Quantum entanglement at the origin of classical radiation

microscopic quantum entanglement *essential for* establishing macroscopic classical response

AMOS retreat, Neve Ilan, May 2022

Efi Shahmoon

Weizmann Institute of Science, Israel

Collective radiation: Superradiance

Radiation from dense ensemble of emitters (= "atoms")

Collective = multiple photon scattering (dipole-dipole) significant

Relevant in many systems & applications

In general: unsolved, fundamental many-body problem

- nonlinear, open system, non-equilibrium

Collective radiation: Superradiance

<u>"canonical" case</u>: **Dicke superradiance**

all atoms identically coupled to field (at same "point"): permutation symmetry

→ many atoms = one "giant" spin (macroscopic dipole)

spin-j: basis states

$$|j,m\rangle$$
 with $m \in \{-j,j\}$

- 2j + 1 = N + 1 states
- \rightarrow symmetric "Dicke" states

Realization: cavity/waveguide QED

Macroscopic dipole \rightarrow classical limit?

Macroscopic: $N \gg 1$ constituents $\widehat{D} = \sum_{n=1}^{N} \widehat{d}_{n}$

Question: Is there a classical antenna-radiation limit?

<u>"classical" radiation:</u> Coherent state $\widehat{E}|\psi\rangle \propto |\psi\rangle$ of the field

What makes a dipole radiate classical-like coherent state?

Macroscopic dipole \rightarrow classical limit?

<u>Question</u>: what makes a dipole radiate "classical" coherent state? $\hat{E}|\psi\rangle \propto |\psi\rangle$

→ generic dipole-field coupling (RWA) $\widehat{H} = \widehat{D}^{\dagger}\widehat{E} + \widehat{E}^{\dagger}\widehat{D}$

Answer: when it is pumped to a dipole eigenstate $\widehat{D}|\psi(t)\rangle = \alpha |\psi(t)\rangle$

Explanation: effectively (for field),
$$\hat{H}_{eff} = \alpha^* \hat{E} + \alpha \hat{E}^\dagger \rightarrow \hat{U} = e^{-i\hat{H}_{eff}t} = e^{i\alpha t \hat{E}^\dagger - i\alpha^* t \hat{E}}$$

 \rightarrow generates a coherent-state field $\hat{E} |\psi\rangle = i \alpha t |\psi\rangle$

Example 1: linear system:

: \widehat{D} н

Harmonic-oscillator lowering operator

Classical state of the dipole \iff Classical state of the field

Quantum-Classical "correspondence"

Macroscopic dipole \rightarrow classical limit?

generic dipole-field coupling (RWA) $\widehat{H} = \widehat{D}^{\dagger}\widehat{E} + \widehat{E}^{\dagger}\widehat{D}$

<u>Question</u>: how does a dipole radiate "classical" coherent state? $\hat{E}|\psi\rangle \propto |\psi\rangle$

<u>Answer</u>: when it is pumped to a dipole eigenstate $\widehat{D}|\psi(t)\rangle = \alpha |\psi(t)\rangle$

Example 2: nonlinear system, spin j = N/2 $\widehat{D} = \widehat{J}$ SU(2) lowering operator

(<u>Q1</u>: Do eigenstates of \hat{J} exist? <u>A1</u>: Yes! For $N = 2j \gg 1$

<u>Q2</u>: is there Q-C correspondence?

<u>A2</u>: not really! They are entangled states

Q-entangled state of the dipole (macro-spin) - Classical state of the field

Coherently radiating spin states: "CRSS"

CRSS = coherently radiating spin states
$$\hat{f}|\alpha\rangle = \alpha |\alpha\rangle$$

1. CRSS exist: eigenstates of \hat{J}

2. CRSS are physical: underlie steady-state of superradiance

3. CRSS are entangled: spin squeezing $N^{-1/3}$

4. CRSS radiate classically: dipole-projected squeezing

5. outlook

CRSS exist: Asymptotic eigenstates of \hat{J}

Look for eigenstates:

 $\hat{J} \mid \alpha \rangle = \alpha \mid \alpha \rangle$

 $\hat{J} =$ Spin-j lowering operator

 $\alpha = jre^{i\varphi}$ = Complex amplitude (eigenvalue)

In general: no eigenstates apart from $|j, -j\rangle = |\alpha = 0\rangle$

 \rightarrow We find approximate eigenstates for $|\alpha| < j$ in the limit $j \rightarrow \infty$

Formally:

Define proximity error $\epsilon = \|\hat{f}\| \alpha \rangle - \alpha \| \alpha \rangle \|$

Demand:
$$\lim_{j \to \infty} \epsilon = 0$$
 keeping $r = |\alpha|/j$ fixed
while taking the limit $j \to \infty$

- Show error vanishes for $j \rightarrow \infty \rightarrow CRSS$

CRSS exist: Asymptotic eigenstates of \hat{J}

(1)
$$\hat{J} | \alpha \rangle = \alpha | \alpha \rangle$$

$$\hat{J} =$$
 Spin-j lowering operator
 $\alpha = jre^{i\varphi}$ = Complex amplitude (eigenvalue)

 $i \rightarrow \infty$

Insert a general state into Eq. (1)
$$|\psi\rangle = \sum_{m=-j}^{s} a_m |j,m\rangle$$
 $s \le j$
 \Rightarrow obtain:
1. recursion relations for coeff. $a_{m+1} = \frac{\alpha}{\sqrt{j(j+1) - m(m+1)}} a_m$
2. "inconsistent" result: $\epsilon = ||\hat{j}|\psi\rangle - \alpha |\psi\rangle || = j|a_s| \ne 0$
 \Rightarrow Minimize error:
Find *s* for which $|a_s| = \epsilon/j$ minimal
 \Rightarrow Our CRSS ansatz: $|\alpha\rangle = \sum_{m=-j}^{m_+} a_m |j,m\rangle$
have coeff. a_m numerically & analytically (for j>>1) \Rightarrow Verify: $\lim_{n \to \infty} \epsilon = 0$

CRSS exist: Asymptotic eigenstates of \hat{J}

CRSS = coherently radiating spin states
$$\hat{J}|\alpha\rangle = \alpha |\alpha\rangle$$

1. CRSS exist: eigenstates of \hat{J}

2. CRSS are physical: underlie steady-state of superradiance

3. CRSS are entangled: spin squeezing $N^{-1/3}$

4. CRSS radiate classically: dipole-projected squeezing

5. outlook

CRSS are physical: Steady-state superradiance

Resonant laser drive \varOmega + collective dissipation to photon reservoir \widehat{E}

→ Master equation for atoms/macro-spin

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left(\hat{H}_{\rm nh} \,\hat{\rho} - \hat{\rho} \hat{H}_{\rm nh}^{\dagger} \right) + \gamma \hat{J} \hat{\rho} \hat{J}^{\dagger},$$

$$\hat{H}_{\rm nh} = \hbar \left(\Delta - i \frac{\gamma}{2} \right) \hat{J}^{\dagger} \hat{J} - \hbar \left(\Omega \hat{J}^{\dagger} + \Omega^* \hat{J} \right)$$

Lindblad form master eq.:
Steady state is a pure state iff it is eigenstate of
$$\hat{f}$$
 and \hat{H}_{nh}
 \Rightarrow CRSS is e.s. of $\hat{f} = \hat{f} |\alpha\rangle = \alpha |\alpha\rangle$
 \Rightarrow CRSS is e.s. of \hat{H}_{nh} for $\alpha = \frac{\Omega}{\Delta - i\gamma/2} \longrightarrow$ CRSS underlies
driven-dissipative superradiance

= collective decay

= dipole-dipole shift

CRSS are physical: Steady-state superradiance

Example: dissipative Dicke phase transition

Mean-field theory prediction ("magnetization"):

$$\frac{\langle \hat{J}_Z \rangle}{N} \approx -\frac{1}{2} \sqrt{1 - \frac{|\Omega|^2}{\Omega_c^2}}$$

 \rightarrow Phase transition for

 $\Omega > \Omega_c = (N/4)\sqrt{\gamma^2 + 4\Delta^2}$

CRSS theory prediction: identical!

$$\frac{\langle \hat{J}_z \rangle}{N} \approx -\frac{1}{2}\sqrt{1-r^2} ; \quad r = \frac{|\alpha|}{j} = \frac{|\Omega|}{\Omega_c}$$

 \rightarrow Phase transition for r > 1 where CRSS cease to exist

CRSS = coherently radiating spin states
$$\hat{f}|\alpha\rangle = \alpha |\alpha\rangle$$

1. CRSS exist: eigenstates of \hat{J}

2. CRSS are physical: underlie steady-state of superradiance

3. CRSS are entangled: spin squeezing $N^{-1/3}$

4. CRSS radiate classically: dipole-projected squeezing

5. outlook

CRSS are entangled: Spin squeezing

Spin vector $\hat{\mathbf{J}} = (\hat{J}_x, \hat{J}_y, \hat{J}_z)$

Mean spin: $\langle \hat{\mathbf{J}} \rangle = |\langle \hat{\mathbf{J}} \rangle| (\sin\theta\cos\varphi, \sin\theta\sin\varphi, -\cos\theta)$

Spin squeezing parameter

$$\xi^2 = \frac{N}{|\langle \hat{\mathbf{j}} \rangle|^2} \min_{\mathbf{n}_{\perp}} \operatorname{Var}[\hat{f}_{\mathbf{n}_{\perp}}] \qquad \hat{f}_{\mathbf{n}_{\perp}} = \mathbf{n}_{\perp} \cdot \hat{\mathbf{j}} \rightarrow \mathbf{Q} \text{ metrology, sensing}$$

"standard quantum limit"

$$\xi^2 = \hat{z}$$

CSS= Coherent spin states

$$\left|\theta,\phi\right\rangle = \bigotimes_{l=1}^{N} \left[\cos\left(\frac{\theta}{2}\right)\left|0\right\rangle_{l} + e^{i\phi}\sin\left(\frac{\theta}{2}\right)\left|1\right\rangle_{l}\right]$$

independent atoms ("classical" spin) $|\langle \hat{\mathbf{J}} \rangle| = j = N/2$ Spin squeezing

, unit vector \perp to mean spin

 $\xi^{2} < 1$

 \rightarrow Q-enhanced metrology

→ Pairwise entanglement (btwn atoms)

Heisenberg limit:

 $\xi^2 \ge 1/N$

CRSS: mean spin

 $\left| \langle \hat{J}_x - i \hat{J}_y \rangle = \langle \hat{J} \rangle = \alpha = j r e^{-i\varphi}$

$$\left< \hat{J}_z \right> = -j\sqrt{1-r^2}$$

$$r = \sin\theta |\langle \hat{\mathbf{J}} \rangle| = j = N/2$$

 $\xi^2 = ?$

CRSS are entangled: Spin squeezing

CRSS = coherently radiating spin states
$$\hat{f}|\alpha\rangle = \alpha |\alpha\rangle$$

1. CRSS exist: eigenstates of \hat{J}

2. CRSS are physical: underlie steady-state of superradiance

3. CRSS are entangled: spin squeezing $N^{-1/3}$

4. CRSS radiate classically: dipole-projected squeezing

5. outlook

CRSS radiate classically

"input-output" relation to total field

$$\widehat{H} = \widehat{J}^{\dagger} \widehat{E} + \widehat{E}^{\dagger} \widehat{J} \longrightarrow$$

$$\hat{E}(t) = \hat{E}_0(t) + G\hat{J}(t)$$
input vacuum field field scattered by dipole

Steady-state superradiance:

Dipole in pure state (CRSS) \rightarrow total dipole+field state separable

$$|\psi(t)\rangle = |j,\alpha\rangle_d \otimes |\chi\rangle_f$$

CRSS

field state

Prove $|\psi(t)\rangle$ is coherent state for field:

Use input-output relation + CRSS property $\hat{E}(0)|\psi(t)\rangle = G\alpha|\psi(t)\rangle$ \rightarrow Coherent state of the field

...as expected: "eigenstate of dipole radiates coherent light"

 $\widehat{D}|\psi(t)\rangle = \alpha|\psi(t)\rangle \qquad \longrightarrow \qquad \widehat{E}|\psi\rangle \propto |\psi\rangle$

Dicke superradiance pumps the system to a dipole eigenstate (CRSS) \rightarrow coherent light radiation

CRSS radiate classically

- Why a <u>nonlinear</u> spin-squeezed dipole scatters light classically? (like a linear system) $\alpha = \frac{\Omega}{\Delta - i\gamma/2} = \langle \hat{J} \rangle$ - Why not, e.g., squeezed light?

$$\begin{aligned} \widehat{H} = \widehat{j}^{\dagger} \widehat{E} + \widehat{E}^{\dagger} \widehat{j} & \longrightarrow \text{ Light only "feels" } \widehat{j} = \widehat{j}_{x} - i \, \widehat{j}_{y} \\ \Rightarrow \text{ Focus on noise projected to x, y plane} \\ \hline \text{Field quadrature} & \widehat{E}_{\phi} = e^{i\phi} \widehat{E} + e^{-i\phi} \widehat{E}^{\dagger} \\ \text{dipole quadrature} & \widehat{j}_{\phi} = (\widehat{e}^{i\phi} \widehat{j} + e^{-i\phi} \widehat{j}^{\dagger})/2 \\ \text{Relation between noises: } \text{Var}[\widehat{E}_{\phi}] = 1 + 4G^{2} \left(\text{Var}[\widehat{J}_{\phi}] + \frac{1}{2} \langle \widehat{J}_{z} \rangle \right) \\ \hline \text{For light squeezing Var}[\widehat{E}_{\phi}] < 1 \text{ need:} \\ \begin{array}{c} \text{CRSS} \\ \text{spin squeezed, "dipole" not} \\ \text{light classical} \\ \hline \text{v} \end{array} \\ \hline \text{Var}[\widehat{J}_{\phi}] \text{Var}[\widehat{J}_{\phi+\frac{\pi}{2}}] \geq |\langle \widehat{J}_{z}\rangle|^{2}/4 \end{aligned} \\ \hline \text{Var}[\widehat{J}_{\phi}] | 2/4 \end{aligned}$$

Outlook

New family of collective spin states:

CRSS = coherently radiating spin states $\hat{f}|\alpha\rangle = \alpha |\alpha\rangle$

1. Underlies Dicke superradiance

→ New tool to study superradiance phenomena: superraidant lasers, beynd permutation symmetry?

- \rightarrow Predictions for cavity experimemets
- 2. The nature of CRSS

→ New class / scaling of spin squeezed states? $N^{-1/3}$

 \rightarrow Can be produced by Hamiltonian unitaries?

- 3. CRSS in quantum magnetism?
- → Underlies Hamiltonian quantum phase transitions?
- \rightarrow Appears in certain spin models?

Ori Somech (MSc student)

arXiv: 2204.05455