Reflection coefficient from a semi-infinite structure in the discrete emitter array

(Dated: January 15, 2024)

We consider an excitation propagating in the semi-infinite array of emitters. The amplitude of the excitation satisfies the equation:

$$
\begin{equation*}
-\mathrm{i} \gamma_{1 \mathrm{D}} \sum_{n=1}^{\infty} \mathrm{e}^{\mathrm{i} \varphi|m-n|} \psi_{n}=\omega \psi_{m}, \quad m=1,2 \ldots \tag{1}
\end{equation*}
$$

Goal: prove that that solution of Eqs. (1) can be presented in the form

$$
\begin{equation*}
\psi_{m}=\mathrm{e}^{-\mathrm{i} K(m-1)}+r \mathrm{e}^{\mathrm{i} K(m-1)} \tag{2}
\end{equation*}
$$

where K is the polariton wave vector at the frequency ω and r is the reflection coefficient of the polariton from the internal boundary the structure. Find the reflection coefficient r.

Hint ${ }^{11}$
${ }^{1}$ M. Voronov, E. Ivchenko, M. Erementchouk, L. Deych, and A. Lisyansky, J. of Luminescence 125, 112 (2007).

