Nonconjugated orthogonality for non-Hermitian

 Hamiltonian(Dated: August 16, 2023)

Consider an eigenvalue problem

$$
\begin{equation*}
\sum_{n=1}^{N} H_{m, n}^{(\nu)} \psi_{n}^{(\nu)}=\omega^{(\nu)} \psi_{m}^{(\nu)} \tag{1}
\end{equation*}
$$

with symmetric complex non-Hermitian $N \times N$ Hamiltonian matrix H, such that $H_{m, n}=$ $H_{n, m} \neq H_{m, n}^{*}$. Such non-Hermitian but symmetric Hamiltonians are ubiquitos for the problems where emitters are coupled to propagating photons.

Goal. Prove that the eigenvectors $\psi_{m}^{(\nu)}$ satisfy the non-conjugated orthogonality relationship

$$
\begin{equation*}
\sum_{m=1}^{N} \psi_{m}^{(\nu)} \psi_{m}^{(\mu)}=0 \text { if } \omega_{\mu} \neq \omega_{\nu} \tag{2}
\end{equation*}
$$

