Light reflection and transmission from two emitters

(Dated: January 15, 2024)

We consider scattering of light propagating in a waveguide from two identical resonant emitters. Each emitter is characterized by the same amplitude reflection and transmission coefficients

$$
\begin{equation*}
r(\omega)=\frac{\mathrm{i} \gamma_{1 \mathrm{D}}}{\omega_{0}-\omega-\mathrm{i} \gamma_{1 \mathrm{D}}}, t(\omega)=\frac{\omega_{0}-\omega-\mathrm{i} \gamma}{\omega_{0}-\omega-\mathrm{i} \gamma_{1 \mathrm{D}}} . \tag{1}
\end{equation*}
$$

The distance between the emitters is d so that the phase gained by light when travelling between two emitters is $\varphi=\omega d / c$.

Goal 1. Calculate the amplitude reflection coefficient $r_{2}(\omega)$ of light reflected from both emitters.

Goal 2. Calculate numerically and plot on the same graph three reflection spectra $\left|r_{2}(\omega)\right|^{2}$ for $\varphi\left(\omega_{0}\right)=\pi / 4, \pi / 2, \pi$ in the frequency range $\left(\omega-\omega_{0}\right) / \gamma_{1 \mathrm{D}}=-5 \ldots 5$. Assume that the frequency dependence of φ in this range can be neglected.

