Reflection from N scatterers

(Dated: January 16, 2024)

We consider light reflection from a periodic structure containing N unit cells, see Fig. 1 . The transfer matrix through 1 unit cell is given be

$$
T=\frac{1}{t_{1}}\left(\begin{array}{cc}
t_{1}^{2}-r_{1}^{2} & r_{1} \tag{1}\\
-r_{1} & 1
\end{array}\right) .
$$

Goal: Calculation reflection coefficients r_{N} and t_{N} for the structure. Express them via r_{1}, t_{1} and the eigenvalues of the transfer matrix $\exp (\pm \mathrm{i} K)$.

Answer:

$$
\begin{equation*}
r_{N}=\frac{r_{1} \sin (N K)}{\sin (N K)-t_{1} \sin [(N-1) K]}, t_{N}=\frac{t_{1} \sin K}{\sin (N K)-t_{1} \sin [(N-1) K]}, \tag{2}
\end{equation*}
$$

Hint: The solution can be found e.g. in (Ivchenko et al., 1994) and (Ivchenko, 2005), see also (Yariv and Yeh, 2002).

References

Ivchenko, E. L., 2005, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International, Harrow, UK).

Ivchenko, E. L., A. I. Nesvizhskii, and S. Jorda, 1994, Phys. Solid State 36, 1156.
Yariv, A., and P. Yeh, 2002, Optical waves in crystals: propagation and control of laser radiation (Wiley, New York).

FIG. 1 Schematics of light reflection and transmission from a structure with N scatterers.

