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B Outline

Reminder on photon correlations

How we detect single photons?

SPAD array properties

Some applications of photon correlations in quantum dot
spectroscopy

- Multiexciton spectroscopy by photon statistics
- Heralded spectroscopy of quantum sources
- Heralded imaging

« Conclusion
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There’s a new kid on the block — monolithic SPAD

array imaging sensors bdiode
Common Photomultip Lo .
Anode Bruschini et al., LSA 8, 87 (2019)
o Madonini et al., Adv. Quantum Tech. 4, 2100005 (2021) P contc
- -, b _q"

Focusing
Electrode

Dynode Chain %

Photoelectrons

g Voltage
Side-On Photomultiplier ~ Figure 3 Dlvldegrs Power Supply

N-Layer P-Layer  Figure 1


http://en.wikipedia.org/wiki/File:Lawine.jpg

Evolution

.

~

Dignal Readaunt

320 % 38 Tesk Poxhy

ST

i—zm sl 5
SR EEYTYYYY S

320 x 240
SPAD Asray

i S5

x

Fow Drivens

Anslogue Readost

Now at 1Mpixels ...
and counting



i Detector parameters

« Quantum efficiency — typically up to 50% (max in green-yellow)

 Fill factor — up to ~70% (with microlenses)

« Timing accuracy — typically 100ps, but <10ps already
demonstrated

* Dead time — typical 50ns

« Dark counts — typical 100 cts/s

 Pixel numbers — up to ~1000 with TDCs, ~1Mpixel gated

 Saturation — typically 2-3Mcts/s

* Frame rates — up to 100,000 (for gated imagers)

« Cost —will be in the $10K-$100K range (depending on
parameters)



Open Issues

NIR response
- first InGaAs SPAD arrays are coming out. Need to be
cooled to circa -70°C but will enable operation
- Thicker Si SPAD arrays could provide solution up to
~800nm

Crosstalk
- SPADs emit light when they detect light. Crosstalk
probabilities are in the range of 0.1%. Presents compromise
with fill factor.

Uniformity
- Detectors contain still too many ‘hot’ pixels. Uniformity 1s
not amazing

Data rates
- For large detectors data rates are prohibitively large. On-
chip processing becomes a must.



So what are SPAD arrays good for?

LIDARS

Fast lifetime imaging

Enhanced saturation properties in low-light level
scenarios

Ultrafast metrology

Quantum imaging and spectroscopy!



Until not too long ago, we used a “fiber
bundle camera” for quantum imaging.

It was:
1. (very) Expensive
2. Not scalable

But even with that we got

- STORM at higher emitter density (demo)
- Confocal superresolution imaging based
on photon statistics

Imaging with quantum light
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B Photon statistics with SPAD arrays

2]

Replace the fiber bundle + 15
detectors (~100k$) with a
CMOS SPAD array (<10k$)

SPAD

array

Crosstalk Is an i1ssue but can be
overcome since it is time-
Independent (if done carefully)
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Quantum spectroscopy

Can we replace ‘traditional’ spectroscopy with photon statistics?

l s

\ehieh eh eh
\,.-/\\/ R 4 -
0.8 | 08 ,
& 06! S 06
(o)) ™
04} 1 04
0.2 QD | 05 | NPL
L E— 0 ==========
-2000 0 2000 -1000 0 1000
7 (ns) 7(ns)

In larger nanocrystals (e.g. nanoplatelets) antibunching is not complete.
Is there information in the higher order photon correlations?

The short answer 1s “Yes”
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A 1)
f%%ﬁ Heralded spectroscopy

Monolithic arrays of single photon spectrometers can provide

access to previously unexplored properties at the single particle
level, multiplexing photon correlations along another dimension
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Single-photon time resolved spectrometer based on a 1D SPAD array:
~1ns time resolution, 2nm spectral resolution - simultenaously

G. Lubin, DO, et al., Nano Lett. 21, 6756 (2021)



Heralded multiexciton spectroscopy

This enables to identify photon pairs emitted following a single
excitation cycle and post-select only events involving a pair of
photons (BX-X cascaded emission)
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i%%ﬁ Heralded multiexciton spectroscopy
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i%ﬂ Heralded imaging

Similar logic, but now in real space ... enabling us to study the
transition dipole moment of transient states!
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Conclusions

Photon correlations are ubiquitous and are becoming
not so hard to measure

They often contain information which is hard or
Impossible to obtain by other means

Advances in detector technology (especially CMOS-
compatible SPAD arrays) will make this a simple and
cheap tool to use, even 1n “standard” tools such as
spectrometers (or cameras).
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