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Resonant light reflection and transmission spectra for are calculated for heterostructures with a
finite system of equidistant quantum wells. Recurrence relations connecting amplitude

reflection coefficients for systems of N and N —2 quantum wells are derived. The analytical
properties of the reflection coefficient as a function of the complex frequency w are analyzed. A
method is proposed for taking into account the mirror symmetry of a system of N quantum
wells and permitting one to find the complex frequencies of mixed exciton-photon unstationary
excitations, or exciton polaritons. The resonant Bragg structures are shown to be a special

case, where only one of the N eigenmodes is radiative.

INTRODUCTION

Light wave propagation in a layered medium is a classi-
cal problem in solid state optics.'”> Comprehensive research
performed for many years in this area has culminated not
only in developing complex multilayered structures with re-
markable reflection and antireflection properties having an
application potential, but in observing some specific optical
phenomena in such structures as well. This work develops a
theory of light reflection and transmission near the exciton
resonance frequency in a structure with a system of equidis-
tant quantum wells, where the optical thickness D between
the neighboring wells is comparable to the wavelength X\ in
vacuum. Particular attention is focused on the Bragg reflec-
tion, where the condition D =\/2 is met. Earlier studies dealt
with resonant reflection from single quantum wells*~® or
short-period heterostructures with D/A<1.7-"

1. GENERAL EXPRESSIONS FOR THE REFLECTION AND
TRANSMISSION COEFFICIENTS

Let us consider a heterostructure containing N quantum
wells separated by a distance d (Fig. 1). The reflection coef-
ficient for this structure can be appropriately written

2

) (1)
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R=|—m—

-~ i
1+r‘)er62’¢

where ry, is the amplitude reflection coefficient at the inter-
face between vacuum and the outermost barrier layer, Fy is
the coefficient of reflection inside the structure from the sys-
tem of N quantum wells, i.e. the amplitude ratio of the re-
flected and transmitted waves at the plane shifted by d/2
from the center of the left-hand well, and ¢’ is the phase
change a wave undergoes in travelling a distance / in the
barrier (see Fig. 1).

The quantity 7y can be conveniently calculated by
means of transfer matrices relating the forward and backward
waves at the left- and right-hand boundaries of a layer.” Se-
lecting for the right-hand boundary of the structure a plane
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set at d/2 to theﬁright of the outermost well, we find that the
transfer matrix 7" involving N wells is equal to that for one
well,

T\== )

raised to Nth power, 7%. At normal incidence the reflection
and transmission coefficients for a single quantum well in the
vicinity of the exciton resonance can be written®®

S =ekdr | F ikd

ir()
w()_w_i(r"*'r()) ’

t=1+ry, r= 3)
where k = (w/c) Je_, gy, is the barrier permittivity, w, is the
resonant frequency renormalized with inclusion of the
exciton-photon coupling, and I'y and I are, respectively, the
radiative and nonradiative exciton damping constants in a
single quantum well. Equation (3) neglects the difference
between g, and the background permittivity in the quantum
well layer. Within a resonance spectral interval narrow com-
pared to w, we may set in Eq. (3) k = (wy/c)Ve, and
consider it a constant.

The homogeneous nonradiative broadening of the reflec-
tance spectra is due to exciton scattering by heterostructure
defects and phonons. However, when describing optical
spectra, the quantity I" in Eq. (3) is frequently understood to
be the sum of two contributions, I';, +I';;,, the first of them
being related to the intrinsic-homogeneous broadening, and
the second taking effectively into account the inhomoge-
neous broadening of the exciton resonant frequency. Under
certain conditions I, and I’ can act as independent param-
eters. As an illustration, let us consider the amount of energy
absorbed in a single quantum well. If there is no inhomoge-
neous broadening, it can be written

21, [,
-1 214 2=
w(w)=1 lrll I'll (w()_w)2+(rh+r0)2 :
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FIG. 1. Geometry of light reflection from a structure with five quantum

wells (QW’s).

We introduce a distribution function P(w,) describing the
large-scale inhomogeneous broadening of the exciton reso-
nant frequency in the well plane. Then for the fraction of
absorbed energy averaged over the spot width we can write

;(w)=f dwyP(wy)w(w).

In the very simple case of the Lorentzian distribution
when

Plan)= 1 Uion
(w(l)— T (w()_‘;’())z"'rgnh )
we obtain
_ T 2(T+Tyry
w(w)=

r’,+r() (d)(,‘w)2+(r+r())z ’

where I'=T",+T,,.

The calculation of 7y and 7 in Ref. 9 involved determi-
nation of the eigenvalues and eigenvectors of the matrix T,.
We shall use here a different, though equivalent, method
based on the fact that all powers T}, irrespective of the
power, have the same matrix structure

P=8,i+0u | F-2) 6, +i —— @
1 7 Vn N tl z ’l&y ’
where
r .
F=(]+coskd)’—+ismkd, (5)
|

1 is the 2X2 identity matrix, and o, and &, are standard
Pauli matrices introduced here for conciseness. The coeffi-
cients S and Q with subscripts N and N—1 are connected
through a matrix recursion relation

lou)-tlov)-213) 0

where
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. GG
L= .
1 G
G=Giw =cos AJ:—TF sin kd.
Note that the wave vecror g of 2 l1zh: w ave propagating in an

infinite periodic quantum well s:

rucrare satisfies the disper-
sion relation®

cos gd=G(w). 8)
A comparison of matrix (2) with matrix 31 for V=1 vields
S$,=G, 0,=1. (9)

One can readily verify that

L.{t\/Gz—l B i\/GZ—I]
1 =X+ 1 N

10}

with the eigenvalues

x.=G*JG?—1. i1

We now decompose the column with components (9)
into eigenvectors (10) and act on the linear combination thus
obtained with matrix LY ! to derive finally expressions for
Sy and Qy:

N

x — %

(12)

1
Sn=7 (ey +x2), Ov=r—0

The coefficients 7y and 7, are related to Sy and Q through

i v _ S2-(G-1)Q}

rN=—— ='_'—"'_"‘r_'_.
_l_F)
t

Equations (13) can be used to calculate 7 and ¢ .

(13)

ry ’ .
Syt On [ —F Syt On

2. BRAGG REFLECTION

For a structure with kd=w (or D=\/2, where D
= Jeud) we have F=0,G=—1, x,=x_=—1, Sy=(—1)",
and Qy=N(—1)""", so that Q\/Sy= — N. Substituting into
Eq. (13) the ratio [see Eq. (3)]

rl _ ir()

t, wy—ow-—il'’

we obtain
Fo(kd =)= —INT 14
rikd =)= T+ NTg) ’ (142)
. N w(,—w—ir
t ykd=m)=(—1) (14b)

wo—w—i(C+NTy) -~
Thus for kd = the expression for 7y differs from 7, by T
being replaced by NT,. The physical significance of this
result will be discussed after a consideration of the analytic
properties of 7y as a function of the complex variable w. We
may point out, however, that the quality of quantum wells
has been improving with continuing progress in growth tech-
nology. While initially the nonradiative damping I" was con-

Ivchenko et al. 1157



W

rably in exces: - T e T T el Tl e
own presently ~. ;. <ot S ST T
nakes an anz!:: - : - B S

Jpropriate for =z ... . 0 L T ai .

3. TRANST'ON 77 T=iZ W™ ™z JASE OF THE
APPROXIM AT Tm 2= 1 =~ w2z ENEDUS MEDIUM

E... - ro.TT ..tz =32 o a short-period
strol = «tr_ciire for which the long-
Wiigootg ot LT TL T tnE _::'Oxlmanon of a homo-

zEm. . = ..~ . - .7 :Tirive permittivity®

= =2T,/(kd).
- ~:w I1T2moTs. one may assume that a plane light
wivz o= - azvzoazctor ¢ = (w/c)Ve(w) propagates in a

- zxazss Nd containing quantum wells, the ampli-
“_zz . =riznt of reflection from this layer being

_ G i—et )
wmzrz r=(k—q)/(k+q), Dy=qNd. The same result is ob-
:z1nzd by starting from the exact expression (13) for 7y,
whzn one takes into account that if kd, |q|d <1 the following
approximate relations are valid:

VG- 1~igd, x.1%iqd,
r, X r ~ld 2 2
F=2 ' +ikd, % (g=—k°),

1

+ 2JG* |
(:—") ( G \/\/—:——)N(]Jf'ziqd)’vmellqw’

Oy i 1-e&¥®
Sy qd 1+e20°

I

4. INCLUSION OF MIRROR SYMMETRY OF THE
HETEROSTRUCTURE

The mirror symmetry of a system of N identical quan-
tum wells suggests a representation for 7 and 7y which is
more appropriate for studying the analytical properties of
these coefficients:

.1

;N":E(r;\/""/‘;/), tN=§(r7v_’7v)- (15)
Here r}, ry are the reflection coefficients for even and odd
boundary conditions for the case where plane waves with
amplitudes, respectively, of the same or opposite signs fall
simultaneously from the left and right on the structure. This
approach was used earlier in an analysis of spectra of elec-
tron transmission through a heterostructure with mirror
symmetry.'?

For brevity, we denote in Eq. (3) the phase factor ex-
p(ikd)=7, and introduce a dimensionless frequency
y=(w—wy—il)/T,. Since N quantum wells may be consid-
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2721 25 N —2 wells surrounded by one well each on the left
zna right. we may write the following recursion relations
Tyury =Ty

Y=

rk (16)

Ty=Tiarl—,’
where y=s or a, and T ; are the components of the matrix £
As follows from Eq. (3)

=n(1+2r), ri=-n. 17)

Straightforward calculation shows Eq. (16) to be applicable
to the case of two quantum wells as well, if one sets r3=1,
ro=—1, i.e. 7,=0, t,=1, as in the absence of quantum wells.

5. ANALYTICAL PROPERTIES OF THE REFLECTION
COEFFICIENT. TRANSITION TO THE LIMIT N—s

Since the components of the matrix f’l are rational func-
tions of the complex variable y, the same should be true also
for the components of matrix Tl and, hence, for the coeffi-
cients rfy, ry. Representation (15) is useful in that it permits
one to employ the identities |ry|=|r&|=1, which are valid
for any real y. These identities follow from the energy con-
servation law, since for real y, the nonradiative damping is
I'=0, and the incoming and outgoing wave energy fluxes
coincide in the steady state. The above identities permit re-

casting ry in the form
Py (y,m) PYa(y,m)

1
rv==
=g Pys(y,m) Py, m|

Here Py .(y,7n) is a polynomial with a unity coefficient of
the highest power of y, the other coefficients depending on
the single parameter 7; the polynomial P,"\}‘y(y,n) is ob-
tained from Py (y,n) by complex conjugation of all coef-
ficients, including substitution of %* for 7. The common
factor 7/V in Eq. (18) follows from the limiting recursion
relation

(18)

. Y_ .21 y
lim rf=%°lim rj_,

Iyl—== Iy|—=

and from the behavior of r§ or r} as |y|— [see Eq. (17)].
The recursion relation (16) implies a similar connection
between the polynomials Py , and Py_; ., P;—z.y:

Py )=y +DPy_a (M =ig" P, (v),  (19)

with the =+ sign referring to the symmetric (y=s) or antisym-
metric (y=a) solutions. For illustration, we present below
expressions for the Py .(y,7) polynomials with the few first
values of N:

Py =y+i, P,,=1,

Py =y+i(1—-1),

Py =y2+i(2+ D)y +p°—1, Pi3,=y+i(1-7%),
Py =y’ +i(2+ n+ )y + P+ p* = -1,
Py, =y’ +iQ2= -7y -7+ p*+9-1. (20)
The Py (y,7) polynomials are seen to possess the fol-

lowing properties with respect to the sign reversal of the
parameter 7.

Py =y+i(l+7),
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Py (¥, M =P (¥, — 7)),
P2n.s(y, 7])=P2n.a(y’_ 77) (21)

These properties can be shown by straightforward induction
to be valid for arbitrary values of / or n. Equations (18) and
(21) yield

iy, —m=(=D iy(y,n).
(22)

These expressions relate, in particular, the coefficients ry
and fy in structures with kd=m(p=—1) and kd=2m(n=1).
Another useful expression

rn(y,—n)=—rx(y,n),

;13(“’_“’0,77)=;N(w0‘w,77*),

t_;‘,(w—wo,n)=t~,v(w0—w,7]*), (23)

relates the reflection or transmission coefficients for struc-
tures with kd =7+, i.e. with 7=—eX and p=—e X,

The poles of the coefficient 7 (or, accordingly, the roots
of the Py .(y) polynomials) determine the complex eigen-
mode frequencies of the heterostructure with due account of
the exciton-photon interaction. Note that only even and only
odd intrinsic nonstationary excitations contribute, respec-
tively, to ry and ry. As seen from the above Py (y,7)
polynomials, when the number of quantum wells is odd,
N=2Il+1, there are [+1 even, and [/ odd excitations,
whereas for N=2n the number of even excitations and of
odd excitations are both equal to n. The real and imaginary
parts of the roots of the polynomials Py ,(y) determine the
eigenfrequency renormalization and the radiative damping of
the corresponding mode, i.e. of the exciton polariton, in a
system with a finite number of quantum wells. In the general
case, all roots of the polynomials Py ((y) or Py ,(y) are
different. A particular case is observed at the cardinal points,
kd=Iw (I=1,2,..), i.e. where 7==*1. Under this condition
all the roots of the polynomials Py ((y) and Py ,(y) vanish
except one. Indeed, for structures with kd equal to a multiple
of 7 we can write the following expressions

Py sy, 2 1)=y [y +i(21+1)],

Py oy, x1)=y',
P2us(y,1)= Py o(y,—1)=y""(y+2ni),

Py, s(y,—1)=Pyq(y,1)=y", (24)

whose validity can be generally verified by induction, or by
setting =1 or 7=—1 in Eq. (20). By definition, the poly-
nomials Pg,*f.)y(y, *+ 1) differ from the polynomials (24) by
the replacement of iN with —iN. When substituting
Py.(y,—1) and P{*)(y, — 1) into Eq. (18), the powers of
y cancel to yield a simple expression (14a) with a single
pole. Thus, as the value of kd approaches 7 in an N-well
structure, N —1 eigenmodes do not couple to radiation, leav-
ing only one excitation optically active. This implies that as
N increases, exciton interaction with electromagnetic radia-
tion in a structure with kd=1r decreases. A similar conclu-
sion can be drawn from an analysis of the dispersion relation
(7), (8), namely, in a structure with an infinite chain of quan-
tum well structures with kd=r the normal wave is the light
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wave with a wave vector g=7/d lying at the bo.

the first Brillouin zone, |Re g|</d. To this value .
responds the solution for the electric field

E(z)=E, sin(mz/d),

with the origin of the z axis set at the center of one of tr.
wells. We consider here the exciton state in a quantum weli
with a wave function envelope ¥(z,,z,,p) even under the
replacement of z,, z, by —z,, —z,. The light wave (25)
does not couple to such an exciton, since the optical transi-
tion matrix element proportional to the integral
JdzE(z)¥(z,z,0) is zero. Thus under steady-state condi-
tions the light in a resonant Bragg multiquantum well struc-
ture with a large number of quantum wells is a structure that
does not absorb the standing wave, so that the modulus of
the reflection coefficient, |Fy(kd= )|, tends to unity as
N—oo [see Eq. (14a)].

We conclude this Section with an analysis of the limiting
expression

Fo=limry.

N—-x

We find from Egs. (11)—(13)

_ ri/t,
T I —FENG -1’

(26)

where the * sign coincides with the sign of G'=ReG. Here
the square root of the complex number z=|z|exp(i®) is de-
fined as sz_}exp(iG)/Z), where O satisfies the inequalities —
<O=r. Therefore as G’ —0, the function VG*—1 tends to
iV1+(G")*sign(G'G"), and the quantity = JG*~1 in Eq.
(26), to i V1+(G")?signG”", where G"=Im G.

6. RESULTS OF CALCULATIONS

The frequency dependence of the reflection coefficient
can be conveniently presented as the trajectory the point
Re ry, Im ry makes on the ry complex plane as the point @
moves along the real axis [Fig. 2a]. Since the coefficient
Fy—0 with increasing |w—wy|, these trajectories are closed
curves leaving and coming back to point 7y=0. For N=1,
the 7,(w) dependence may be considered as a bilinear trans-
formation which transforms the real axis into a circle passing
through the center of the ry complex plane. As seen from Eq.
(14a), the trajectories corresponding to arbitrary N in struc-
tures with kd=, 2,... behave in the same way. For N>1,
kd#1, and I'/Ty=<1 these trajectories have a complicated
shape including self-crossings. As the nonradiative damping
increases, the self-crossings disappear, and the trajectory
contracts toward the center and approaches a circular shape.

Figure 2b displays the reflectance spectrum calculated
using Eq. (1) for a structure with N=5, I'=I, kd=n/4, and
kl=m/2, where [ is the width of the barrier layer between the
outer surface and the plane separated by d/2 from the lefi-
hand-well center (see Fig. 1). The calculation took into ac-
count that at normal incidence

Ve, —1
’|0="'01=7;E';T- (27)

.
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FIG. 2. (a) Trajectories traced out by the point
Re rs, Im F5 on the complex plane as the fre-
quency @ moves along the real axis, for kd
=m/4 structures with I'/T,=1 (curve 1), 4(curve
2), and 12 (curve 3). (b) Normal-incidence re-
flectance spectrum calculated using Eq. (1) for a
structure with N=5, kd=mn/4, ki=mu/2, and
['=T[,, and barrier layer refractive index \/s—,,
=3.7.
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The second maximum in Fig. 2b is due to a self-crossing of
the corresponding trajectory in Fig. 2(a).
Equations (1) and (14a) yield for a Bragg structure ~

e

R(w)=r(2”+(1

2 NF(,(NF(,+Q)
r()]) (w()_w)2+(r+Nro)2+NrUQ ’

(28)

where
Q=r§NTo+2rg [(wy— w)sin 26’
+(C'+NTy)cos 2¢'].

At ¢'=m/2 the R(w) spectrum is a sum of the background
reflectance r3, and a Lorentzian

B

v
L =p ————,
() p(w()_w)2+72

where
‘y=r'§'(1_r0|)Nr(),

3 5 S(1+r(2”) 2ro

p=(1 ro|)sW (29)
and s=NT(/(T'+NT ). The spectrum retains its shape on
approaching the values ¢'=0 or m, while the damping pa-
rameter vy and the peak value of p are given by Egs. (29),
where the sign of r(, should be reversed. This results in a
decrease of the integral fdw[R(w)—r3,]=myp.

A calculation of the reflectance spectra made for I'/Tj<1
and various values of N, kd, and k! shows them to exhibit a
highly diverse fine structure, despite the fact that the spectral
region covered includes one of the exciton resonances. Fig-
ure 3 displays spectra computed for a structure with N =10,
¢'=kl=m/2, and kd equal to 0.857, m, and 1.157. The
smooth spectrum for the structure with kd = is described
by a simple expression ri,+L(w). The spectra for kd=m(1
+0.15) each have two maxima and one minimum. They are
seen to transform into one another under reflection about the
vertical axis w=wy. This property is a consequence of Eq.

1160 Phys. Solid State 36 (7), July 1994

(23), which relates the coefficients ry corresponding to the
complex conjugate values of 7, and the fact that the phase
factor e'2%’ is real at ¢’ =m/2.

7. OBLIQUE REFLECTION GEOMETRY

Let us introduce an angle ¢ at which light is incident
from vacuum onto a structure. The relations derived above
for the normal-incidence reflection coefficient become valid
for an s-polarized light wave incident at ¢=0 after the re-
placement

kd"‘*kzd, k[—’kzl, F“—’ r(],
n,—cos ¢

rm= _rm=‘m .

1.0F

R(w)

0
(w-,)/T,

FIG. 3. Normal-incidence reflectance spectra calculated for a structure with
N=10, kl=n/2, T =T, kd=m (curve 1), 0.857 (curve 2), and 1.157 (curve
3),'and barrier layer refractive index Ve, = 2.64.
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Here

n,=ckjw, k,=(w/c)(e,—sin’ )",

The expressions for r, obtained for a p polarized wave
in the general case where the oscillator strength of the exci-
ton under study is nonzero for ELz and E|jz (z is the princi-
pal axis of the structure) are more cumbersome.'? However
in the case of the heavy exciton in GaAs/AlGaAs or CdTe/
CdMgTe structures, which is optically active only in the El z
polarization, the relations derived by us earlier can be readily
generalized by the replacement -

k,
kd—)kzd, kl—'kzl, F()"‘"k_ F(),

_n,— & COS @
il n,+e,co8 @
In place of studying the fine structure evolution of optical
spectra under a smooth variation of the period d one can
instead measure the angular dependence of these spectra.
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