Bibliography for Cholinesterases
by Kurt Giles
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Arpagaus M., Richier P., Berge J.-B. and Toutant J.-P. (1992) Acetylcholinesterases of the nematode Steinernema carpocapsae. Eur. J. Biochem. 207, 1101-1108.
Arpagaus M., Fedon Y., Cousin X., Chatonnet A., Berg J.-B., Fournier D. and Toutant J.-P. (1994) cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans. J. Biol. Chem. 269, 9957-9965.
Atack J. R., Perry E. K., Bonham J. R., Candy J. M. and Perry R. H. (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J. Neurochem. 47, 263-277.
Bergmann F., Wilson I. B. and Nachmansohn D. (1950) The inhibitory effect of stilbamidine, curare and related compounds and its relationship to the active groups of acetylcholine esterase. Action of stilbamidine upon nerve impulse conduction. Biochem. Biophys. Acta 6, 217-224.
Bergmann F., Rimon S. and Segal R. (1958) Effect of pH on the activity of eel esterase towards different substrates. Biochem. J. 68, 493-499.
Bon S., Mflah K., Musset F., Grassi J. and Massoulié J. (1987) An immunoglobulin M monoclonal antibody, recognizing a subset of acetylcholinesterase molecules from electric organs of Electrophorus and Torpedo, belongs to the HNK-1 anti- carbohydrate family. J. Neurochem. 49, 1720-1731.
Boschetti N., Liao J. and Brodbeck U. (1994) The membrane form of acetylcholinesterase from rat brain contain a 20kDa hydrophobic anchor. Neurochem. Res. 19, 359-365.
Carroll R. T. and Emmerling M. R. (1991) Identification of the trypsin-like activity in commercial preparations of eel acetylcholinesterase. Biochem. Biophys. Res. Com. 181, 858-862.
Changeux J.-P. (1966) Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol. Pharmacol. 2, 369-392.
Chatonnet A. and Masson P. (1986) Is the peptidase activity of highly purified human plasma cholinesterase due to a specific cholinesterase isoenzyme or a contaminating dipeptidylaminopeptidase? Biochimie 68, 657-667.
Checler F. and Vincent J.-P. (1989) Peptidasic activities associated with acetylcholinesterase are due to contaminating enzymes. J. Neurochem. 53, 924-928.
Chubb I. W., Hodgson A. J. and White G. H. (1980) Acetylcholinesterase hydrolyzes substance P. Neurosci. 5, 2065-2072.
Chubb I. W., Ranieri E., White G. H. and Hodgson A. J. (1983) The enkephalins are amongst the peptides hydrolyzed by purified acetylcholinesterase. Neurosci. 10, 1369-1377.
Crow T. J. and Grove-White I. G. (1973) An analysis of the learning deficit following hyosine administration to man. Br. J. Pharmac. 49, 322-327.
Cunningham L. W. (1957) Proposed mechanism of action of hydrolytic enzymes. Science 125, 1145-1146.
Dale H. H. (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. Exptl. Therap. 6, 147-190.
Dary O. and Wedding R. T. (1990) Absence of substrate inhibition and freezing- inactivation of the mosquito acetylcholinesterase are caused by alterations of hydrophobic interactions. Biochim. Biophys. Acta 1039, 103-109.
Davies P. and Maloney A. J. F. (1976) Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet II (8000), 1403.
Davis K. L., Mohs R. C., Tinklenberg J. R., Pfefferbaum A., Hollister L. E. and Kopell B. S. (1978) Physostigmine: improvement of long-term memory processes in normal humans. Science 201, 272-274.
Drachman D. A. and Leavitt J. (1974) Human memory and the cholinergic system. Arch. Neurol. 30, 113-121.
Duval N., Bon S., Silman I., Sussman J. and Massoulié J. (1992) Site-directed mutagenesis of active-site-related residues in Torpedo acetylcholinesterase. FEBS Lett. 309, 421-423.
Eichler J., Anselmet A., Sussman J. L., Massoulié J. and Silman I. (1994) Differential effects of "peripheral" site ligands on Torpedo and chicken acetylcholinesterase. Mol. Pharmacol. 45, 335-340.
Friede R. L. (1965) Enzyme histochemical studies of senile plaques. J. Neuropath. Exptl. Neurol. 24, 477-491.
Fuentes M.-E., Rosenberry T. L. and Inestrosa N. C. (1988) A 13kDa fragment is responsible for the hydrophobic aggregation of brain G4 acetylcholinesterase. Biochem. J. 256, 1047-1050.
Gennari K., Brunner J. and Brodbeck U. (1987) Tetrameric detergent-soluble acetylcholinesterase from human caudate nucleus: subunit composition and number of active sites. J. Neurochem. 49, 12-18.
Getman D. K., Eubanks J. H., Camp S., Evans G. A. and Taylor P. (1992) The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7. Am. J. Hum. Genet. 51, 170-177.
Geula C. and Mesulam M. (1989) Special properties of cholinesterases in the cerebral cortex of Alzheimer's disease. Brain Res. 498, 185-189.
Gibney G., Camp S., Dionne M., MacPhee-Quigley K. and Taylor P. (1990) Mutagenesis of essential functional residues in acetylcholinesterase. Proc. Natl. Acad. Sci. USA 87, 7546-7550.
Greenfield S. A., Jack J. J. B., Last A. T. J. and French M. (1988) An electrophysiological action of acetylcholinesterase independent of its catalytic site. Exp. Brain Res. 70, 441-444.
Grochulski P., Li Y., Schrag J. D., Bouthillier F., Smith P., Harrison D., Rubin B. and Cygler M. (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J. Biol. Chem. 268, 12843-12847.
Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P. H., Silman I. and Sussman J. L. (1993) Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90, 9031-9035.
Inestrosa N. C. and Ruiz G. (1985) Membrane-bound form of acetylcholinesterase activated during postnatal development of the rat somatosensory cortex. Dev. Neurosci. 7, 120-132.
Inestrosa N. C., Roberts W. L., Marshall T. L. and Rosenberry T. L. (1987) Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J. Biol. Chem. 262, 4441-4444.
Krupka R. M. (1963) The mechanism of action of acetylcholinesterase: substrate inhibition and the binding of inhibitors. Biochemistry 2, 76-82.
Last A. T. J. and Greenfield S. A. (1987) Acetylcholinesterase has a non-cholinergic neuromodulatory action in the guinea-pig substantia nigra. Exp. Brain Res. 67, 445- 448.
le Du M. H., Marchot P., Bougis P. E. and Fontecilla-Camps J. C. (1992) 1.9-Å Resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom. J. Biol. Chem. 267, 22122-22130.
Li Y., Camp S. and Taylor P. (1993) Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268, 5790-5797.
Liao J., Nørgaard-Pedersen B. and Brodbeck U. (1993) Subunit association and glycosylation of acetylcholinesterase from monkey brain. J. Neurochem. 61, 1127- 1134.
Loewi O. and Navratil E. (1926) Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. 214, 689-696.
MacPhee-Quigley K., Taylor P. and Taylor S. (1985) Primary structure of the catalytic subunits from two molecular forms of acetylcholinesterase. J. Biol. Chem. 260, 12185-12189.
Majumdar R., Jayanthi L. D. and Balasubramanian A. S. (1988) A peptidase activity associated with acetylcholinesterase from electric eel and sheep basal ganglia. Ind. J. Biochem. Biophys. 25, 303-312.
Massoulié J., Sussman J. L., Doctor B. P., Soreq H., Velan B., Cygler M., Rotundo R., Shafferman A., Silman I. and Taylor P. (1992a) Recommendations for nomenclature in cholinesterases. In: Multidiciplinary Approaches to Cholinesterase Functions, pp. 285-288. Eds. Shafferman A. and Velan B., Plenum Press, New York.
Massoulié J., Bon S., Anselmet A., Chatel J.-M., Coussen F., Duval N., Krejici E., Legay C. and Vallette F. (1992b) Biosynthesis of the molecular forms of acetylcholinesterase. In: Multidisciplinary Approaches to Cholinesterase Functions, pp. 17-24. Eds. Shafferman A. and Velan B., Plenum Press, New York.
Massoulié J., Pezzementi L., Bon S., Krejci E. and Vallette F.-M. (1993) Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41, 31-91.
McGuire M., Nogueira C. P., Bartels C. F., Lightstone H., Hajra A., Van der Spak A. F. L., Lockridge O. and La Du B. (1989) Identification of the structural mutation responsible for the dibucane-resistant (atypical) variant form of human serum cholinesterase. Proc. Natl. acad. Sci. USA 86, 853-957.
Mesulam M.-M., Geula C. and Morán M. A. (1987) Anatomy of cholinesterase inhibition in Alzheimer's disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann. Neurol. 22, 683-691.
Mesulam M.-M. and Morán M. A. (1987) Cholinesterases within neurofirillary tangles related to age and Alzheimer's disease. Ann. Neurol. 22, 223-228.
Morán M. A., Mufson E. J. and G—mez-Ramos P. (1993) Colocalization of cholinesterases with b amyloid protein in aged and Alzheimer's brains. Acta Neuropathol. 85, 362-369.
Muller F., Dumez Y. and Massouli J. (1985) Molecular forms and solubility of acetylcholinesterase during the embryonic development of rat and human brain. Brain Res. 331, 295-302.
Nachmansohn D. and Wilson I. B. (1951) The enzymic hydrolysis and synthesis of acetylcholine. Advan. Enzymol. 12, 259-339.
Navaratnam D. S., Priddle J. D., McDonald B., Esiri M. M., Robinson J. R. and Smith A. D. (1991) Anomalous molecular form of acetylcholinesterase in cerebrospinal fluid in histologically diagnosed Alzheimer's disease. Lancet 337, 447-450.
Nordberg A. and Winblad B. (1993) Cholinesterase inhibitors in Alzheimer's disease. Acta Neurol. Scand. Suppl. No. 149, Vol. 88.
O'Brien R. D. (1969) Phosphorylation and carbamylation of cholinesterase. Ann. N. Y. Acad. Sci. 160, 204-214.
Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J., Sussman J. L., Verschueren K. H. G. and Goldman A. (1992) The a/b hydrolase fold. Protein Engineering 5, 197-211.
Perry E. K. and Perry R. H. (1980) The cholinergic system in Alzheimer's disease. In: Biochemistry of Dementia, pp. 135-183. Ed. Roberts P. J., John Wiley & Sons Ltd., New York.
Radic Z., Reiner E. and Taylor P. (1991) Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol. Pharmacol. 39, 98-104.
Radic Z., Pickering N. A., Vellom D. C., Camp S. and Taylor P. (1993) Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 32, 12074-12084.
Radic Z., Duran R., Vellom D. C., Li Y., Cervernasky C. and Taylor P. (1994) Site of fasciculin interaction with acetylcholinesterase. J. Biol. Chem. 269, 11233-11239.
Ripoll D. R., Faerman C. H., Axelsen P. H., Silman I. and Sussman J. L. (1993) An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90, 5128-5132.
Roberts W. L., Myher J. J., Kuksis A., Low M. G. and Rosenberry T. L. (1988a) Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. J. Biol. Chem. 263, 18766-18775.
Roberts W. L., Santikarn S., Reinhold V. N. and Rosenberry T. L. (1988b) Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometry. J. Biol. Chem. 263, 18776-18784.
Rosenberry T. L. (1975) Acetylcholinesterase. Advan. Enzymol. 43, 103-218.
Rylett R. J., Ball M. J. and Colhoun E. H. (1983) Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer's disease. Brain Res. 289, 169-175.
Schätz C. R., Geula C. and Mesulam M. (1990) Competitive substrate inhibition in the histochemistry of cholinesterase activity in Alzheimer's disease. Neurosci. Lett. 117, 56-61.
Schegg K. M., Harrington L. S., Neilsen S., Zweig R. M. and Peacock J. H. (1992) Soluble and membrane-bound forms of brain acetylcholinesterase in Alzheimer's disease. Neurobiol. Ag. 13, 697-704.
Schrag J. D., Li Y., Wu S. and Cygler M. (1991) Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351, 761-764.
Schumacher M., Camp S., Maulet Y., Newton M., MacPhee-Quigley K., Taylor S. S., Friedmann T. and Taylor P. (1986) Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 319, 407-409.
Shafferman A., Velan B., Ordentlich A., Kronman C., Grosfeld H., Leitner M., Flashner Y., Cohen S., Barak D. and Ariel N. (1992) Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 11, 3561-3568.
Silver A. (1974) The Biology of Cholinesterases. North-Holland publishing Co. Ltd., Amsterdam.
Sims N. R., Bowen D. M., Smith C. C. T., Flack R. H. A., Davison A. N., Snowden J. S. and Neary D. (1980) Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer's disease. Lancet I (8164), 333-335.
Small D. H., Moir R. D., Fuller S. J., Michaelson S., Bush A. I., Li Q.-X., Milward E., Hilbich C., Weidemann A., Beyreuther K. and Masters C. L. (1991) A protease activity associated with acetylcholinesterase releases the membrane-bound form of the amyloid protein precursor of Alzheimer's disease. Biochemistry 30, 10795-10799.
Smith A. D. and Cuello A. C. (1984) Alzheimer's disease and acetylcholinesterase- containing neurons. Lancet I (8375), 513.
Stedman E., Stedman E. and Easson L. H. (1932) Choline-esterase. An enzyme present in the blood-serum of the horse. Biochem. J. 26, 2056-2066.
Stoscheck C. M. (1987) Protein assay sensitive at nanogram levels. Anal. Biochem. 160, 301-305.
Sussman J.L., Harel M., Frolow F., Varon L., Toker L., Futerman A. H. and Silman I. (1988) Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C. J. Mol. Biol. 203, 821-823.
Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L. and Silman I. (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872-879.
Taylor P. (1992) Impact of recombinant DNA technology on past and future studies on acetylcholinesterase. In: Multidisciplinary Approaches to Cholinesterase Functions, pp. 1-15. Eds. Shafferman A. and Velan B., Plenum Press, New York.
Toutant J.-P., Roberts W. L., Murray N. R. and Rosenberry T. L. (1989) Conversion of human erythrocyte acetylcholinesterase from an amphiphilic to a hydrophibic form by phosphatidylinositol-specific phospholipase C and serum phospholipase D. Eur. J. Biochem. 180, 503-508.
Velan B., Grosfeld H., Kronman C., Leitner M., Gozes Y., Lazar A., Flashner Y., Marcus D., Cohen S. and Shafferman A. (1991) The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. J. Biol. Chem. 266, 23977-23984.
Wilson I. B., Bergmann F. and Nachmansohn D. (1950) Acetylcholinesterase X. Mechanism of the catalysis of acylation reactions. J. Biol. Chem. 186, 781-790.
Wood P. L., Etienne P., Lal S., Nair N. P. V., Finlayson M. H., Gauthier S., Palo J., Haltia M., Paetau A. and Bird E. D. (1983) A post-mortem comparison of the cortical cholinergic system in Alzheimer's disease and Pick's disease. J. Neurol. Sci. 62, 211- 217.
Wright C. I., Geula C. and Mesulam M.-M. (1993) Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 683-686.
To the Silman/Sussman Group Site