Light reflection and transmission from a resonant emitter

(Dated: August 27, 2023)

We study scattering of an electromagnetic wave, propagating in a one-dimensional waveguide, on a resonant point light emitter, see Fig. 1. We describe light-emitter interaction by a wave equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} E(z)+q^{2} E(z)=-4 \pi q^{2} p \delta(z) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\frac{a}{\omega_{0}-\omega-\mathrm{i} \gamma} E(0), \tag{2}
\end{equation*}
$$

characterizes the resonant polarization of the emitter. Here, $E(z)$ is the amplitude of the electric field at the frequency $\omega, q=\omega / c$ is the light wave vector, ω_{0} is the resonant frequency of the emitter, γ is the phenomenological decay rate, characterizing the nonradiative processes withing the emitter. An electromagnetic wave with the amplitude E_{0} is incident from the left and is scattered on the emitter, which means that

$$
E(z)= \begin{cases}E_{0}\left(\mathrm{e}^{\mathrm{i} q z}+r \mathrm{e}^{-\mathrm{i} q z}\right), & z<0 \tag{3}\\ E_{0} t \mathrm{e}^{\mathrm{i} q z}, & z>0\end{cases}
$$

Here, r and t are the light reflection and transmission coefficients.
Goal 1: Prove, that reflection and transmission coefficients can be presented in the form

$$
\begin{equation*}
r(\omega)=\frac{\mathrm{i} \gamma_{1 \mathrm{D}}}{\omega_{0}-\omega-\mathrm{i}\left(\gamma_{1 \mathrm{D}}+\gamma\right)}, t(\omega)=\frac{\omega_{0}-\omega-\mathrm{i} \gamma}{\omega_{0}-\omega-\mathrm{i}\left(\gamma_{1 \mathrm{D}}+\gamma\right)} . \tag{4}
\end{equation*}
$$

Find the expression for the parameter $\gamma_{1 \mathrm{D}}$, that characterizes spontaneous decay rate of the emitter in the waveguide.

FIG. 1 Schematics of light reflection and transmission from a scatterer.

Goal 2: Calculate the quantity $1-\left|r^{2}(\omega)\right|-\left|t(\omega)^{2}\right|$ for $\gamma=0$ and for arbitrary real γ. Explain, what is the physical meaning of this quantity.

