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Conformation constraints and molecular flexibility strongly affect the bioactivity of flexible molecules. The
present study offers a new conceptual framework, as well as a practical quantitative procedure, for discussing
and quantifying these effects. The theory is formulated in terms of weighted overlaps between the volume in
conformation space occupied by the flexible ligand and the pre-prescribed conformational requirements imposed
by the host molecule (“region of bioactivity”). From this theory a quantitative structure activity relationship
(QSAR) type descriptor, which quantifies the effect of conformation constraints on bioactivity, was derived
and the resulting model was shown to be in excellent correlation with the observed activity of the molecules.
Three characteristic scenarios for the relationship between flexibility and bioactivity are outlined and
demonstrated in realistic systems: conformationally constrained alanine hexapeptides, a series of substance
P analogues, and a set of conformationally constrained Arg-Gly-Asp containing peptides.

Introduction

Conformation constraints and molecular flexibility are known
to have a very strong effect on the activity (in particular binding
affinity) of flexible molecules. The binding affinity of peptides,
as well as that of other flexible compounds, is often altered by
conformation constraints such as cyclization, enantiomeric
substitutions, and the introduction of stereochemically constrain-
ing chemical groups. Based on this observation, medicinal
chemistry optimization of lead compounds often proceeds along
two avenues. The first avenue focuses on chemical modifications
(changing the chemical properties of the molecule), while the
second proceeds through the application of conformation
constraints. There are many examples for conformationally
constrained analogues that are more bioactive or more specific
than the original lead molecules. For example, application of
various conformation constraints to Arg-Gly-Asp containing
peptides, which are the primary recognition site for cell
adhesion, affects both their binding affinity and specificity.1

Another example is the dramatic effect of enantiomeric substitu-
tion on the binding of substance P analogues to NK1 receptor.2,3

Such conformational considerations also play a major role in
the development of peptido-mimetic drugs.4 Similar consider-
ations of flexibility and conformation constraints are, of course,
also applicable to many chemical design problems in nonphar-
maceutical applications. There are also cases in which the
structure of both host and ligand may change upon binding. A
certain amount of flexibility is required in these cases for
binding, rendering too rigid ligands less effective.

The recognized need to account for molecular flexibility in
drug development has been a strong motivation for recent
developments in computer aided drug discovery, both in the
field of quantitative structure activity relationship (QSAR) and
in the field of structure-based molecular docking. Recognizing
the role of flexibility during the docking process (both in the
ligand and in the receptor) led to a recent surge in activity that
resulted in many new “flexible docking” methodologies.5 Most

of these methods address flexibility either by representing the
docked molecule as a set of molecular replicas, reflecting
different possible conformations, or by a stepwise “anchor and
grow” approach, in which molecular fragments are optimally
linked together inside the binding site. Molecular flexibility is
even harder to account for in the context of QSAR, much
because in this case the structure of the binding site is often
unknown. Classical QSAR is based on correlating the chemical
properties of the molecule (e.g., charge and lipophilicity) with
activity, using a large number of chemical “molecular descrip-
tors”. In recent years 3D-QSAR methods, which take into
account structural similarity, have become standard tools.
Nonetheless, these methods rely on knowing the “structure” for
each molecule in the data set. For flexible molecule such
“structures” are not well defined. Current QSAR methodology,
in general, cannot account for the important properties of
“flexibility” and “conformational entropy”, which clearly play
a role in determining the binding affinity. Only when the
structure of the binding site is known can conformational entropy
be introduced into QSAR through free energy calculations.6 The
lack of quantitative QSAR “descriptors” for the overall effect
of conformation constraints (not just stereochemical changes
of the lowest energy conformation), especially in cases where
the structure of the receptor is unknown, clearly limits the scope
of QSAR. Recently Hopfinger et al.7 introduced 4D-QSAR, in
which flexibility is accounted for by assigning population
probabilities to the Cartesian 3D grid already used in 3D-QSAR.

In the present study we outline a conceptual framework for
discussing the role of molecular flexibility and conformation
constraints in bioactivity. Three representative scenarios explain
the relation between flexibility, constraints, bioactivity, and
specificity in terms of “molecular conformation spaces” (rather
than the molecules’ specific 3D structures). A computational
procedure which quantifies these concepts is applied to three
sets of conformationally constrained peptide families (alanine
hexapeptide analogues, substance P analogues, and RGD-
containing septapeptides) and links them to the proposed
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scenarios. Finally, the results of these quantitative analyses,
which attest to the validity of the suggested concepts, are
discussed.

Conceptual Framework

Many computer aided drug design approaches, both of the
docking type and of the 3D-QSAR type, try to account for
molecular flexibility by replacing the single structure used in
the standard “nonflexible” applications with a relatively small
set of molecular replicas, each with a different conformation.
These conformationally distinct replicas are generated either
consistently (e.g., combinatorically varying all rotatable dihedral
angles) or by using sampling procedures. Since the computation
treats each replica as an independent molecule, the number of
“molecules” to analyze often increases by a factor of 10 or more.
This increases the computational load and reduces the usefulness
of these tools for high throughput screening. Moreover, replacing
a single conformation by a small set of alternative conformations
does not reveal much about the molecular properties of
“flexibility” and conformational entropy. Such conformation
samples also do not address the many important questions which
relate to the whole “world of conformations” available to the
molecule; e.g., How do conformational constraints affect
molecular flexibility? To what degree do individual constraints
reduce or increase flexibility? What degree of conformational
flexibility is required for a molecule to bind efficiently? What
is the relative flexibility of analogous molecules and how does
that affect their bioactivity?

In principle, questions about molecular flexibility should be
discussed in terms of the size and shape of the corresponding
molecular “conformation space”. By definition, flexible mol-
ecules adopt more conformations than their nonflexible coun-
terparts. Namely, the volume they occupy in conformation space
is larger. Rigid molecules, on the other hand, are restricted to
small volumes in conformation space since only a small number
of conformations are available to them.

The concept of “conformation space volume” can be used as
a framework for discussing the relative binding affinity of
flexible molecules (the term binding affinity is used here in the
same, somewhat loose, manner it is used in experimental
bioactivity studies). Theconformational aspectof the binding
affinity (docking) is an interplay between the predefined set of
conformations that can, in principle, fit the binding site and the
actual set of conformations that the molecule can adopt. For
rigid molecules the question of conformational compatibility
reduces to a yes/no answer. Either the rigid molecule fits the
binding site (to within some fitting criterion) or it does not.
For flexible molecules the question becomes statistical and
depends on the percentage of conformations that can fit into
the binding site. The larger this percentage the higher will the
binding affinity be. More accurately, a Boltzmann weighted
percentage should be used to reflect the likelihood for the
molecule to be in any of its possible conformations.

Let us define the “occupied volume in conformation space”,
Vconf, as the whole set of conformations that can be adopted by
the ligand under physiological conditions. Let us further define
the “region of bioactivity”,Rbio, prescribed by the host molecule
(receptor, enzyme, etc.) which is a manifestation of the
conformational requirements imposed by the host.Rbio is also
represented as a volume in the ligand’s conformation space,
engulfing the generalized set of conformations that can, in
principle but not necessarily in practice, fit into the binding site.
For each host molecule there is a different region of bioactivity
reflecting a different set of conformational requirements from

the ligand. Cast in these terms, the binding affinity (conforma-
tional part) is determined by the percent of overlap between
the ligand’s “occupied volume in conformation space” and the
host’s pre-prescribed region of bioactivity; i.e.,

The overlap should be weighted by the Boltzmann factor.
With these definitions, the effect of conformation constraints

on bioactivity can be readily discussed. In general, conformation
constraints and chemical modifications can change (typically
reduce) the flexibility of the molecule and/or introduce structural
strereochemical changes (e.g., they may force the molecule into
a twisted shape). These, in turn, affect the size and shape of
the volume in conformation spaceVconf occupied by the
molecule. Reduced flexibility will be manifested as a decrease
in the “occupied volume”Vconf (fewer conformations are
accessible to the molecules), while the strereochemical effect
will be manifested as a shift of the volume Vconf relative to its
original location (a different set of conformations is now
accessible to the molecule). Such changes inVconf affect its
overlap with the host’s region of bioactivity,Rbio, thus changing
the ligands binding affinity (eq 1). Based on these concepts, at
least three characteristic scenarios for the effect of conformation
constraints on bioactivity can be outlined. Of course, in realistic
systems a combination of these scenarios is to be expected. Also
recall that these scenarios account only for the conformational
aspect of the binding affinity (docking). They do not address
issues concerning chemical compatibility. The three scenarios
are as follows:

(1) BioactiVity is related to a decrease in the occupied
conformationVolume(Figure 1a). A conformation constraint,
such as cyclization, often reduces the flexibility of the molecule.
This means that the volume in conformation space accessible
to the constraint analogueV′conf is smaller than the original
conformation volumeVconf occupied by the unconstrained
molecule. As illustrated in Figure 1a, the percent of overlap
(eq 1) depends of the actual conformation volume that remains
occupied by the constrained analogue and can vary from 100%
to 0%. If the reduced conformation volumeV′conf of the
constrained analogue falls completely within the region of
bioactivity Rbio, all of its conformations fit the binding site and
its binding affinity is very high. On the other hand, if the reduced
volumeV′conf falls completely outside the region of bioactivity
Rbio, none of the conformations fit the binding site and its
binding affinity will be zero.

(2) BioactiVity is related to partially oVerlapping conforma-
tion Volumes(Figure 1b). Chemical modifications, such as point
mutations in peptides, may result in series of analogous
molecules, all of which exhibit a similar level of flexibility (i.e.,
occupy similar volumes in conformation volume). In such cases
the main effect of the constraints is to shift the new conformation
volumeV′conf relative to the original conformation volumeVconf

of the native analogue. The relative bioactivity of the different
analogues will depend on the percent of overlap between the
different conformation volumesV′conf and the region of bioac-
tivity Rbio pre-prescribed by the host. A gradual change in
binding affinity is expected across the series of analogues as
the percent of overlap changes from one analogue to another.
Technically, because the region of bioactivity is rarely known,
it can be approximated by the conformation volume occupied
by the most potent analogue in the series (which has a maximal
overlap with the region of bioactivity).

binding affinity ∝ % overlap)
Vconf ∩ Rbio

Vconf
(1)
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(3) Binding specificity and conformation spaces(Figure 1c).
It is known that conformationally constrained drug analogues
often exhibit different selectivity properties when tested on
different receptors (or even receptor subtypes). In fact, the
prospect of obtaining a selective drug is one of the main reasons
why conformationally constrained analogues are studied in the
first place. The notion of conformation volumes can be used to
explain this phenomenon too (again, only its conformational

aspect). Different receptors (or receptor subtypes) have different
conformational requirements from the ligand, i.e., they define
different regions of bioactivityR ′bio andR ′′bio. A nonselective
ligand is flexible enough so that the region conformation space
accessible to itVconf overlaps (at least partially) both regions of
bioactivity. Namely, it can adopt conformations compatible with
either receptor. A selective drug analogue, on the other hand,
is characterized by a conformation space volumeVconf that
preferentially overlaps only one of the two regions of bioac-
tivity: i.e.,

A nonactive analogue will have no overlap with either region
of bioactivity. As illustrated in Figure 1c, such a preference
should be reflected as a spatial separation of the accessible
volumes in conformation space.

Quantifying “Conformation Space”

The above discussion indicated that the molecular conforma-
tion space is a useful conceptual framework for addressing
questions about molecular flexibility and its relation to binding
affinity. However, only recently have these abstract concepts
become computationally tractable. The main difficulty associated
with quantifying molecular conformation spaces is their high
dimensionality. Since every atom is defined by three Cartesian
coordinates (x, y, andz), 3N coordinates are required to specify
a conformation ofN atom molecules. Thus, the space that
represents the conformations of such a molecule is 3N-
dimensional. This means that even the conformation space of a
relatively small polypeptide is extremely high dimensional
(hundreds to thousands of dimensions). Luckily, in practice, a
much smaller number of dimensions (i.e., coordinates) are
sufficient to characterize the essential conformational properties
of peptides. For example, the usefulφ, ψ backbone dihedral
angle description reduces the effective dimensionality by an
average factor of 10 or more. Further reduction of dimensionality
can be obtained by using principal component analysis, which
picks out the few most important coordinates required to
characterize the conformational diversity of the molecule.8-13

Recently, we showed, for a range of peptides, that conformation
spaces can often be quite accurately represented by as few as
three or four principal axes.14 These projections allow us to
construct quantitative energy landscapes for peptides of different
lengths.14-16

The ability to quantify and visualize molecular conformational
spaces, offered by such projection techniques, allows one to
quantitatively rationalize the effect of flexibility and conforma-
tion constraints on bioactivity.

Methods and Model Systems

Model Systems.The conformation spaces of three polypep-
tides were analyzed in this study. Two of the three, substance
P and RGD containing peptides, are actual drugs of major
pharmaceutical importance.

(1) Substance P Analogues. Substance P (SP) is an 11 amino
acid neuropeptide of the sequence H-Arg1-Pro2-Lys3-Pro4-
Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2. It belongs
to the tachykinin family and is involved, as a neurotransmitter,
in a variety of biological activities. Extensive studies showed
that the C-terminal half of the molecule, starting at Gln6,
dominates the binding of substance P to the NK1 receptor. For
example, Cascieri et al.17 showed that the SP derivative Gln6-

Figure 1. Schematic representation of the effect of flexibility and
conformation constraints on the bioactivity of flexible molecules. The
ellipsoids indicate the conformation space accessible to each molecular
analogue,Vconf, while the shaded areas indicate the host-prescribed
region of bioactivity,Rbio, which includes all possible conformations
that can bind to the host (e.g., enzymes or receptors). Three scenarios
are illustrated (see text): (A) Different analogues have different
conformation volumes; (B) Different analogues have partially overlap-
ping conformation spaces; and (C) Specificity is related to separation
and molecular specificity.

(Vconf ∩ R ′bio) . (Vconf ∩ R ′′bio) ≈ 0 (2)
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Met11 is much more bioactive than shorter analogues. In a very
detailed study, Wang et al.2 synthesized 512 SP analogues using
a systematicD-amino acid replacement strategy (Met11 was kept
as anL-amino acid and Gly9 is achiral). The binding affinity of
each analogue to the NK1 receptor was measured and IC50

values obtained (i.e., the concentration required for 50%
inhibition on NK1). The natural all-L SP peptide was found to
have the highest binding affinity relative to all the enantiomeric
analogues. Based on this study we selected a set of seven SP
analogues for the present analysis. The analogues, detailed in
Table 1, were selected to cover a broad range of bioactivity
(analogue numbering according to the notation of Wang et al.2).
Two analogues, SP1 (native SP) and SP6 were highly bioactive.
Three analogues, SP7, SP9, and SP39, showed medium binding
affinity. Two analogues, SP42 and SP122, had very poor binding
affinity.

(2) RGD-Containing Peptides. The second group of polypep-
tides includes septapeptides containing the RGD sequence. The
Arg-Gly-Asp (RGD) sequence is the primary recognition site
for cell adhesion. This sequence is a probe for cell adhesion of
adhesive proteins, such as fibronectin, as well as extracellular
matrices.18 It was found that more than one cell surface receptor
exists, and that while they all recognize the Arg-Gly-Asp
sequence, these receptors are unique with respect to their
individual ligands. For example, one cell surface receptor
specifically recognizes fibronectin while another is specific to
vitronectin.19 In a detailed study Pierschbacher and Ruoslahti
checked the binding and selectivity of several conformationally
constrained Arg-Gly-Asp containing analogues by their
inhibition of cell attachment to fibronectin and vitronectin.1

These researchers concluded that the stereochemistry of the
Arg-Gly-Asp sequence itself, as influenced by the enantio-
meric substitution of one of its residues or one of its neighboring
residues, has a significant influence on selectivity. In the present
study we selected four of the analogues, based on the Gly1-
Arg2-Gly3-Asp4-Ser5-Pro6-Cys7 sequence, studied by Pier-
schbacher and Ruoslahti. Table 2 details the four analogues and
their relative binding affinities to the fibronectin receptor (FN)
and to the vitronectin receptor (VN). These analogues reflect a
broad range of bioactivity. The allL-amino acid peptide as well

as theD-Arg2 substituted analogue exhibit a similar affinity to
both receptors. TheD-Asp4 analogue lost its binding affinity
altogether, while the cyclic analogue was very selective; its
affinity to the vitronectin receptor was 10-fold greater than that
of the native peptide, while its affinity to the fibronectin receptor
was negligible. In the present study the cyclic analogue was
generated by substituting Gly1 with Cys and forming a disulfide
bridge with Cys7 (in the original study a penicillamine group
attached to Gly1 was used to form the disulfide bridge).

(3) Alanine Hexapeptide Analogues. The third peptide family
analyzed in this paper includes conformationally constrained
analogues of the alanine hexapeptide. Four hexapeptide ana-
logues were studied: unconstrained linear (Ala)6, backbone
cyclic (Ala)6, and two Ala to Pro substitutions: (Ala)2-Pro-
(Ala)3 and (Ala)2-(Pro)2-(Ala)2. Both cyclization and Pro
substitutions are expected to reduce the flexibility of the
molecule. In a previous study, using the topological mapping
methodology,20 we showed that the energy landscape of linear
(Ala)6 was very different from the energy landscape of its
backbone cyclic analogue.21 The two landscapes differed in their
internal connectivity, the range of energies represented and the
surface roughness. Therefore, despite the lack of specific
bioactivity, this peptide is a good model for studying the effect
of cyclization on the size of the molecular conformation space.

Computational Methods. The analysis procedure used in
this study follows three steps. First, a large conformation sample
is constructed. Then principal component analysis is used to
project the sampled conformation space onto a small number
of principal directions. Finally, the weighted multidimensional
overlaps of conformation spaces are calculated.

(1) Conformation Sampling. Performing a conformational
ensemble sampling of each peptide is necessary for representing
the molecule’s conformation space. In principle, one wants as
complete as possible representation of this space. However,
because of the large volume of conformation space available
to polypeptides, sampling has to be used instead of a systematic
conformational search. A variety of sampling approaches are
available.22 The procedure used in this study to sample the
conformation space of the above peptides was previously
reported.21 Briefly stated, for each peptide a sample of 500
conformations is collected from a 500 ps high temperature
molecular dynamics trajectory, simulated at 1000 K (it was
shown that there are no cis/trans transitions of the peptide bond
at this sampling temperature23). Each high temperature confor-
mation was then gradually cooled to 300 K, after which it was
minimized to the nearest local minimum. The initial structures
for all noncyclic peptides were the extended conformations; for
cyclic peptides randomly selected cyclic conformation were
used. All simulations were performed with the molecular
dynamics program CHARMM24 and the CHARMM all-atom
force field,25 using 2 fs time steps, 15 Å cutoffs, SHAKE
constraints on bonds to hydrogen atoms, and a distance-
dependent dielectric constant.

TABLE 1: The Seven Substance P Analogues Studieda

Arg Pro Lys Pro Gln Gln Phe Phe Gly Leu Met IC50 -logIC50

SP1 - - - - - - - - - - - 1 0.00
SP6 - - - - D - - - - - - 2 -0.30
SP7 - - - - - D - - - - - 250 -2.40
SP9 - - - - - - - D - - - 200 -2.30
SP39 - - - - D - - D - - - 350 -2.54
SP42 - - - - - D - D - - - >10000 <-4.00
SP122 - - - - D D - D - - - >10000 <-4.00

a L to D substituted amino acids are marked with D. Binding affinities to the NK1 receptor (IC50 values in nM) and analogue notation are from
Wang et al.2

TABLE 2: The Four Arg -Gly-Asp Containing Analogs
Studieda

analogb
FN

affinity
VN

affinity

Gly-Arg-Gly-Asp-Ser-Pro-Cys 1 1
Gly-dArg-Gly-Asp-Ser-Pro-Cys 1 1.1
Gly-Arg-Gly-dAsp-Ser-Pro-Cys 0 0
Pen-Gly-Arg-Gly-Asp-Ser-Pro-Cysc 0 10

a The relative affinities to the fibronectin receptor (FN) and to the
vitronectin receptor (VN) are from Pierschbacher and Ruoslahti.1

b dArg and dAsp indicateD-amino acid enantiomers.c In the simulations
Cys replaced the penicillamine group (Pen) used in the experiments to
form the disulfide cyclization.
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(2) Principal Component Projections. Principal component
analysis (PCA) projects multidimensional data onto low-
dimensional subspaces.12 If the distribution of the multidimen-
sional data is nonisotropic, PCA will identify a low-dimensional
subspace that best describes it. Namely, it selects a new
(minimal) set of principal axes that best preserve the distances
between the conformations, enabling visualization of the spatial
relations between the data points. One of the advantages of PCA
is that the normalized eigenvaluesλi, associated with each
principal axis (eigenvectors), are directly related to the effective
dimensionality of the projection and to the average error
associated with it. Principal axes are sorted according to their
normalized eigenvaluesλi. The larger the eigenvalue the more
efficient is the projection onto that axis (reflecting a large
variance for the data in that 1D projection). In recent years PCA
has become a common method for analyzing complex molecular
data. Applications include analysis of molecular dynamics
trajectories,9,13 conformation sampling,10,11 and conformation
clustering.26 Using a variant of this method, named principal
coordinate analysis (PCoorA),8 Becker and collaborators have
generated quantitative 3D maps of the energy landscapes of
peptides.15,16 In this study we apply PCoorA to project the
multidimensional conformation samples onto 2, 3, or 4 dimen-
sional subspaces. It was shown elsewhere, at least for the Arg-
Gly-Asp containing peptides, that the principal 2 and 3
dimensional subspaces represent the multidimensional data to
accuracy greater than 70%.14

The details of PcoorA were discussed elsewhere.14,26For the
present application it should be noted that when conformations
of two analogous molecules are to be compared they must be
projected together onto thesamesubspace (starting from a joint
distance matrix). As a consequence, the distance measure used
should be based on features common to the two molecules. In
this study we use two distance measures based the conformation
of the peptide backbone, which is common throughout each
family of peptide analogues. The first is the root-mean-square
distance (RMSD) in Cartesian coordinates and the second is in
the peptide’s backbone dihedral angle space (φ, ψ).

(3) Weighted Multidimensional OVerlaps of Conformation
Spaces. In the following discussion multidimensional overlaps
between the volume in conformation space occupied by one
molecule and those occupied by another are calculated (based
on joint principal projections). Because conformations are not
uniformly distributed throughout the available region in con-
formation space (they are weighted according to energy by the
Boltzmann factor), a simple geometric overlap is not enough.
Rather, the calculated overlaps should be weighted by the
observed population distribution. To overcome the sparsity of
the data, a multidimensional grid, defined in principal coordi-
nates, is used. Each relevant principal axis is divided into
segments, and the number of conformations that lay within each
multidimensional cell (bin) is counted. Because the spread of
the data points is different from one principal axis to the other,
the number of grid segments along each axis is set so that the
information contents in the multidimensional bins are roughly
equivalent. Thus, axes with larger eigenvalues are divided into
more bins relative to axes with small eigenvalues which are
divided into fewer bins.

Following the assumption that the accessible region in
conformation space is continuous for each molecule, a smooth-
ing algorithm is applied to the above multidimensional grid
(typically 3D or 4D grids). The goal of this algorithm is to
smooth “holes” in the distribution that may be caused by
insufficient sampling and/or by the discretization of the continu-

ous space. Holes in an otherwise populated region would be
filled according to the population of their neighbors (nearest
neighbors have the weight 1/2 and second nearest neighbors
are weighted by 1/3). As a result of the smoothing, each grid
point carries a noninteger weight, reflecting the relative popula-
tion in that region in conformation space. These population
factors are denoted asPk

(i), where k is the index of the
multidimensional grid point and (i) is the index of the molecule.
Overlap between the regions in conformation space occupied
by moleculesi and j is given by the following expression:

where the summation is over the grid pointsk. In fact, two
overlap measures can be defined. The two differ with regard to
which grid points are included in the summation. In the first
overlap measure, denotedO&, grid points are included in the
summation only if the population factors at these grid points
Pk, for both molecules, are larger than some thresholdε,

The summation is divided by the total numberM of grid points
included in the summation in order to obtain an overlap density
(the amount of overlap per unit volume in conformation space).
In the second overlap measure, denotedO|, a grid point is
included in the summation if the population factorPk at this
grid point is greater than the thresholdε for at least one of the
two molecules,

We found that the first overlap measureO& is too restrictive.
The requirement that the grid pointPk for both molecules will
be higher than the thresholdε makes this measure very sensitive
to the precise definition and placing of the grid. Much more
stable results were obtained for the less restrictive overlap
measureO|, rendering it a more useful quantity. The role of
the threshold valueε will be discussed below.

Results

The above analysis, i.e., conformation sampling followed by
joint principal component projections onto low-dimensional
subspaces, was applied to the three groups of peptides described
above. The projections are discussed in terms of the scenarios
suggested in Figure 1, and the relation between bioactivity and
conformation space is pointed out.

Reduction of Conformation Space.Cyclization is probably
the most constraining modification applied to bioactive peptides
in an attempt to improve their potency. Clearly, cyclic analogues
are much less flexible than their linear counterparts. In the
language of conformation space, cyclic analogues are expected
to occupy a much smaller conformation volume compared to
the unconstrained molecules. Nonetheless, questions such as to
what extent does a cyclization reduce the available conformation
space, and whether the reduced space is a subset of the native
conformation space, are for the most part a matter of speculation.
The analysis of the two hexapeptide analogues, linear (Ala)6

and cyclic (Ala)6, allow us to offer quantitative answers to these
puzzles.

overlap) ∑
k

Pk
(i) Pk

(j) (3)

O& )
1

M
∑

k

Pk
(i) Pk

(j) (k|Pk
(i) > ε andPk

(j) > ε) (4)

O| )
1

M
∑

k

Pk
(i) Pk

(j) (k|Pk
(i) > ε or Pk

(j) > ε) (5)
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As described above, 500 conformations were sampled for
each peptide analogue. The 50 highest energy conformations
from each set were removed, resulting in 450 conformations
for each peptide. A joint projection of the two peptides was
performed based on the 900× 900 joint distance matrix.
Backbone rms distances in Cartesian space were used to measure
the distances between conformations in the data set. Figure 2
shows the joint projection of the two analogues, linear (Ala)6

and cyclic (Ala)6, onto the optimal 3D subspace defined by the
first three principal axes (i.e., the three principal eigenvectors
associated with the largest eigenvalues). The normalized eigen-
values associated with these axes are 22.5%, 13.5%, and 9%
(the next three principal axes carry much less information, as
indicated by their smaller normalized eigenvalues which are 6%,
6%, 4%). Namely, in this representation individual distances
between points are accurate, on the average, only to about 50%.
However, detailed analysis of the distribution of errors in PCA
projections has shown that for practical purposes the actual
quality of the projection is much higher than that. It was shown
that a relatively small number of poorly represented points skew

the average error to larger values, and that the majority of the
distances are represented to a much better accuracy (often the
median error is smaller by a factor of 2 compared to the average
error).14 This means that, for the most part, the error in the
projection is only on the order of 25%. Figure 3 demonstrates
that the joint projection indeed reflects conformational similarity.
Figures 3a and 3b show two conformations, one of the cyclic
analogue and the other of the linear analogue, which are
neighbors in the joint projection (taken from the region of
overlap between the two conformation volumes). The structural
similarity between these two conformations is apparent. Figure
3c, on the other hand, shows the helical structure of the lowest
energy conformation of (Ala)6. In the joint projection this
conformation, which is very different from the first two, appears
quite far away from the overlap region.

Figure 2 shows that, as expected, the conformation space
available to the cyclic analogueV′conf is dramatically smaller
than the conformation volume,Vconf, occupied by the linear
analogue, reflecting its reduced flexibility. Furthermore, at least
in this case, we find that the space accessible to the constrained

Figure 2. Joint projection of the available conformation spaces of linear (Ala)6 (triangles) and the cyclic (Ala)6 analogue (filled squares) onto the
optimal 3D principal axes (see text). The symbols indicate the projected conformations and the ellipsoids engulf the volume occupied by the
projected points. This projection shows that the conformation volume accessible to the cyclic analogue is a small subset of the conformation
volume accessible to the linear peptide, amounting in this case to 12% of the original volume. This reduction reflects the loss of flexibility and
conformational entropy upon cyclization.

Figure 3. Conformation similarity in joint PCA projections. The structurally similar conformations, the cyclic-(Ala)6 conformation (a) and the
linear (Ala)6 conformation (b), are neighbors in the joint projection of Figure 2 (both taken from the overlap region). The third conformation (c)
represents a dissimilar helical conformation (the lowest energy conformation of linear (Ala)6), which in the projection appears far from the overlap
region in Figure 2.
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analogue is indeed a subset of the original unconstrained
conformation space (Vconf ⊃ V′conf). To quantify this effect the
conformation volume of each analogue is estimated by the
volume of a 3D ellipsoid,V3D, which engulfs all of the points
associated with that conformation sample in the principal 3D
subspace. The ellipsoids are calculated by diagonalizing the 3
× 3 covarience matrices of the principal axes.15 In the present
case we find that the principal 3D volume of the cyclic analogue
is only 12% of the conformation volume available to the native
unconstrained molecule. It can be argued that the reduction in
conformation volume as a result of the cyclization reflects a
similar decrease in conformational entropy (where entropy is
proportional to the logarithm of the conformation volume). Since
the contribution of the higher principal axes is decreasingly
small, the logarithm of the 3D volume, lnV3D, is a very rough
estimate of the relative conformational entropy. Although this
is only a rough estimate, in the present case the ratio of the two
logarithms is 2.5, indicating that the molecule loses about 60%
of its conformational entropy upon cyclization. If this peptide
had any biological activity, the above result would be a
manifestation of the first scenario schematically depicted in
Figure 1a. Whether the cyclic analogue is active or not depends
on the overlap between the (small) volume it occupies in
conformation space and the region of bioactivityRbio prescribed
by the host.

Figure 4 shows the outlines of the available conformation
spaces of three (Ala)6 analogues jointly projected onto the same
principal 3D subspace (the nominal accuracy of this 3D
projection is 48%). In addition to the two analogues shown in
Figure 2, linear (Ala)6 and cyclic (Ala)6, Figure 4 also includes
the conformation space of the double proline substituted
analogue (Ala)2-(Pro)2-(Ala)2. The triple projection shows that
the double Pro substitution also decreases the flexibility of the
molecule, as demonstrated by a reduction in the volume it
occupies in conformation space. Note, however, that the
conformation constraint introduced by the double Pro substitu-
tion restricts the molecule to a different part of its original

conformation space. This situation demonstrates the scenario
depicted in Figure 1a, i.e., that different constrained analogues
may occupy different parts of the original conformation space,
resulting in different bioactivities. Applying the above 3D
volume calculation we find that the volume in conformation
space occupied by the double Pro substituted analogue (Ala)2-
(Pro)2-(Ala)2 is only 55% of the volume available to the native
peptide (compared to 12% available to the cyclic analog).
Repeating the same calculation with the single Pro substituted
analogue (Ala)2-Pro-(Ala)3 resulted in a much smaller reduc-
tion in the available space. For this analogue the available
volume in conformation space was 88% of that available to the
native peptide, indicating that a single Pro mutation has a much
smaller effect on the peptide’s flexibility. To conclude, these
results, which are summarized in Table 3, indicate that the
relative size of the conformation volumes occupied by the above
four peptide analogues is (Ala)6 > (Ala)2-Pro-(Ala)3 >
(Ala)2-(Pro)2-(Ala)2 > cyclic-(Ala)6.

Partially Overlapping Conformation Spaces.A nice dem-
onstration of the second scenario, in which bioactivity is related
to the degree of overlap between conformation spaces, was
found in the family of substance P (SP) analogues studied.

The seven SP analogues specified in Table 2, which differ
from one another by up to three enantiomericL to D amino acid
substitutions, were subjected to the same conformation sampling
protocol described above. This resulted in a 3500 conformation
sample. Because the range of energies spanned by each set of
500 conformations was very broad (between 70 and 80 kcal/
mol) the subsequent conformation space analysis was applied

Figure 4. Projection of the available conformation spaces of three alanine hexapeptide analogues onto a joint principal 3D subspace (for clarity,
only the ellipsoids engulfing the occupied volumes are shown). The projection includes the two analogues shown in Figure 2, linear (Ala)6 (dashed
line) and the cyclic (Ala)6 analogue (bold line), as well as the (Ala)2-(Pro)2-(Ala)2 analogue (solid line). Both cyclization and the double Pro
substitution reduce the flexibility of the molecule. However, the available conformation volume of (Ala)2-(Pro)2-(Ala)2 is reduced only to
approximately 55% of the original size, compared to 12% for the cyclic analogue. It is also seen that the two different constraints restrict the
molecule to different parts of the original conformation space (similar to the scenario depicted in Figure 1a).

TABLE 3: Relative Conformation Volumes of Four Analine
Hexapeptide Analogues

peptide % overlap with (Ala)6

(Ala)6 100%
(Ala)2-Pro-(Ala)3 88%
(Ala)2-(Pro)2-(Ala)2 55%
cyclic-(Ala)6 12%
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only to the 100 lowest-energy conformations of each peptide.
The energy range spanned by each set of 100 conformations
was only 16 to 28 kcal/mol. This restriction of the conformation
sample is equivalent to a rough application of the Boltzmann
factor, which preferentially weights the low energy structures.
Previous studies have shown that bioactivity of SP (i.e., binding
to the NK1 receptor) is dominated by the C-terminal half of
the molecule, starting with residue 6.2,17 To highlight the role
of flexibility and conformation constraints in the bioactive part
of the molecule, the distance measure used to compare peptide
conformation was the Cartesian backbone rms distance of the
C-terminal residues 6 to 11. When compared to distances based
on the whole 11-residue backbone it was found that the
contribution of the N terminal residues to the total rms distance
is relatively small (28% of the total distance).

The functional difference between the two halves of the
peptide is strongly correlated to the molecule’s flexibility
patterns: the functional C-terminal was found to be significantly
more flexible than the functionless N-terminal. Figure 5 shows
three aligned overlays of the 20 lowest energy conformations
of native SP. Even within this small sample the flexibility of
this molecule is striking, and so is the separate clustering of its
two termini. Aligning either the five N-terminal residues (Figure
5a) or the six C-terminal residues (Figure 5b) results in a
complete misalignment of the other terminal. It is interesting
to note that the residues in the functionless N-terminal adopt
very similar conformations (the CR rms distance of these five
residues is 0.64 Å). On the other hand, even when optimally
aligned, the functional C-terminal residues exhibit a broad range
of conformations (the CR rms distance of these six residues is
2.46 Å). The overall CR rms distance of these 20 conformations,
when aligned according to all 11 CR atoms, is 3.12 Å (Figure
5c). This result supports the use of a distance measure based
on the C-terminal residue. It also demonstrates that the
molecule’s flexibility is adequately represented by its 100 lowest
energy conformations.

Using the above distance measure, based on the C-terminal
residues, a 700× 700 joint distance matrix for all seven peptides
was constructed and submitted to PCoorA. Because all seven
conformations are rather similar, the resulting projection was
of a lower quality compared to projections obtained for other
systems. The accuracy of the best four-dimensional (4D)
projection was only 40% (the contributions of the individual
axes were: 20.2%, 8.0%, 5.9%, and 5.4%). The contribution
of the remaining individual axes, however, was even smaller.
Individual axes from the eighth principal axis and on contributed
less than 2% to the overall accuracy (less than 1% from the
15th axis and on). A better accuracy, close to 50%, was obtained
when the 4D joint projection was based on the lowest 50
conformations for each of the seven peptides (the contributions
of the individual axes were: 25.4%, 9.6%, 7.0%, and 6.1%).
Despite the rather poor average quality of the 4D projections,
the fact that the contribution of the other principal coordinates
is diminishingly small indicates that these 4D projections capture
most of the anisotropy in the system. Looking at the projections,
we found that all seven molecules occupy conformation volumes
of comparable sizes (i.e., they exhibit similar flexibility).

Next, the weighted 4D overlaps, between the conformation
spacesVconf of the seven SP analogues and the NK1 receptor’s
region of bioactivityRbio should be calculated. Because this
region of bioactivity is not known in itself, it is approximated
by the conformation volume occupied by the most potent
analogue in the seriesVconf

potent, which has a maximal amount of
overlap with the receptor’s region of bioactivity. Namely,

Rbio ≈ Vconf
potent, and eq 1 is rewritten as

Figure 5. Three aligned overlays of the 20 lowest-energy conforma-
tions of native substance P. The lowest energy conformation appears
in bold: (a) alignment based on the CR atoms of the 5 (functionless)
N-terminal residues; (b) alignment based on the CR atoms of the 6
(functional) C-terminal residues; (c) alignment based on the CR atoms
of all 11 residues. The flexibility of this molecule, the separate clustering
of the two termini and the fact that the functional C-terminal is
significantly more flexible than the functionless N-terminal, is clearly
seen.

binding affinity ∝ % overlap)
Vconf∩Vconf

potent

Vconf
(6)
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In this case the native SP has the largest binding affinity and
the weighted 4D overlaps are calculated between the conforma-
tion volumes of the six constrained SP analogues and the
conformation volume of native SP. As discussed above, the
calculations of the 4D overlaps are performed with a binning
algorithm in which the four axes are divided nonhomogeneously
to create equal weight bins. Axes with larger eigenvalues are
divided into more segments than axes with small eigenvalues.
The number of segments is set in proportion to the ratio between
eigenvalues. The ratio between the four largest eigenvalues in
the joint 4D projection of the SP analogues is roughly 4:1.5:
1:1 (for both the 50 conformation and 100 conformation
samples). Thus the number of divisions applied to these four
axes should be 8, 3, 2, and 2, respectively. This division,
however, results in 96 4D bins, which is too large for the size
of the data. To overcome this problem, fewer divisions along
the first and second principal axes are taken, resulting in a 4:2:
2:2 binning scheme. Namely, the first principal axis is divided
into 4 segments, the second axis into 2 segments, and the third
and fourth axes into 2 segments each. This partition results in
36 4D bins. An alternative 4:3:2:2 binning scheme (with 48
4D bins) was also tested. Both binning schemes yielded good
results.

The 4D overlaps, between the 4D volumes in conformation
space occupied by each of the six SP analogues and the volume
occupied by the native SP are calculated using the less restrictive
“weighted overlap measure”O| defined in eq 5. Since we are
interested in the percent of overlap between an SP analogue
and the native SP, the calculatedO| value is normalized by the
self-overlap of native SP with itself. Thus, the overlaps are
calculated using the following equation:

Pk
(i) is the population factor for molecule (i) at the 4D grid

point k, Pk
SP is the population factor for native SP,M is the

number of grid points included in the summation, andOSP is
the normalization factor reflecting the “self-overlap” of native
SP with itself (i.e., the result obtained when applying eq 5 to
calculate the overlap of native SP with itself).

Because the thresholdε changes the numberM of grid points
included in the summation, the results for both overlap measures,
O& and O|, depend on this value. In general, the role of the
thresholdε is to control the effect of the hole filling procedure,
which causes the population factorsPk

(i) of “filled holes” to
increase from zero to a small noninteger number on the order
of 1. To study the effect of the threshold on the calculated
overlaps and to select the most appropriate threshold value, the
calculation was repeated with a series of threshold values,ε )
0, 0.25, 0.5, ..., 1.5. Fortunately, in all cases we were able to
find a range of threshold values for which the calculated overlap
was not sensitive to small changes in the value ofε. Subsequent
overlap calculations were restricted to this region of stability.
For sample size of 100 conformations per molecule (a total of
700 conformations) the results were stable for threshold values
in the rangeε ) 1.00-1.25. For the smaller sample size (50
conformations per molecule) a lower threshold is necessary in
order to overcome the space data. The stability region in this
case was at threshold values in the rangeε ) 0.50-0.75.

Figure 6 shows the excellent correlation between the experi-
mental bioactivity of the seven SP analogues, measured by
-log(IC50) for the binding affinity to the NK1 receptor2 (see
Table 2) and the calculated percent of overlap,O|. Recall that

O| measures the overlap between the conformation space
volumes occupied by the SP analogues and the volume occupied
by native SP (maximal binding affinity). This very strong
correlation indicates that the scenario of “partially overlapping
conformation spaces” (Figure 1b) suits this family of peptides
very well. Evidently, the small conformation constraints,
imposed by the enantiomeric substitution ofL- to D-amino acids,
shift the volume in conformation space occupied by these
analogues relative to volume occupied by native SP (which
represents the region of bioactivityRbio imposed by the NK1
receptor).

The straight lines in Figure 6 are a linear regression fit to the
seven data points. An excellent correlation was obtained when
the overlaps were calculated using a 4:2:2:2 grid (filled circles;
the correlation factor in this case was 0.96). The linear equation
correlating the two quantities is

whereO| is in the range 0% to 100%. A very good correlation
between bioactivity and conformation space overlaps was also
obtained when the overlapO| was calculated using the alterna-
tive grid 4:3:2:2 (empty squares). The linear regression cor-
relation factor in this case was 0.90, but the values were shifted
toward lower values (the fitted line crosses the-log(IC50) ) 0
axis at 81%, compared to 94% for the first grid). The linear
equation correlating bioactivity and conformation space overlaps
calculated with the 4:3:2:2 grid is

The dashed curves in Figure 6 are linear fits to the same data
calculated after removing the native SP “anchor” point at 100%
overlap (only 6 data points to fit). The quality of these fits was

O| )
1

OSP

1

M
∑

k

Pk
(i) Pk

SP (k | Pk
(i) > ε | Pk

SP> ε) (7)

Figure 6. A strong correlation between the experimental bioactivity
of the seven conformationally constrained substance P (SP) analogues,
measured by-log(IC50) for the binding affinity to the NK1 receptor
(see Table 1), and the calculated percent of overlap,O|. Overlap is
calculated between the 4D conformation space volumes occupied by
these analogues and the 4D conformation space volume occupied by
native SP (which exhibits maximal binding affinity and represents the
receptor’s region of bioactivityRbio). The observed correlation indicates
that this family of peptides behaves according to the partially overlap-
ping conformation spaces scenario suggested in Figure 1b. Conforma-
tion space overlaps were calculated using two alternative grids: solid
circles were calculated on a 4:2:2:2 4D-grid, empty squares were
calculated on a 4:3:2:2 4D-grid (see text). Solid lines are linear
regression fits to the seven data points (the upper line is calculated for
the 4:2:2:2 grid results (solid circles)). Dashed lines are similar linear
fits calculated only for six data points, disregarding the “anchor” point
of native SP.

-log(IC50) ) -5.34+ 0.055xO| (8)

-log(IC50) ) -4.22+ 0.047xO| (9)
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similar to those which include the data point representing native
SP, although the slopes were slightly different (by 10% for the
better results obtained using the 4:2:2:2 grid, and by 30% for
the 4:3:2:2 grid).

The observed strong linear correlation suggests that, at least
in this case, the percent of overlap in conformation space can
be used as a QSAR-type descriptor for predicting the binding
affinity of these conformationally constrained analogues. Figure
7 is a QSAR-type plot comparing the experimentally observed
binding affinities of the seven peptides (represented as-log-
(IC50) values) to binding affinities calculated based on the degree
of conformation space overlaps. Filled circles were calculated
using the higher quality eq 8. The slope of the linear fit to the
data (solid line) is 0.92 and the regressionR factor is 0.96.
Empty squares were calculated using eq 9, which is of a
somewhat lower quality (the linear fit to the data is shown by
the dashed line). It thus seems, that at least for the given data
set the overlap between conformation volumes has a good
predictive power.

The predictive value of this measure is more justly tested
when the predicted point is not part of the training set. Figure
8 shows the same type of comparison between observed
bioactivity and predicted bioactivity as in Figure 7, but this time
each point is calculated by a QSAR equation (similar to eqs 8
and 9) calculated for the other six points (excluding the data
point to be predicted). The slope of the line in Figure 8 is 0.93
and the regressionR factor 0.927. Figure 8 clearly shows that
the correlation is again very strong, indicating that the overlap
in conformation space is indeed a reliable QSAR-type descriptor.

Considering the many uncertainties and errors associated with
the data points (both experimental and theoretical), the high
quality of the correlation is both surprising and reassuring. The
fact that very similar predictions were obtained for both grid
choices is a tribute to the stability and validity of the observed
correlations. The relative insensitivity to small changes in
technical parameters indicates that the suggested analysis may
be a useful practical approach for quantifying the effect of
conformation constraints in the context of QSAR. The observed

correlation also suggests that the method is relatively insensitive
to the many unavoidable errors in the data. Errors in the
experimental data are due to the coarse way in which Wang et
al.2 determined the binding affinities of the conformationally
constrained SP analogues (this was done to enable fast screening
of the very large number of molecules studied). In particular, it
should be noted, that the binding affinities of the inactive
analogues were determined only as IC50 > 10 000 nM (-log-
(IC50) < -4.0). This inevitably affects the accuracy of the
experimental data at the low-activity ends of Figures 6, 7, and
8. Errors are, of course, also inherent to the theoretically
calculated overlaps. These errors originate from incomplete
sampling, errors in the PCA projection and sensitivity to the
smoothing algorithm.

It should be noted that, in contrast to the good results obtained
in the present work, other authors were unsuccessful in fitting
a QSAR model to these data. In the original experimental work
of Wang et al.2 the authors tried to construct a QSAR model
for the conformationally constrained SP data set, using the
Free-Wilson approach,27 in which the partial contribution from
each amino acid is additive and independent of its neighbors (a
very strong assumption as far as conformation constraints are
concerned). A QSAR model was indeed formulated based on
the subset of 189 high and moderate affinity peptides (out of
the 512 peptides studied), but the overall fit of the data to that
model was only marginal. A similar poor fit to a QSAR model
was reported by Eriksson et al.28 with 39 conformationally
constrained SP analogues (these authors used the partial least-
squares fit method).

Spatially Separated Conformation Spaces and Specificity.
The third scenario, schematically sketched in Figure 1c, relates
the concept of conformation spaces to molecular specificity,
which is observed when there is more than one receptor (or
receptor subtype) that bind the bioactive molecules. The third
group of molecules analyzed in this study, the four conforma-
tionally constrained Arg-Gly-Asp (RGD) containing peptides,
gives a very good example for this scenario.

As discussed above, there are several different receptors that
bind the RGD sequence, which is the primary recognition site
for cell adhesion. Based on the work of Pierschbacher and
Ruoslahti,1 which showed that conformation constraints vary

Figure 7. QSAR-type plot comparing the experimentally observed
binding affinities of the seven SP analogues (represented as-log(IC50)
values) to the predicted binding affinities for this set of molecules.
The predicted-log(IC50) values are calculated based on the degree of
conformation space overlaps (Figure 6). Filled circles were calculated
using the higher quality eq 5 (the linear fit to the data is shown by the
solid line). Empty squares were calculated using eq 6, which is of a
somewhat lower quality (the linear fit to the data is shown by the dashed
line).

Figure 8. QSAR-type plot similar to Figure 7, but this time each point
is predicted using a QSAR equation (similar to eqs 5 and 6) calculated
from the other six points, excluding the data point to be predicted (using
the 4:2:2:2 grid). The slope of the line is 0.93 and the regressionR
factor 0.927.
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the binding affinity and specificity of RGD-containing sep-
tapeptides, four such peptides were selected for the present
analysis. The four RGD-containing septapeptides selected (Table
2) reflect a broad range of bioactivities, varying in their relative
affinities to the fibronectin receptor (FN) and to the vitronectin
receptor (VN). Two of the peptides were active but nonselective
(the unconstrained native and the peptide with an enantiomeric
substitutionD-Arg2). One conformationally constrained peptide
was not active at all (with an enantiomeric substitutionD-Asp4).
The fourth peptide, subjected to an end-to-end disulfide cy-
clization was very selective. It has an extremely high binding
affinity to the vitronectin receptor (VN) but practically no
affinity to the fibronectin receptor (FN). According to the
concepts suggested in Figure 1c, this range of activities and
binding specificities indicates that the different peptides occupy
disjoint regions in conformation space. The results of the
calculation verify these expectations.

Following the same procedure as above, 500 conformations
were generated for each of the four RGD-containing peptides
and joint PCoorA projections were carried out. Since, in this
case, bioactivity is clearly determined by the conformation (and
stereochemistry) of the Arg-Gly-Asp region itself, the distance
measure used to construct the joint distance matrix focused on
the structure of this peptide. Thus distances between conforma-
tions were measured in dihedral angle space and summing over
the seven dihedral angles (φ, ψ, ω) within this three amino acid
region. This measure is suitable for comparing the four peptides
to one another. Since the 500 conformations sampled for each
peptide spanned a very broad range of energies (ranges of about
60 kcal/mol) the joint projection was very crowded. Much
clearer PCA projections were obtained when the analysis was
limited to the lowest 100 or 50 conformations from each peptide

(energy ranges of about 10 kcal/mol). As before, the restriction
of the calculation to the lower energy conformations is
equivalent to a rough application of the Boltzmann factor. The
results for both sample sizes were similar, but for clarity we
report here the results obtained when using the 50 lowest
conformations of each peptide.

Figure 9 shows the best 2D projection (first two principal
axes) obtained when the four conformationally constrained
RGD-containing analogues were jointly projected (diagonal-
ization of a 200× 200 matrix). The accuracy of this 2D
projection is 50% (the accuracy of the associated 3D projection,
not shown, is 67%). A schematic ellipse highlights the region
of conformation space occupied by each of the peptides. A
similar picture is retained when the projection is based on the
100 lowest energy conformations for each peptide (diagonal-
ization of a 400× 400 distance matrix), although the conforma-
tion space ellipsoids become broader.

The projection in Figure 9 clearly shows that the expected
relationship between activity, specificity and conformation space
holds for this group of conformationally constrained peptides.
The two analogues which exhibit similar binding affinities and
lack of specificity, GRGDSPC and G-dR-GDSPC, occupy the
same area in conformation space, and have a similar conforma-
tion volume. The nonactive analogue, GRG-dD-SPC, on the
other hand, occupies a separate region in conformation space.
The fact that the conformation space of this analogue is disjoint
from the two active analogues agrees well with the suggested
scenario. Finally, the region of conformation space occupied
by the VN-specific cyclic analogue is also separated from
regions occupied by the other three molecules. This separation
in conformation space follows the scenario suggested in Figure
1c. It seems that the cyclic analogue was able to focus right on

Figure 9. Best 2D projection (first two principal axes) of four conformationally constrained Arg-Gly-Asp containing analogues (details in Table
2). The region of conformation space occupied by each of the peptides is highlighted by a schematic ellipsoid. The notation -dR- and -dD- indicate
the D enantiomer of that specific amino acid. The observed separation in conformation space correlates with binding affinities and specificity to
receptor subtypes, in agreement with the scenario outlined in Figure 1c. The two nonspecific peptides, GRGDSPC and G-dR-GDSPC, occupy one
area in conformation space. The nonactive analogue, GRG-dD-SPC, occupies a different area and so does the potent VN-specific cyclic analogue.
The projection is based on dihedral angle distances of seven torsion angles in the RGD region.
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top of the “VN region of bioactivity” and completely miss the
“FN region of bioactivity”, hence its potency and specificity.
This VN region of bioactivity is clearly broader than the area
covered by the cyclic analogue itself, since the two nonselective
peptides also show some affinity to this receptor.

Discussion

The present study suggests a conceptual framework for
discussing and quantifying the effect of molecular flexibility
and conformation constraints on the bioactivity of flexible
molecules. It is well known that conformation constraints can
dramatically alter the activity of numerous bioactive molecules
(including, but not limited to, peptides). In fact, introduction of
conformation constraints is one of the main avenues for
optimizing candidate drug molecules (the other avenue is, of
course, chemical modifications). However, while the role of
chemical modifications is relatively well understood by today’s
theory (electron transfer, ionic interactions, hydrophobic con-
tacts, and so forth) a quantitative approach to the conformational
aspect of the problem is lacking. This problem is especially
evident in QSAR, where chemical properties and even 3D
structural similarity are well accounted for, but for the most
part molecular flexibility and conformation constraints elude
quantification. In this study we quantifying these effects and
show how they can be harnessed toward predictive ends.

The concept underlying this study is that conformation
constraints and molecular flexibility are best discussed in terms
of “conformation volumes”, rather than in terms of individual
3D structures. The idea is to shift the focus from 3D structures
of a specific realization of the molecule to the rather abstract
“occupied volume in conformation space”,Vconf, in which each
conformation is no more than an abstract multidimensional point.
This shift allows us to consider at once the whole world of
conformations available to the molecule. Instead of asking
whether one specific conformation is similar to another specific
conformation, we ask the following questions: does the “world”
of conformations accessible to a given molecule overlap with
that of another molecule? how do conformation constraints
shrink or shift the volume in conformation space accessible to
the molecule? and so forth.

A second concept, introduced in this context, is the existence
of an externally determined region of bioactivityRbio in the
ligand’s conformation space (the shaded areas in Figure 1). This
region of bioactivity represents a collection ofall possibleligand
conformations which are compatible with the geometry of the
host’s binding site, regardless of whether the ligand can actually
adopt these conformations. Each host binding site, whether an
enzyme’s or a receptor’s, is characterized by a specific geometry
that presents a set of conformational requirements for the ligands
to fulfill. Binding can occur when the ligand adopts a conforma-
tion compatible with the requirements presented by the host
(assuming that the other, chemical, conditions are also obeyed).
In terms of conformation spaces, this means that the confor-
mational contribution to the binding affinity of a flexible ligand
is related to the Boltzmann weighted overlap between two
conformation space volumes: the host-prescribed region of
bioactivity Rbio and the region in conformation space actually
occupied by the ligand,Vconf. A large overlap between these
two volumes indicates a high probability for the ligand to adopt
a bioactive conformation, making it a highly potent binding
agent. A small overlap, or lack of overlap altogether, indicates
that the ligand is not active. The probability for this ligand to
adopt a binding conformation is very small.

As discussed above, recent theoretical and methodological
developments, which allow quantification and visualization of

multidimensional conformation spaces, make these concepts
tractable and suitable for practical application. In particular, these
methods rely on principal component projections to reduce the
dimensionality of large conformation samples. Jointly projecting
several molecules onto the same low-dimensional (principal)
space allows us to quantitatively compute the relative volume
available to each molecule and quantify the degree of overlap
between the region in conformation space accessible to one
molecule and the region populated by another. Correlating this
information with observed binding affinities allows us to infer
about the host’s region of bioactivity.

The three scenarios for the relation between conformation
constraints and bioactivity, which are discussed in this paper,
are examples of the type of analysis offered by the above
concepts. The fact that realistic systems actually follow these
schemes is a very promising proof of concept. It is clear,
however, that these three schemes cannot be exclusive and other
schemes are likely to exist. For example, the dynamic situation
upon which both ligand and receptor change their conformation
during the binding process is not accounted for by any of the
above scenarios.

The first scenario (Figure 1a) addresses the situation where
the primary effect of conformation constraints, such as backbone
cyclization, is to reduce the flexibility of the molecule. Reduced
flexibility means that fewer conformations are available to the
molecule, i.e., the region in conformation space accessible to it
is smaller than the region accessible to the unconstrained
analogue. This scenario was demonstrated by the series of
alanine hexapeptide analogues. These exhibit a gradual reduction
in the available conformation volume as the level of constraints
increases from a single Ala to Pro substitution to a double Ala
to Pro substitution and finally to a backbone cyclized analogue
(88%, 55% and 12% respectively). In addition, this set of
conformationally constrained analogues also demonstrates that
the different constraints confine the molecule to different parts
of its original conformation space.

The second scenario (Figure 1b) focuses on the case where
the primary effect of some more delicate conformation con-
straints, such asL to D enantiomeric substitution in peptides, is
to shift the region in conformation space accessible to the
molecule relative to host-prescribed region of bioactivity (with
little effect on the overall flexibility). As the accessible region
of conformation space is shifted away from the region of
bioactivity, the overlap between the two regions decreases and
the bioactivity of the molecule decreases too. The validity of
this scenario was demonstrated by a series of seven conforma-
tionally constrained substance P analogues (11 amino acid
peptides), which showed a very strong correlation between
overlaps in conformation space and the observed binding
affinity. The quality of the correlation was such that it allowed
us to use the multidimensional overlaps as a QSAR-type
molecular descriptor, and predict binding affinities based on
this descriptor. The resulting QSAR correlation was very strong.
Recall, that in this case the other “chemical” parameters are
unchanged (e.g., the chemical composition of the peptide),
allowing us to focus on the pure effect of the conformation
constraints. In a more general situation, such QSAR-type
descriptors for the effect of conformation constraints will have
to be weighted together with other “chemical” and “structural”
parameters.

It should be stressed, that while our theory is formulated in
terms of conformational overlaps with the host’s region of
bioactivity, the application to substance P analogues involved
a simplification. The conformation volume of the most active
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species was used in order to estimate the host’s region of
bioactivity. This simplification has the obviously serious
drawback that it cannot identify molecules that are more active
than the currently most active species, thus limiting its applica-
tion. Therefore, this simplification should be considered only
as a practical first step and not as the ultimate solution. For a
general application of this approach we are currently developing
methods for obtaining independent estimates of the host’s region
of bioactivity, which is based on sampling the conformation
volume within the binding site.

Finally, the third suggested scenario (Figure 1c) focused on
molecular specificity in the context of conformation space
analysis. In principle, different receptors (or receptor subtypes)
may have different conformational requirements from the ligand,
manifested by different regions of bioactivityRbio. A nonselec-
tive ligand would be flexible enough to engulf (or partially
overlap) both regions of bioactivity. Selective ligands, on the
other hand, preferentially correlate with one of these regions
(nonactive ligands misses both regions altogether). The validity
of this scenario was demonstrated by a family of four confor-
mationally constrained RGD-containing septapeptides. Since
there are at least two receptors that bind these peptides, it offers
an opportunity to test the relationship between conformation
spaces and binding specificity in a real chemical system. As
predicted, the regions in conformation space occupied by this
set of RGD-containing peptides were spatially separated ac-
cording to the binding patterns. The highly specific peptide,
the two active but nonspecific analogues as well as the nonactive
analogue each occupy different regions in conformation space.

Conclusions

The present study offers both a conceptual and a practical
framework for discussing and quantifying the effect of confor-
mation constraints on the binding affinity of flexible molecules
(assuming that the chemical composition of the molecules has
not changed). These effects are formulated in terms of the
overlap between the region in conformation space accessible
to the ligand and the pre-prescribed conformational requirements
imposed by the host molecule (region of bioactivity). The effect
of conformation constraints on the ligand’s flexibility and
stereochemistry is either to shrink (reduce flexibility) or shift
(change stereochemically) the volume in conformation space
accessible to the ligand. This changes the overlap between this
conformation volume and the host’s region of bioactivity and
the observed bioactivity changes along. Using a computational
procedure for analyzing molecular conformation space, it was
demonstrated that these concepts are valid in at least three
different flexible molecular systems. Moreover, we have shown
that the effects of conformation constraints in flexible molecules
can be quantitatively accounted for and used in a QSAR context.

Although the present study focused on bioactive peptides, it is
not restricted to these type of systems. In principle, the suggested
concepts and methodologies are applicable to the analysis of
any flexible molecule in a broad range of binding and clustering
situations.
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