Transfer matrix of a general scatterer

(Dated: January 15, 2024)

We consider one-dimensional problem of light scattering on a general object, see Fig. 1. The scattering is characterized by the transfer matrix T that can be conveniently expressed in the basis of right-propagating $\left(E^{+}\right)$and left-propagating $\left(E^{-}\right)$waves

$$
E(z)= \begin{cases}E_{\text {left }}^{+} \mathrm{e}^{\mathrm{i} q_{l} z}+E_{\text {left }}^{-} \mathrm{e}^{-\mathrm{i} q_{l} z} & (z<0) \tag{1}\\ E_{\text {right }}^{+} \mathrm{e}^{\mathrm{i} q_{r}(z-L)}+E_{\text {right }}^{-} \mathrm{e}^{-\mathrm{i} \mathrm{i}_{r}(z-L)} & (z>L)\end{cases}
$$

where $q_{r, l}$ are light wave vectors from the left and from the right of the scatterer. The 2×2 matrix T relates the electric field amplitudes by

$$
\begin{equation*}
\binom{E_{\text {right }}^{+}}{E_{\text {right }}^{g}}=T\binom{E_{\text {left }}^{+}}{E_{\text {left }}^{-}} . \tag{2}
\end{equation*}
$$

Goal: Express the transfer matrix elements via the complex reflection coefficients r_{\hookleftarrow}, r_{\hookrightarrow} and transmission coefficients $t_{\rightarrow}, t_{\rightarrow}$ corresponding to the initial wave incidence from the left and right sides, as illustrated in Fig. 1.

FIG. 1 Definition of reflection coefficients $r_{\leftarrow}, r_{\hookrightarrow}$ and transmission coefficients $t_{\rightarrow}, t_{\leftarrow}$ of light, incident upon the scatterer with length L from left (a) and right (b) half-spaces, respectively.

