinger a
Weber37 and later applied by many
researchers.12–14,24,25,28,31,34,38–40The basic idea is to collect a
large sample of conformations, minimize each of them to
nearest locally stable minimum and use these local min
to characterize the landscape. Figure 1 schematically re
sents a process by which sampled conformations
quenched to their nearest local minimum. Based on th
sampled local minima the energy landscape underlying
molecule can be reconstructed. While such reconstruct
can shed light on the topography of the energy landsc
~basins, roughness, etc.! they miss important ingredients—
the barriers or saddle points that separate the individ
minima or basins. For example, in the landscape depicte
Fig. 2~a! basinb has lower energy compared to that of bas
g, but the transition from basinb to the native basina is
slower than the transition from basing to basina, due to a
higher barrier separating them. This important feature, wh
governs the system kinetics, is not reflected in the mini
based picture of the energy landscape@Fig. 2~a!#.

On the second more detailed level of description o
may add barriers to the characterization of the energy la

FIG. 1. Schematic illustration of conformation sampling of a molecu
potential energy surface. Conformations are sampled at high tempera
where barrier crossing can easily occur and are then minimized to the n
est local minimum or slowly annealed back to room temperature be
being minimized to the nearest local minimum.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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scape. Such a detailed representation, however, is comp
tionally much more demanding. Several researchers h
followed this type of energy landscape analysis for sm
peptides and clusters.15–17,19–21,29,41,42Figure 2~b! illustrates
the resulting view of the energy landscape. The informat
retrieved this way not only reveals that basinb is less acces-
sible than basing, due to the higher energy barrier separati
it from the global minimuma, but it also contains all the
information necessary for a complete reconstruction of
system’s kinetics by means of the master equation.15,22,41Re-
cently Becker has combined the two mapping approac
integrating data from local minima as well as from barrie
to obtain a detailed energy landscape for a derivative of
alanine tetrapeptide.29

Clearly, not all energy landscapes will exhibit a signi
cant difference between the view obtained when using lo
minima only and the view obtained via the analysis of barr
connectivity~as suggested by Fig. 2!. There are likely to be
many systems in which identical pictures will arise fro
both analyses approaches. However, at present there i
enough knowledge to predicta priori which energy land-
scape will show a discrepancy between the two viewpo
and which will not. In this work the issue of multiple view
points of the same potential energy landscape is explore

III. METHODS

A. Conformation sampling

As a full enumeration of all the possible conformatio
of a hexapeptide is impractical, a sampling procedure m
be applied in order to generate a representative sample o
molecule’s conformation space. Many methods are availa
for sampling molecular conformations, each harboring
vantages and limitations. They should therefore be app
according to their suitability to the problem at hand. T
sampling procedure adopted for the present study stems
the tendency to get as broad a view as possible of the
lecular energy landscape accessible to the molecule at p
ological temperatures. To accomplish this goal a two-s

FIG. 2. ~a! Illustration of the view of the energy landscape that can
obtained from information regarding the local minima only~right! compared
with the full energy landscape~left!. ~b! Illustration of the much richer
picture of the same energy landscape that can be obtained by inform
regarding basin connectivity added to the previous minima-only based v
Downloaded 28 Dec 2000  to 132.66.16.6.  Redistribution subject to 
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sampling procedure was applied.16,31,34First, conformations
are sampled from a high temperature molecular dynam
trajectory at 1000 K. Then each of the sampled high te
perature conformations is gradually annealed down to 30
~using molecular dynamics! before being quenched by direc
minimization. The annealed and minimized conformatio
constitute the conformation sample of that molecule. T
gradual annealing guarantees that the resulting confor
tions will indeed be on the 300 K manifold~i.e., are acces-
sible at 300 K!, while the high temperature sampling allow
us to cross high-energy barriers and sample broad region
conformation space. The choice of the 1000 K sampling te
perature was based on earlier studies, which indicated
the undesirablecis–trans transitions of the peptide bond oc
cur at higher sampling temperatures.43

Technically, each sampling procedure starts with a 5
ps molecular dynamics trajectory at 1000 K~simulated using
2 fs timesteps!. Conformations are sampled along the hi
temperature trajectory every 1 ps, resulting in a total of 5
conformations. Short molecular dynamic trajectories~simu-
lated at 1 fs timesteps! are then applied to cool each of th
high temperature conformations down to 300 K~temperature
decreases at 100 K steps!. Following the cooling phase eac
structure is minimized by a combined protocol consisting
200 steepest decent steps followed by adopted b
Newton–Raphson~ABNR! minimization until a total gradi-
ent of 0.01 is reached. The representation of the molec
dynamics and the various energy calculations were p
formed with the CHARMM program44 and the CHARMM
all atom forcefield.45 No explicit water molecules were in
cluded, no energy cutoffs were applied and a distance de
dent dielectric constant was used.

Conformation samples constructed in the above way
likely to include some similar conformations. While the
may be important for reflecting conformational probabili
distributions, they are redundant as far as the energy la
scape’s topography and topology are concerned. There
in the present study the conformation samples are prun
removing conformations exhibiting high similarity. As wi
be discussed below, this pruning allows for a more effici
landscape analysis without affecting the results.

B. Molecular systems

Three alanine hexapeptide analogs were stud
~i! Ala6–alanine hexapeptide with neutral terminal grou
~ii ! chrg-Ala6–alanine hexapeptide with a positive charge
the N-terminus and a negative charge at theC-terminus,
~iii ! cyc-Ala6—a backbone cyclized alanine hexapepti
The initial conformations used in the sampling process
Ala6 and chrg-Ala6 were the fully extended conformation
The initial conformation for cyc-Ala6 was an extended co
formation that was backbone cyclized and minimized unti
assumed a reasonable starting cyclic conformation.

This set of three alanine hexapeptide analogs was
lected because of the dramatic difference in the degree
conformational constraints imposed on their internal flexib
ity. In particular, these molecules span a broad spect
ranging from a completely unconstrained analog, line
Ala6, to a maximally constrained analog, cyclic Ala6,

ion
w.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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which the covalent bond between the two terminals restr
its flexibility. The third analog, chrg-Ala6, reflects an inte
mediate point between these two extremes. This sprea
analogs is expected to allow one to study the effects of c
straints on the energy landscape of this hexapeptide. In
dition, the inclusion in this study of the highly constraine
cyclic analog, along side the unconstrained analog, allow
to address an issue relevant to drug discovery. It is w
known that cyclization is often employed in drug discove
to reduce the flexibility and increase the bioactivity of pe
tide drug candidates.

C. Principal coordinate analysis

A problem inherent in polypeptide conformation spac
is their extremely high dimensionality. A molecule ofN at-
oms has 3N degrees of freedom, and its corresponding c
formation space is 3N-6 dimensional. As a result, even rel
tively small molecules have very large conformation spa
~more than 100 dimensions for the alanine hexapeptide
logs studied here!. It is clearly not practical to chart molecu
lar energy landscapes in the full 3N-6 dimensional space
Luckily, in practice, a much smaller number of dimensions
sufficient to capture the essential information required
energy landscape map making. This is achieved by proj
ing the full multidimensional space on an appropriately lo
dimensional subspace. Reducing the dimensionality of m
tidimensional conformational spaces can be obtained
principal component analysis~PCA!.24–26,28–31,34,46–50

The PCA variant applied in this study was the so-cal
principal coordinate analysis~PCoorA! originally developed
by Gower.51 In general, PCA projects then3m data matrix
M ~a distribution ofn points in anm variable space! on a
transformed axes set in which a low-dimensional subsp
containing most of the relational information about the ori
nal distribution can be identified. In the context of conform
tional analysis this matrix holds a set ofn conformations
described by the points Pi(qi1 ,qi2 ,...,qim) in an
m-dimensional conformation space. However, while t
standard PCA operates on the squarem3m MTM matrix,
known as the ‘‘covariance matrix’’C, reflecting the relation-
ships between thecoordinates, the PCoorA operates on th
squaren3n MM T matrix known as the ‘‘distance matrix’
D, reflecting the relationships betweenconformations. This
matrix is transformed into a centered matrix which is th
diagonalized. The resulting eigenvalues~normalized! give
the percentage of the projection of the original distributi
on the new set of coordinates, and the eigenvectors~scaled
by their corresponding eigenvalues! give the coordinates o
the original data points in the new axes frame.30,31,51

One of the advantages of PCA in general is that
normalizedl i eigenvalues, associated with each princip
axis ~eigenvector!, are directly related to the average err
associated with the projection. Principal axes are sorted
cording to their normalizedl i eigenvalues. The larger th
eigenvalue, the more efficient is the projection onto th
axes~reflecting a large variance for the data in the 1D p
jection!. When projecting onto the firstm principal axes, the
average deviation of the actual distancedi j between data
Downloaded 28 Dec 2000  to 132.66.16.6.  Redistribution subject to 
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points and the distancesdi j
(m) calculated in them-dimensional

subspace is given by

average error512 (
k51

m

l i5^di j
2 2di j

~m!2
& i j , ~1!

where^¯& i j is the average over all possibleij distances in
the ensemble. A detailed study of several peptide syst
has shown that in many cases the first few principal a
represent the multidimensional data to accuracy greater
70%.31 It should be stressed that, even if the two- or thre
dimensional subspaces represent the original distances
to 40% or 50% accuracy, the effective accuracy is hig
than predicted by Eq.~1!. This is because the average acc
racy is skewed by a relatively small number of poorly re
resented points, while the majority is represented at accu
levels greater than 40% or 50%, respectively.

A key element in the principal coordinate analysis is t
choice of distance measure used to construct the dista
matrix D. Studies have shown that the choice of distan
measure, e.g., a Cartesian distance or a distance in dih
angle space, has a significant effect on the result
projection.30–32In the present study the distance between a
two conformations is measured as the root mean square
tance~rmsd! in Cartesian coordinates. The rms distancedi j

between conformationsi andj of a given molecule is defined
as the minimum of the functional

di j 5A1

N (
k51

N

ur k
~ i !2r k

~ j !u2, ~2!

where N is the number of atoms in the summation a
r k

( i ) ,r k
( j ) are the Cartesian coordinates of atomk in conforma-

tions i and j, respectively. The rms distances are typica
calculated based either on the backbone atoms or on al
nonhydrogen atoms in the molecule.

When PcoorA is applied to a single moleculel, it needs
to be supplied with the upper diagonal distance matrixD l .
However, when conformations of two analogous molecu
are to be compared with each other, it is essential that t
be projected together onto thesamesubspace. In order to
project the conformation ensembles of two related m
ecules,l andm, onto the same subspace the ‘‘cross’’-distan
matrix D lm must be calculated~in addition to the two self-
distance matrices!. The elements of the rectangularD lm

‘‘cross’’ matrix are the distances between all conformatio
of moleculel and all conformations of moleculem. Thus, to
obtain a joint projection of moleculesl and m PCoorA is
applied to the combined distance matrixD

D5S D l D lm

0 Dm
D , ~3!

where D l and Dm are the upper diagonal ‘‘self’’-distanc
matrices andD lm is the rectangular ‘‘cross’’ distance matrix
The size of the jointD matrix is (n1n8)3(n1n8), with n
conformations of moleculel and n8 conformations of mol-
ecule m. Equation ~3! is easily extended to any arbitrar
number of analogous molecules.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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D. Topological mapping

Topological mapping, which was introduced by Beck
and Karplus15 and rests upon the connectivity pattern im
posed by the energy barriers, characterizes the overall to
raphy of complex energy landscapes. Using informat
about the barrier this method partitions a conformation sp
into energy basins, highlighting their interconnectivity. A
elementary basinR(a) on the energy landscape is a co
nected set of molecular conformations that, when minimiz
map to a common single local minimum. Topological ma
ping groups these elementary basins according to the bar
between them. At any energy levelE ~or temperature levelT!
this procedure partitions the multidimensional landscape
super-basins,RE(a8), defined as the union of elementa
basinsR(a) connected by barriers lower than energyE ~or
temperatureT!. Each such super-basin is then mapped to
lowest minimuma8 in a way analogous to simulated anne
ing @Fig. 3~A!#. As a result minima connected by barrie
lower thanE are grouped together and separated from ot
minima to which they are connected by higher barriers
topological disconnectivity graph is obtained by followin
the way these super-basins break up as the system’s eneE
decreases. Each node on this graph@Fig. 3~B!# reflects a
conformational super-basin on the landscape, and the
necting edges reflect the basin connectivity. The topolog
mapping method resembles to the Lid method, which w
independently developed by Sibani and Scho¨n52,53 in their
study of the energy landscapes of crystals and glasses.

An important feature of topological mapping is that t
resulting disconnectivity tree-graphGE(F) @see, for ex-
ample, Fig. 3~B!# reflects in a straightforward way the ove
all topography of the energy landscapeF. As discussed and
illustrated in the above-mentioned paper by Becker a
Karplus,15 a tree-graph reflecting a funnel topography will
characterized by a single main branch with many small s
branches that do not show further branching. On the o
hand, the tree-graphGE(F) that corresponds to a landsca
characterized by several large competing basins will exh
several large branches, each exhibiting a complex branc

FIG. 3. Schematic representation of topological mapping of an energy l
scape.~A! The energy landscape is studied at different energiesE. Each
energy region of connected conformations, denoted as a super-basinRE(a),
is mapped to its lowest minimuma. ~B! The corresponding topologica
disconnectivity tree graph,GE(F), reflects the way super-basins becom
disconnected as the energy decreases.
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pattern of their own. In the case of a completely rough lan
scape no significant branch will be detected in theGE(F)
graph.

In principle, a topological map is generated on the ba
of information regarding direct barriers, i.e., barriers co
necting neighboring minima. When working with conform
tion samples~versus a full enumeration of all local minima!
the definition of direct barriers has to be extended. To co
pensate for missing data, indirect barriers along paths c
necting sample points that are not strictly neighboring
taken into account, i.e., minima separated by other min
that are not included in the conformation sample. These
direct barriers are taken as the highest point along a m
barrier least energy path connecting two sample points
this study the conjugated peak refinement algorithm
Fisher and Karplus54 has been used to calculate these le
energy paths. It is worth mentioning that with 500 conform
tions a staggering number of about 125 000 barriers hav
be calculated. Fortunately, the number of barrier evaluati
may be significantly reduced without affecting the resu
First, the conformation pruning, as described above, alre
reduces the number of pathways to be calculated. Furt
more, it is reasonable to assume that indirect barriers
tween conformations that are very far apart on the ene
landscape will hardly contribute to the connectivity patte
Thus, a distance criterion can be imposed to refrain fr
calculating barriers between conformations that are too
away from each other. Re-evaluating the alanin
tetrapeptide topological map as computed by Becker
Karplus15 it can be shown that the correct disconnectiv
graphGE(F) is reproduced even when only as little as t
nearest 50% of the barriers are retained. Shorter cutoffs
sulted in a disconnectivity graph with incorrect connectiv
or missing features. Applying the combined procedure
pruning and cutoffs to the hexa-alanine analogs resulte
about 20 000 barrier evaluations when generating the to
logical map of Ala6, about 5500 barrier evaluations for t
topological map of cyc-Ala6, and about 2000 barrier eva
ations for chrg-Ala6.

IV. RESULTS AND DISCUSSION

A. Quality of sampling

A problem common to all sampling procedures is t
difficulty to assess their thoroughness. Regardless of
sample size and the procedure used, there is always a q
tion regarding how representative the resulting conformat
sample is. In particular, it is important to know whether
accessible regions in the conformation space were sam
or whether some regions remained unvisited.

In this section a new way is proposed to address
fundamental question of sample quality, namely an eval
tion of sampling overlaps. Let us assume that two conform
tion samples of the same system were generated by two
ferent sampling protocols~e.g., different initial conditions or
different methods!. If it could be shown that two differen
samples overlap and occupy the same region in conforma
space, this would indicate that the conformation search
indeed been exhaustive. On the other hand, a clear indica
of incomplete sampling is if the conformation samples do

d-
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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FIG. 4. Joint projection of two different Ala6 conformation samples~each consisting of 500 conformations! onto the best principal three-dimension
subspace, shown as three two-dimensional planes@~a!, ~b!, and~c!#. Each point represents a single conformation, where circles denote conformations fro
conformation sample and triangles from the other one. The energy profiles of the two conformation samples are also shown~d!. The apparent overlap betwee
the two conformation samples indicates that the conformation sample covers the whole available conformation space.
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overlap. The evaluation of the overlap between the two c
formation samples can be done with the aid of princi
component projections through a joint projection onto
same low-dimensional principal subspace@Eq. ~3!#.34 In the
case of incomplete sampling the two conformation samp
will have little overlap~if any! in the projected subspace.

The sample overlap approach was used to check whe
the sampling procedure used in this study had indeed b
exhaustive. Two conformation samples of linear Ala6, 5
structures each, were generated using the procedure
scribed above, but starting from different initial structure
One sampling trajectory started from an extended pep
conformation, while the other trajectory started from an
most cyclic conformation of the linear peptide. A 100
31000 joint distance matrix of the two conformatio
samples@Eq. ~3!# was constructed using all-atom Cartesi
rms distances, with PCoorA applied to it. The first thr
normalized eigenvalues of the joint projection were 21
12%, and 7%, indicating that the accuracy of the best jo
3D projection is about 40%. Figure 4 shows the three
cross sections through this best joint 3D projection of
two conformation samples. Each point in the projection i
single peptide conformation. As can be seen, the ove
between the two conformation samples along the first
second principal axes~which reflect the largest variance! is
very high. A high level of overlap is also seen along the th
Downloaded 28 Dec 2000  to 132.66.16.6.  Redistribution subject to 
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principal axis, although some mismatch can be noted in
case. Figure 4~d! shows that the energy profiles of the tw
groups of sampled conformations are also very similar. Th
it can be concluded that the two conformation samples
hibit a high level of overlap, indicating that the samplin
procedure used was well suited to cover the peptide’s c
formation space~namely, those regions accessible at 10
K!. Since the linear Ala6 clearly has the largest conformat
volume of the three hexapeptides studied here, it can be
sumed that the same sampling method will also be appro
ate for the other two conformationally more restricted m
ecules, cyc-Ala6 and chrg-Ala6. Consequently, a single 5
conformation sample seems to be sufficient to represent
conformation spaces of these two peptides as well.

B. Conformation samples reduction

The three conformation samples described above in
tably include groups of similar conformations, which are r
dundant as far as constructing the underlying energy la
scape is concerned. As discussed above, by applyin
distance criterion similar conformations are pruned from
conformation sample. Two conformations are defined as
ing similar if the all-atom Cartesian rms distance between
two is smaller than a given cutoff distance. This distance w
set to 1.5 Å for Ala6 and to 0.9 Å for cyc-Ala6 and chrg
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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FIG. 5. Principal coordinate projections of full and reduced conformation samples of three alanine hexapeptide analogs.~a! The full sample of Ala6 500
conformations versus~b! the reduced conformation sample of Ala6 280 conformations. The sign~1! indicates those conformations in the full sample that we
retained in the reduced sample. Plates~c! and~d! show the full and reduced conformation samples of cyc-Ala6~500 vs 148 conformations!. Plates~e! and~f!
show the full and reduced conformation samples of chrg-Ala6~500 vs 86 conformations!.
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Ala6. After removing the redundant conformations the
luted samples included 280 distinct Ala6 conformations, 1
distinct cyc-Ala6 conformations, and 86 distinct chrg-Ala
conformations. In all cases the pruned conformations w
very similar to other conformations, both in structure and
energy. The energy differences between similar conform
tions were below 0.8 kcal/mol for Ala6, below 0.2 kcal/m
for cyc-Ala6 and below 3.2 kcal/mol for chrg-Ala6.

To verify that the pruning had not affected the quality
the samples, PCoorA was used to compare the conforma
coverage before and after the reduction. Figure 5 shows
Downloaded 28 Dec 2000  to 132.66.16.6.  Redistribution subject to 
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by side the best two-dimensional PCoorA projections of
full and the reduced conformations samples of the three p
tides. A separate projection was constructed for each ful
diluted sample. Projections of full samples were based on
original 5003500 distance matrices, while projections of th
diluted samples were based on the corresponding sm
distance matrices, depending on the size of the redu
sample. For the full samples, the 2D subspaces of the c
strained peptides~cyc-Ala6 and chrg-Ala6! were accurate to
70% and 80%, respectively; with the corresponding 3D p
jections accurate to 80% and 85%, respectively~according to
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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backbone distances comparisons!. Only the projection of the
unconstrained peptide, Ala6, was of lower accuracy amo
ing to 40% and 45% for the 2D and 3D projections, resp
tively. The fact that the low-dimensional Ala6 projection w
less accurate means that its effective conformation spac
more isotropic than its constrained analog and that it requ
additional dimensions for a more accurate description. T
validity of the sample reduction procedure was confirmed
the fact that the accuracy of the reduced projections was
similar to that of the corresponding full projections. Simila
ity to the full samples of the constrained peptides, the tw
dimensional projections of their reduced samples were v
accurate~68% for cyc-Ala6, 79% for chrg-Ala6!, while
much less accurate for the reduced Ala6 sample~only 32%
of the full variance is captured in this 2D projection!. Figure
5 also clearly shows that for all three molecules the redu
conformation samples overlap very well with the origin
full samples, indicating that the reduction does not advers
affect the quality of the sample.

C. Effect of constraints on conformation space
volume

The volume in conformation space accessible to a m
ecule at a given temperature varies from one molecule
another, reflecting their flexibility. Therefore, conformatio
constraints that reduce the flexibility of the molecule a
decrease the size of this volume. Since both the cyc-A
~through cyclization with a covalent bond between the t
termini! and the chrg-Ala6~through a strong charge-charg
interaction between the termini! are conformationally con-
strained analogs of linear Ala6, the accessible volumes
their conformation spaces are expected to be smaller
those available to the unconstrained peptide analog. H
ever, a question that so far eluded quantification is to w
degree their conformation volume is reduced. This stu
shows that a combination of sampling and joint princip
coordinate projection offers a direct way to quantify the
fect of conformation constraints on the conformation v
ume. In a separate study Becker, Levy, and Ravitz h
shown that these conformation volumes can be used qu
tatively in a QSAR formulation to predict the bioactivity o
conformationally constrained analogs.34

A quantitative comparison of the conformation volum
accessible to the three alanine hexapeptides was obtaine
jointly projecting the three conformation samples onto
best joint 3D subspace. Figure 6~a! shows the resulting join
3D projection, which is based on backbone rms distan
and allows intermolecular comparisons since all three m
ecules share a common backbone. This joint 3D projectio
quite accurate, representing all distances to an average a
racy of 60.7%. The ellipsoids shown in Fig. 6~b! are
sketched to highlight the volumes occupied by each pep
analog. Two properties are clearly seen:~i! As expected, the
two constrained analogs occupy significantly smaller con
mation volumes than the conformation volume associa
with the unconstrained analog Ala6, and~ii ! the conforma-
tion volumes occupied by these two analogs are compr
within the conformation volume of Ala6. Furthermore, th
fact that the conformation volumes accessible to the two c
Downloaded 28 Dec 2000  to 132.66.16.6.  Redistribution subject to 
t-
-

is
s
e
y
ry

-
ry

d
l
ly

l-
to

6

in
an

-
at
y
l
-
-
e
ti-

by
e

s,
l-
is
cu-

e

r-
d

d

n-

strained analogs are of similar size and exhibit signific
overlap indicates that they share similar conformatio
properties. Specifically, both favor closed circular structu
with short distance between amino-acids 1 and 6, which
brought about either by a covalent bond~cyc-Ala6! or by
strong electrostatic attraction~chrg-Ala6!.

To quantify the conformation volumes accessible to ea
hexapeptide analog a 3D ellipsoid is fitted around each c
formation sample. These ellipsoids are based on 3D cov
ance matrices in the joint projected 3D subspace. Assum
that the contribution of the higher principal dimensions
minishes rapidly and that their contribution to all three co
formation volumes is similar, comparing these 3D volum
should be quantitatively similar to comparing the full acce
sible conformation volumes. Furthermore, the logarithm
these volumes should be roughly proportional to the con
mational entropy.29 The 3D ellipsoid volumes thus calculate
of cyc-Ala6, chrg-Ala6, and Ala6 are 0.68, 1.42, and 18.
Å3, respectively, which is equivalent to volume ratios of 4%
8%, and 100%~it is however reiterated that the quality of th
projection from which these volumes are derived is on
60%!. This means that the conformation constraints impo
on cyc-Ala6 and chrg-Ala6 reduce the accessible conform
tion space to a fraction of its original size. Not surprising
cyclization reduces the conformation volume even more t
introducing two terminal charges~for a system in a vacuum!.
The latter retains a certain~though small! amount of confor-
mation freedom between the two terminal groups, which
completely lost by the introduction of a covalent bond.

An important property of the joint projection is that con
formations~points! close to each other in the projection a
conformationally similar, while conformations~points! that
are mapped into different parts of the projected subspace
conformationally different. Figure 7 shows three conform
tions, one from each peptide analog, mapped close to e
other in the region where the three conformation volum
overlap. The conformational similarity between the three
evident, indicating that the conformations of chrg-Ala6 a
cyc-Ala6 are quite similar. Figure 8 shows the most sta
Ala6 conformation that has ana-helical character. This con
formation was mapped outside the overlap region of
three ellipsoids since it does not have counterparts in
conformations of the constrained molecules.

D. Minima-based view of the energy landscapes

Adding energy to the above principal coordinate proje
tions allows for charting and visualizing the energy lan
scape of these peptides.29,31 Figure 9 shows the principa
two-dimensional projections of the conformation spaces
the three peptide analogs arranged according to the ene
of their local minima. Each small rectangle, or slab, in th
figure is a full principal 2D projection plane on whichonly
those conformations that have energy within a given ene
range are indicated. The first rectangle at the bottom inclu
the lowest energy conformations. The next rectangle dep
the same 2D plane on which only conformations in the s
ond energy range are shown, and so forth. For Ala6
cyc-Ala6 the energy scale@Figs. 9~a! and 9~b!# was divided
into 2 kcal/mol slabs, while for chrg-Ala6 the slab width wa
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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FIG. 6. ~a! Joint 3D projection of the molecular conformation spaces of the three alanine hexapeptide analogs: Ala6~squares!, cyc-Ala6 ~triangles!, and
chrg-Ala6~circles!. ~b! Representation of the ellipsoids that enclose the conformation volumes of the three peptides in the projected 3D subspace~Ala6: thin
line, cyc-Ala6: intermediate line, chrg-Ala6: heavy line!. The reduction in conformation volume of the Ala6 peptide upon introduction of the constr
~cyc-Ala6, chrg-Ala6! is clearly evident.
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3 kcal/mol ~resulting in 13, 7, and 13 energy slabs, resp
tively!. The mean energy in each slab is indicated in the ri
corner of each rectangle. Finalizing this issue, Fig. 9 in
entirely yields quantitative maps of the three energy la
scapes~to the accuracy of the PCoorA projections!. If all the
rectangles in Fig. 9 were to be rotated by 90° and th
stacked one on top of the other, a 3D view of the landsc
would have resulted. The dashed curves in Fig. 9 highli
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the underlying basin structure revealed in this way. Acco
ing to these maps which, as already indicated, are based
on local minima, the energy landscape of Ala6 is domina
by a broad and deep basin, which looks like a broad fun
@Fig. 9~a!#. The landscape of chrg-Ala6 is also dominated
a single basin, which in this case is much deeper and
rower than the one characterizing Ala6@Fig. 9~c!#. Finally,
cyc-Ala6 shows a very different energy landscape that
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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cludes three competing basins, none of which dominates
landscape@Fig. 9~b!#, with energy gaps between the deep
basinA and basinsB andC being only 2 to 4 kcal/mol~the
separation between basinB andC is along the second prin
cipal axis!.

An alternative representation of the landscape, which
also based on local minima only, is the minimal energy
velope representation.31 In this approach the energy envelop
underlying the 2D principal projection is calculated and p
sented as a 3D topographical map~the minimal energy en-
velope is similar to the dashed curve in Fig. 9!. Figure 10
shows the three energy landscapes obtained by the min
energy envelope procedure. The resulting 3D surfaces h
light the topographical features observed in Fig. 9. Fig
10~a! shows the broad funnel-like basin of the Ala6 ener
landscape. Figure 10~c! exhibits an extremely deep and na
row basin, which completely dominates the energy landsc

FIG. 7. Conformations of the three hexa-peptides situated closely to
other in the overlap region of the small ellipsoids~Fig. 6!: cyc-Ala6 ~a!,
chrg-Ala6~b!, and Ala6~c!. The three structures are closely packed, refl
the nearest points on the projections and characterize conformations w
similar geometry. Moreover, it is shown that the linear peptide, Ala6, has~a!
in its conformation space region of closed structures even though its s
structure isa-helix.
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of chrg-Ala6. It also shows a split at the bottom of this de
well and indicates that no single basin dominates the ene
landscape of cyc-Ala6. On the other hand, the three ba
pointed out in Fig. 9~b! are clearly observed in the 3D visu
alization. Figure 10 also shows that all three energy la
scapes exhibit a significant amount of roughness. In part
lar, the bottom of the energy basins is characterized by m
splits, indicating that the native structure of each peptide
an ensemble of conformations and not a single well-defi
structure. Recalling the definition of foldabilityF as the ratio
between the depth of the funnel and the roughness of
landscape,36 it can be concluded that among the three pe
tides studied here chrg-Ala6 exhibits the highest degree
foldability ~namely, it can get to its folded native structu
very quickly!, Ala6 has a smaller degree of foldability, whil
cyc-Ala6 is characterized by a low value ofF indicating that
no specific minimum has a significant advantage over
other.

E. Order parameter and the energy landscapes

Energy landscapes are inherently multidimensional a
require high-dimensional representations in order to visu
ize them. However, in the absence of other tools, much
the current discussion is formulated in terms of a single or
parameter, tacitly assuming that a one-dimensional reac
coordinate is sufficient to represent the kinetics of prot
folding. The order parameter most commonly used in su
studies isQ, which reflects the fraction of native contacts
any given conformation.1,2 Q equals 1 for the native structur
and is smaller for all other conformations. This order para
eter has been used in many lattice folding studies as we
in some all-atom simulations,6,7,55,56although other order pa
rameters have also been suggested.8–11,13,57,58As these order
parameters are assumed to be proportional to the energy
interesting to explore to what extent such an order param
really correlates with the real multidimensional energy lan
scape.

The order parameterQ is usually defined as the fractio
of native contacts present in any conformation~Q51 is the
native conformation!. This definition is clearly suitable for
simplified lattice models where contacts are easily defin

ch

t
a

le

FIG. 8. The most stable conformation of the linear peptide, Ala6. T
structure has ana-helical character and is located outside the region
overlap of the three ellipsoids.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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FIG. 9. Principal two-dimensional projections of the conformation spaces of the three peptide-analogs separated according to the energies of the local minima:
~a! Ala6, ~b! cyc-Ala6, and~c! chrg-Ala6. Each rectangle layer~slab! is the molecule’s principal 2D projection plane on which only conformations with ene
at a given energy range are shown. The first rectangle from the bottom includes the lowest lying conformations, the next rectangle depicts the samane
on which only conformation in the second energy range are shown, and so forth. The mean energy of each slab is indicated at the top-right cor
rectangle~grouped in ranges of 2 kcal/mol for Ala6 and cyc-Ala6, and 3 kcal/mol for chrg-Ala6!. Also shown for each slab is the average value of the or
parameterr ~see text!. The dashed lines highlight the underlying basin topography. The energy landscapes of Ala6 and of chrg-Ala6 show a single d
each, while the landscape of cyc-Ala6 includes three competing basins~basinsB andC are separated along the second principal axis!.
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For off-lattice model studies, as well as for all-atom simu
tions, the definition of native contacts becomes imprecise
their extensive analysis of all-atom simulations Sheinerm
and Brooks13,14 introduced a related but continuous ord
parameterr, which weights the fraction of native contac
according to the actual distance between a set of predefi
contact pairs~r50 for the native conformation!. For the
smaller peptides studied here even the Sheinerman
Brooksr order parameter is not directly applicable, becau
there are no real tertiary native contacts in hexapeptides
stead, an analogous continuous order parameter is defin
characterize to what extent a given structure is nativel
The new order parameter, denoted byr to indicate its simi-
larity to the Sheinerman and Brooksr, measures nativenes
based on the dihedral angles that characterize the na
structure. The order parameterr for conformationi is calcu-
lated as

r~ i !5(
j 51

M

uu j
native2u j

~ i !u/60, ~4!

whereu j
native is the value ofj th dihedral angle in the native

conformation,u j
( i ) is the value of thej th dihedral angle in the

i th conformation and the summation is over allM dihedral
angles. In the present application the summation is over
10 backbone dihedral anglesf andc. In other applications
side-chainx angles may also be included in the summat
of Eq. ~4!. The division by the factor of 60 qualitatively bin
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the dihedral angles into the660° range around the nativ
value. Using this measure the native conformation has
value ofr50 andr increases as the conformations becom
less nativelike.

To see whether the order parameterr defined in Eq.~4!
correlates with the energy landscapes, the average orde
rameter̂ r& over all the conformations at each energy slab
Fig. 8 was calculated by

^r&E5
1

NE
(
$ i %E

r~ i !, ~5!

where NE is the number of states~conformations! in the
energy slab$ i %E , defined as

$ i %E5$ i uE2DE,Ei,E1DE% ~6!

and has a width of 2DE around its median valueEi ~DE
51 kcal/mol for Ala6 and cyc-Ala6,DE51.5 kcal/mol for
chrg-Ala6!.

Figure 11 depicts the average^r& values calculated ove
all conformations within a given energy slab, according
Eqs.~4!–~6!, versus the median potential energyE of each of
these slabs~see Fig. 8!. The native conformation has a valu
of r50 andr increases as the conformations become l
nativelike. Also indicated in Figs. 11 is the variability o
individual r values within each energy slab~defined by the
standard deviation!. For linear Ala6 the average order param
eter^r&, as well as the individualr values, gradually decreas
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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1004 J. Chem. Phys., Vol. 114, No. 2, 8 January 2001 Y. Levy and O. M. Becker
as the energy decreases@Fig. 11~a!#. Namely, moving down
into the native basin the internal structure of the conform
tions gradually becomes more nativelike. This quantitat
observation supports the hypothesized correlation betw
order parameters such asQ or r and the potential energy
The relatively large value of̂r&'0.4 present at the lowes
energy slab indicates that even at the bottom of the fun
there is still a large degree of structural variability. This o
servation is in accord with previous observations regard

FIG. 10. Three energy landscapes obtained by the minimal energy env
procedure~see text!, for Ala6 ~a!, cyc-Ala6 ~b!, and chrg-Ala6~c!. The two
principal axes indicate conformational similarity and the vertical-axis
flects the relative energy. The landscape is based on the energies of the
minima only ~the connecting barriers are not shown!.
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the energy landscape of alanine tetrapeptide.29 Figure 11~a!
also shows that the level of roughness, represented by
variability of individual r values within an energy slab, i
almost constant throughout the funnel. For all but the low
two energy slabs, this variability is about60.12 around the
averagê r&.

An even stronger correlation between the order para
eter^r& and the energy landscape funnel is observed for ch
Ala6 @Fig. 11~c!#. This molecule, which is characterized by
deeper and narrower funnel than Ala6, also exhibits a str
ger decrease with energy of the average order paramete^r&
than Ala6. For chrg-Ala6 the average value of the order
rameterr decreases from 0.74 all the way to 0.01, indicati
that all conformations at the bottom of the narrow funnel a
highly nativelike. The kink atE57 kcal/mol is due to the
very small number of conformations in this slab. In additi
to the decrease in̂r&, Fig. 11~c! shows also a decrease in th
variability of individual r values with decreasing energy
This observation indicates that, in addition to being deep
narrow, the chrg-Ala6 funnel also becomessmootheras the
energy decreases.

In agreement with the previously made observation,
correlation plot in Fig. 11~b! indicates that the energy land
scape of cyc-Ala6 is significantly different from that of th
other two peptides. In this case, with decreasing ene
there is practically no decrease, in the average order par
eter, and̂ r& stays close tor50.7 all the way down. A lo-
calization, first nearr50.8 ~basinsB and C! and then atr
'0 ~basinA!, is observed only at the lowest energies. T
reason for the higĥr& values at basinsB and C is due, of
course, to the definition ofr as measuring the similarity to
the lowest energy conformation in basinA. A qualitatively
similar picture would result ifr were to be defined relative to
basinB, with basinA conformations yielding highr values.

Summing up, the results show that for the two hexap
tides that exhibit an overall funnel topography, the effect
order-parameterr seems to be in good agreement with t
multidimensional energy landscapes.

F. Folding pathways

Even though the conformation samples generated for
present study were not obtained via folding simulations,
rather through a sampling procedure, their distribution in
cates accessible regions in conformation space and
highlights effective folding pathways. To check for possib
pathways connecting the unfolded manifold of states w
the global minimum~representing here the native state!, a
scheme similar to that used by Sheinerman and Brooks13,14

was adopted. The three conformation samples were proje
onto a plane defined by two order parameters. One o
parameter isr, reflecting the degree of similarity~in dihedral
angles! to the native structure. The second order paramete
the backbone root mean square distance~rmsd, here mea-
sured in Å! between each conformation and the native sta
reflecting primarily the degree of collapse~in this respect it
has a similar role to the radius of gyration in globular pr
teins!. If the conformation samples were to fully represe
the Boltzmann weights in each region of the plane, the
sulting plot would constitute a full description of the foldin

pe

-
cal
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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FIG. 11. Averagêr& order parameter values versus potential energy values for the three hexapeptides: Ala6~a!, cyc-Ala6~b!, and chrg-Ala6~c!. Each point
indicates the averagêr& calculated over all conformations within a given slab~see Fig. 9!. The native conformation has a value ofr50 andr increases as
the conformations become less nativelike. The horizontal error bars indicate the variability~measured by the standard deviation! of individual r values within
each energy range. The gradual decrease of the order parameterr with decreasing energy~observed for Ala6 and chrg-Ala6!, indicates a funnel-like landscape
in agreement with Fig. 9. Cyc-Ala6 does not show this behavior.
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pathways. However, since the sampling procedure use
this study has not been designed to characterize Boltzm
weights, the resulting pathways, while suggestive and ind
tive, are not necessarily complete.

Figure 12 depicts number-density contours result
from projecting the three full conformation samples on t
‘‘two order-parameter’’ plane defined byr ~indicating simi-
larity to the native conformation! and on rmsd~indicating a
collapse towards the native structure!. The three frames o
Fig. 12 show that a different type of folding pathway a
folding kinetics characterizes each of the three peptides.
linear Ala6 Fig. 12~a! reveals a two-stateU→N type folding
pathway~whereU stands for unfolded andN stands for na-
tive!. The single diagonal arrow in Fig. 12~a! indicates that
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the two order-parameters are strongly correlated. This me
that for this molecule ther order parameter would make
good effective reaction coordinate, capturing most of the s
tems kinetics. Of special interest is the gap seen between
bulk of unfolded states (r.0.4) and the native state (r
'0), which probably arises from insufficient sampling
that region. This insufficient sampling may indicate that t
main barrier separating the folded basinN from the unfolded
basinU is in the region characterized byr values between
0.1 and 0.3. It is interesting to note that in folding simul
tions of a 27-mer lattice model of a polypeptide the transit
region was found to be close to the native state atQ values of
0.7 to 0.9, whereQ measures the percentage of nati
contacts.1,6 Since the discreteQ values are equivalent to th
ative
. Even
ma
FIG. 12. Projection onto a ‘‘two order-parameter’’ plane$r, rmsd% of the full conformation samples of the three hexapeptides:~a! Ala6, ~b! cyc-Ala6, and~c!
chrg-Ala6. Ther axis indicates the degree of similarity~in dihedral angles! to the native conformation. The rmsd axis indicates a collapse towards the n
structure~all atom rms distance in Cartesian space!. The contours indicate the number density of sampled conformation at each point on this plane
though the projected conformations were not generated via folding simulations, their distribution highlights effective folding pathways, schetically
illustrated by the arrows.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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continuous 12r, the barrier in those lattice simulations is
r'0.1– 0.3, similar to the outcome for Ala6.

A more complicated folding pathway is observed f
chrg-Ala6 @Fig. 12~c!#. For this molecule the ‘‘two order-
parameter’’ plot indicates a three state folding pathway
the typeU→I→N, whereI is a nonnative collapsed inter
mediate. The first leg of the pathway, represented by
vertical arrow~rmsd values from 2.5 Å to 1.0 Å at a consta
r value close to 0.6!, is a collapse phase characterized by
rapid ring closure, brought about by the two opposite ter
nal charges that strongly attract each other. This intermed
state is non-native atr'0.6. Following the collapse the
backbone dihedral angles continue to rearrange until the
tive conformation is reached~indicated by the second arrow!.
The observed three-state process also indicates that neitr
nor rmsd can be used as a single effective order paramet
describe the folding of chrg-Ala6. In this case the foldi
kinetics requires at least two order parameters for an
equate description. It should be stressed that the obse
three-state behavior does not necessarily indicate a s
intermediate at the non-native collapsed state. It may wel
that the collapsed state is a necessary on-pathway confo
tion but it does not constitute a stable intermediate, so
the overall kinetics may still obey the two-stateU→N
scheme. The present analysis was unable to resolve the
possibilities.

Finally, for the cyc-Ala6 system Fig. 12~b! points to a
folding mechanism different from the previous two. Unlik
the single pathways that seem to characterize both Ala~a
two-state mechanism! and chrg-Ala6~a three-state mecha
nism!, for the cyclic analog cyc-Ala6 we observe three co
peting folding processes. The different pathways origin
from the unfolded manifoldU but proceed to different native
statesN1 , N2 , andN3 respectively, the three processes be
U→N1 , U→N2 , andU→N3 . The first native stateN1 can
be identified with basinA and is characterized by ar50
value. The second native stateN2 can be identified with ba-
sin C, which has an average^r& value of 0.6760.12~wherer
is defined relative to the lowest minimum in basinA!. The
third folding process into theN3 state, which corresponds t
basinB, cannot be resolved in this plot. This is due to t
fact that its averagêr& value ~relative to the lowest mini-
mum in basinA! is 0.8660.07, similar to the order param
eters characterizing the unfolded manifoldU. The pathway
into basinB would be easily observed ifr was to be calcu-
lated relative to the structures characterizing basinC or B.

Figure 12~b! indicates that even the two observed fol
ing pathways cannot be resolved along the one-dimensi
r order parameter coordinate. This means that while e
individual pathway is well described by the singler coordi-
nate, it is not sufficient for representing the overall kineti
At least one additional coordinate~and possibly more! is
required for a full analysis of the kinetics. In fact, relying o
a single order parameter in this case is likely to lead to
correct conclusions.

G. Landscape topology and connectivity

The above analysis of energy landscape topography
folding pathways is based on the energies and spatial di
Downloaded 28 Dec 2000  to 132.66.16.6.  Redistribution subject to 
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bution of the local minima. The resulting description, wh
very informative, is still incomplete because it does not ta
into account the distribution ofbarriers which connect the
local minima. These barriers define the actual kinetic c
nectivity of the landscape, determining which transiti
pathways are accessible and which are not. The metho
topological mapping described above was developed to a
lyze that type of overall barrier connectivity, which is sp
cific to each energy landscape.15 In the context of the presen
study it is worthwhile to compare the picture that emerg
from the barrier-based topological analysis with the vie
obtained from studying the distribution of local minima.
particular, the disconnectivity graphs characterizing the th
hexapeptide landscapes should be compared with their p
cipal coordinate projections~Figs. 9 and 10! and with their
characterization using the effective order parameterr
~Fig. 11!.

To calculate the topological disconnectivity graphs
the three Ala6 analogs the two dilution processes descr
in Sec. III were used. First, conformations exhibiting hig
similarity were removed from the sample and then a dista
constraint was imposed to refrain from calculating barri
between minima that are too distant on the energy landsc
For the molecules studied here the distance criteria were
Å for Ala6 ~compared to a maximal distance of about 6.2 Å!,
2.2 Å for cyc-Ala6~maximal distance about 3.5 Å! and 2.7
Å for chrg-Ala6 ~maximal distance about 3.9 Å!. These cri-
teria ensure, on an average, that for each local minimum,
barriers to most of its neighboring minima are calculated~the
nearest 50% of all minima at least!. Complying with the
above criteria about 20 000 barrier evaluations were p
formed to generate the topological map of Ala6, about 55
for cyc-Ala6 and about 2000 chrg-Ala6.

In a previous study it has been shown that the disc
nectivity graphs of Ala6 and cyc-Ala6 differ significantl
from each other, demonstrating the dramatic effect of c
formation constraints on the topography of the molecu
energy landscape.16 As seen in Fig. 13~a! the disconnectivity
graph of linear Ala6 depicts a single dominant branch
flecting a simple funnel topography. Each node reflects b
riers that split a basin into its disconnected sub-basin co
ponents. Following the graph from the top down, only simp
splitting is encountered from the main branch to disco
nected, mainly high-energy, conformations~although a
single low energy conformation also becomes disconnec
fairly high up in the tree!. Still, near the bottom of the grap
the splitting pattern becomes more complicated, indicatin
richer structure of the landscape near the bottom of the f
nel. Furthermore, Fig. 13~a! also indicates that the energ
landscape of Ala6 has a fairly constant roughness over a
broad range of energy levels. This property is reflected in
disconnectivity graphs by the similar number of minima th
branched off from the main branch at the different ene
levels.16

Thus, both the topological analysis and the minim
based analysis give rise to a picture of Ala6’s energy la
scape as being dominated by a single funnel. A differ
question is whether the effective order parameterr, which
seemed to be correlated with the minima-based picture,
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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FIG. 13. ~a! The topological disconnectivity graph for Ala6~see text! and~b! the averagêr& values for each branch of the disconnectivity graph, display
on an identical horizontal axis. Both graphs indicate a single dominant funnel on the energy landscape of Ala6.
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capture the descent into the main funnel~reflected by the
disconnectivity graph!. To answer this question the averager
value was calculated for each branch of the graph. Fig
13~b! shows the averagêr& values for each branch of th
Ala6 disconnectivity graph, displayed on a horizontal a
identical to the one used for the disconnectivity graph@Fig.
13~a!#. It becomes clear that the average^r& values of the
conformations that part away from the main funnel gradua
decrease as one proceeds down into the funnel, indica
that the conformations gradually become more similar to
native state. The strong correlation between the discon
tivity pattern and the averagêr& values indicates that fo
Ala6 the energy landscape is indeed governed by a si
large funnel and supports the effectiveness of the order
rameter as a sufficient reaction coordinate.

Figure 14 depicts the disconnectivity graph and aver
^r& value per branch for chrg-Ala6. As with Ala6 the grap
are highly correlated and show a single dominant fun
structure. This funnel is deeper than that of Ala6, in agr
ment with the previous observations. It is interesting to n
that the disconnectivity graph of chrg-Ala6 shows a gap
tween the unfolded high energy states~nodes above 20 kcal
mol! and the nativelike low energy conformations~nodes
below 14 kcal/mol!. This gap, which represents a steep
calization on the energy landscape, is reflected by a pla
in the averagêr& values and then followed by a sudden dr
towards the native state. This structure is probably associ
with the two-step folding pathway that was observed on
‘‘two order-parameter’’ projection of Fig. 12.

Finally, the disconnectivity graph clearly indicates~as is
indicated by other approaches too! that the energy landscap
of cyc-Ala6 is very different from the other two hexapeptid
Downloaded 28 Dec 2000  to 132.66.16.6.  Redistribution subject to 
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@Fig. 15~a!#. The disconnectivity graph of cyc-Ala6 split
into two additional basins at a barriers height of 12 kcal/m
The main branch, denoted as basinA, includes a group of
minima connected by 5 kcal/mol barriers and is separa
from the rest of the system by barriers in the range of 10–
kcal/mol. BasinsB andC appear as two branches that, unlik
most other branches, continue to split after being disc
nected from the main basin. Compared to basinA, these two
basins show more gradual internal splitting patterns with b
riers on the order of 7–10 kcal/mol. It is interesting to no
that on this energy landscape the roughness is restri
mainly to a narrow energy range in the vicinity of the bar
ers that split the landscape into three competing basins.
nonfunnel multiple basin character of the cyc-Ala6 landsca
is also seen in the corresponding average^r& values depicted
in Fig. 15~b!. The averagêr& values decrease only once th
peptide reaches the edge of basinA, while the other two
basins have much higher^r& values.

V. CONCLUSIONS

In this paper an analysis was made of the topography
three alanine hexapeptide analogs: linear alanine hexape
with neutral terminals~Ala6!, linear alanine hexapeptid
with charged terminals~chrg-Ala6! and cyclic alanine
hexapeptide~cyc-Ala6!. These analogs differ in the amoun
of constraints imposed on their conformation flexibilit
While the motion of the linear peptide with uncharged te
minals is essentially unconstrained, adding opposite cha
at the two terminals forces the molecule into a cyclic conf
mation ~in vacuum!, thus significantly reducing its range o
motion. The constraint on the motion becomes even stri
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



1008 J. Chem. Phys., Vol. 114, No. 2, 8 January 2001 Y. Levy and O. M. Becker
FIG. 14. Similar to Fig. 13, for chrg-Ala6. Both graphs indicate a single dominant funnel on the energy landscape of chrg-Ala6.
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when a covalent bond is introduced between the two ter
nals of the peptide, forming the conformationally restrict
cyclic analog. The present study has shown that the effec
these conformation constraints on the energy landscape
underlies the chemo-physical properties of these pepti
can be quantified and compared. In particular, it has b
Downloaded 28 Dec 2000  to 132.66.16.6.  Redistribution subject to 
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found that the three analogous peptides are characterize
significantly different energy landscapes. While the ene
landscape of Ala6 is that of a broad and rough funnel, a
the energy landscape topography of chrg-Ala6 that of a d
and narrow funnel, the energy landscape of cyc-Ala6 is ch
acterized by three competing basins. The differences in
ut rather
FIG. 15. Similar to Fig. 13, for cyc-Ala6. The graphs indicate that the energy landscape of chrg-Ala6 does not exhibit a funnel structure, b
incorporates three competing basins.
AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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ergy landscapes are reflected in different folding mec
nisms, with Ala6 exhibiting a direct one-step folding, chr
Ala6 a two-step folding, while cyc-Ala6 exhibits competin
pathways leading from one basin to another. Although
studied here, the differences in landscapes would cle
yield differences in thermodynamic properties as well. T
results obtained are of importance to protein folding in g
eral, since the three peptides studied here would, in princi
be encoded by the same gene. This means that the d
ences observed between their energy landscapes arise
environmental or post-translational modifications and are
encoded in the gene. Namely, these results suggest that
genomic post-translational modifications may play an imp
tant role in determining the properties of proteins and th
folding patterns.

In addition, the present study indicates that, at least
two of the peptides studied, there is a strong correlation
tween the different views of the landscapes obtained by p
cipal component analysis, topological mapping and order
rameter analysis. In particular it has been demonstrated
one or two order parameters, such asQ, are able to capture
much of the information regarding the overall topography
the landscape even in these realistic all-atom models. H
ever, this seems to be true only in the presence of a domi
funnel on the landscape~as in the case of Ala6 and chrg
Ala6!. In cases of several competing basins on the sa
energy surface the simple order parameters were inadeq
to resolve the complexity of the surface topography. Nev
theless, in all three cases, both the principal compon
analysis~which was based only on local minima! and the
topological mapping analysis~based on minima and barrie
information! were able to resolve the complex topographi
yielding similar results.
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