Reciprocity of scattering on array of resonant emitters in 1D

(Dated: January 22, 2024)

We study scattering of an electromagnetic wave, propagating in a one-dimensional waveguide, on an array of identical resonant point light emitters located at the points z_n , see Fig. 1. We describe light-emitter interaction by a wave equation

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2}E(z) + q^2 E(z) = -4\pi q^2 \sum_{n=1}^N p_n \delta(z - z_n), \tag{1}$$

where the dipole moment

$$p_n = \frac{1}{2\pi q} \frac{\gamma_{\rm 1D}}{\omega_0 - \omega - \mathrm{i}\gamma} E(0) , \qquad (2)$$

characterizes the resonant polarization of the emitter. Here, E(z) is the amplitude of the electric field at the frequency ω , $q = \omega/c$ is the light wave vector, ω_0 is the resonant frequency of the emitter, γ is the phenomenological decay rate, characterizing the nonradiative processes withing the emitter and γ_{1D} is the radiative decay rate. An electromagnetic wave is incident upon the emitters from either from the left ($E_{0,\rightarrow}(z) = e^{iqz}$) or from the right ($E_{0,\leftarrow}(z) = e^{-iqz}$).

Goal: Prove that the amplitude transmission coefficients of the electromagnetic wave from left to right t_{\rightarrow} and from the right to left t_{\leftarrow} are equal.

Tip: A useful intermediate result is

$$t_{\to} = 1 + \sum_{n,m=1}^{N} e^{iq(z_m - z_n)} G_{nm}, \quad t_{\leftarrow} = 1 + \sum_{n,m=1}^{N} e^{iq(z_n - z_m)} G_{nm} , \qquad (3)$$

where the matrix Green function G_{nm} is the inverse of the matrix

$$(\omega_0 - \omega - i\gamma)\delta_{mn} - i\gamma_{1D}e^{iq|z_m - z_m|}$$

FIG. 1 Schematics of resonant light scattering on N = 3 emitters.