Chapter 14: One- and Two-Photon Electronic Spectroscopy
Resonance Raman intersites calculated via the Fourier transform of wavepacket cross-correlation functions.
The resonance Raman intensity
is calculated as the absolute value squared of
the Half-Fourier transform of the cross-correlation function,
at frequency
where the polarizability α a is given by:
Here,
is the incident light frequency,
is the scattered light frequency, and k
is a constant. The program calculates the cross-correlation functions and resonance Raman spectrum for transitions 0 → n, where the ground and excited state potentials are harmonic oscillators and 0 and n are the ground state vibrational quantum numbers.
The resonance Raman intensity
![The Actual Formul](ch14/img/formul145.png)
![The Actual Formul](ch14/img/formul146.png)
![The Actual Formul](ch14/img/formul151.png)
![The Actual Formul](ch14/img/formul147.png)
![The Actual Formul](ch14/img/formul148.png)
![The Actual Formul](ch14/img/formul149.png)
![The Actual Formul](ch14/img/formul150.png)
![The Actual Formul](ch14/img/formul152.png)
![The Actual Formul](ch14/img/formul139.png)
![(Animation) A.](ch14/rmn2.gif)
![The Actual Formul](ch14/img/formul140.png)
![(IMG) B.](ch14/new_rmn1.gif)
![The Actual Formul](ch14/img/formul141.png)
![(IMG) C.](ch14/new_rmn3.gif)
![The Actual Formul](ch14/img/formul142.png)
![(IMG) D.](ch14/new_rmn4.gif)
![The Actual Formul](ch14/img/formul144.png)
![(IMG) E.](ch14/new_rmn5.gif)
![The Actual Formul](ch14/img/formul143.png)
![(IMG) F.](ch14/new_rmn6.gif)