

The world is resource limited:- in food - in fuel - in fresh water - in arable land - all competing with each other

New solutions must be found

Nails in Malthus's coffin came from quantum leaps – followed by incremental additions Next quantum leaps from biotechnology

Clase-Out Report

ex Ami Ben-Amotz

also – flat plate bioreactors– if outside – lots of steel – or blow away – high capital costs

Problems to be solved Domestication - How? - Choice of organisms - algae or cyanobacteria - triglyceride lipids -no quorum sensing - Contamination by unwanted organisms - Needed valuable co-products - Oil content and composition - If transgenic - spillage into environment Cooling Production and harvest costs

Target fuel biofeedstocks at \$600-800/T?

Need a reliable robust platform

Fishmeal is a major source for missing animal nutrients \$1400-2000/T Grain is missing key nutrients for monogastric animals – fish, poultry swine add enzymes, synthetic DL-methionine Carnivorous fish allergic to soybean Fishoil – same price range – smaller market

Feedstock market - larger potential size

Domesticate algae for both markets Economy of scale/experience to reduce costs Initial major technical problems choice of organisms (discussed) transformation beginning: sporadic - colonies in 6 weeks now: repeatable - colonies 7-10 days Later realized problems expression levels Two stages: 1. Developing a reliable platform

2. Engineering value-added traits

Developing a reliable platform

Overcoming barriers to domestication: solving system instability with herbicide resistance anti-microbial proteins both have secondary uses selectable marker replacement of feed antibiotics

29

1

Needed platform domestication traits/genes for algae		
Trait	Gene	
Herbicide resistance for	resistance to algal contamination	
glyphosate	Modified epsp synthase	
glufosinate fluorochloridone butafenacil	bar Mutant phytoene desaturase Mutant protoporphyrinogen oxidase	
Resistance to microorg	anisms	
<u>Bacteria/fungi</u> antimicrobial proteins Viruses	e.g. lactoferricin	
RNAi or overexpression Resistance to zooplank	Specific pieces of viral DNA or cDNA ton	
protozoans sea lice No quorum sensing <u>Maximum growth</u> smaller PSII antennae	antimicrobial peptides avermectins anti apoptosis genes tla1 gene	
systems/synthetic	New light reactions	
biology Heat tolerance	New dark reactions <i>psbA</i> double mutant and/or polygenes	
Δ = deleted section of g	ene resulting in inactivity.	

Value added domestication traits for algae used in aquaculture			
Trait	Gene		
Enhanced self digestibility	suppressed cell wall glycosyl transferases		
Enhanced feed digestibility	vacuolar sequestered carbohydrases		
Increasing methionine content	cystathionine synthase + zein peptide		
Increasing lysine content	insensitive dihydrodipicolinate synthase		
Enriching omega 3 fatty acids	ALA, EPA and elongases		
Release bound PO4, Fe, Zn	phytase		
Increase iron content	Inactive ferritin		
Increase Cu and Zn	Inactive CuZn superoxide dismutase		
Remove fishy odor	Express trimethylamine oxidase		
Feed efficiency enhancement	Antimicrobial peptides		
Controlling sea lice	Avermectins		
Vaccines	various genes		
Increase growth rate of fish	Fish growth hormone		

approx. % o	f linid)
Phaeo- dactvlum	Isochrysis
	0.1
	0.6
30	13
	dactylum 30 from literatur

ſ

What about non-transgenic algae? no environmental risks from spills?
Hans Bergmans:
Can be more dangerous than transgenic if: non-native
"The paradox of the plankton" one thing in lab another in the field native predictable
Many jurisdictions: "you may not introduce non- native strains!!!" Hampers development Solution: deletion mutation of unneeded genes - e.g. chlorate resistant mutations

 Ultra low volume algae (3-5 mm thick) less medium to sterilize - easier dewatering less pumping - cooling simpler - NIR passes
 How do we get CO₂ in without sparging?
 How do we mix cells? Get rid of O₂?
 -generate waves!

joogle

Summary: Marine microalgae	
- do not compete for land and water	
- sequester industrial carbon dioxide	
- fertilizer efficient	
- high productivity - multiple products	
- need domestication - transgenically for:	
reliability - productivity- composition	
Eventually - for feed and fuel	
Can be the next two nails in Malthus's	
coffin; one for fuel limitation, one for feed	

Г

<u>Thanks to:</u>

past and present TransAlgae Scientists Drs. Ofra Chen, Shai Ufaz, Daniella Schatz, Doron Eisenstadt, Ami Schlesinger, Shai Einbinder with whom I have learned a lot

To: Dutch regulators: Cécile J.B. van der Vlugt, and J.E.N. (Hans) Bergmans To: David Sourdive (Cellectis) To: Eng. Mike Granot who is designing new photobioreactors with me

(and to Google images)

