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entangled

classical

microscopic quantum entanglement essential for  establishing macroscopic classical response



Radiation from dense ensemble of emitters (= “atoms”)

Collective = multiple photon scattering (dipole-dipole) significant

Relevant in many systems & applications

In general: unsolved, fundamental many-body problem

optical lattice, clocks light harvesting complexesatomic ensembles

credit: Murray & Pohl (2017)

- nonlinear, open system, non-equilibrium

photonics



“canonical” case:

 many atoms = one “giant” spin  (macroscopic dipole)

Realization: cavity/waveguide QED

2𝑗𝑗 + 1 = 𝑁𝑁 + 1 states  

| ⟩𝑗𝑗,𝑚𝑚spin-j: basis states

Dicke superradiance

all atoms identically coupled to field (at same “point”): permutation symmetry

 symmetric “Dicke” states

𝑚𝑚 ∈ {−𝑗𝑗, 𝑗𝑗}with

σ̂𝑛𝑛𝐽𝐽 = �
𝑛𝑛=1

𝑁𝑁
�𝜎𝜎𝑛𝑛 = | ⟩𝑔𝑔 𝑛𝑛⟨𝑒𝑒|

1 atom: spin 1/2
𝑁𝑁 ×( )

𝑗𝑗 = 𝑁𝑁/2spin-j:

[direct product basis, 2𝑁𝑁 states] [direct sum basis, 
symmetric j=N/2 subspace]



Macroscopic: 𝑁𝑁 ≫ 1 constituents

Question: Is there a classical antenna-radiation limit? 

“classical” radiation:

𝑑̂𝑑𝑛𝑛�𝐷𝐷 = �
𝑛𝑛=1

𝑁𝑁

Coherent state �𝐸𝐸| ⟩𝜓𝜓 ∝ | ⟩𝜓𝜓 of the field

𝑁𝑁 ≫ 1

�𝐷𝐷
�𝐸𝐸𝑑̂𝑑𝑛𝑛

What makes a dipole radiate classical-like coherent state? 



Question: what makes a dipole radiate “classical” coherent state? 

Answer: when it is pumped to a dipole eigenstate

�𝐸𝐸| ⟩𝜓𝜓 ∝ | ⟩𝜓𝜓

 generates a coherent-state field

�𝐷𝐷
�𝐸𝐸𝑑̂𝑑𝑛𝑛

�𝐻𝐻=�𝐷𝐷† �𝐸𝐸 + �𝐸𝐸†�𝐷𝐷 generic dipole-field coupling (RWA)

�𝐷𝐷| ⟩𝜓𝜓 𝑡𝑡 = 𝛼𝛼| ⟩𝜓𝜓(𝑡𝑡)

Explanation: effectively (for field), �𝐻𝐻eff = 𝛼𝛼∗ �𝐸𝐸 + 𝛼𝛼 �𝐸𝐸†  �𝑈𝑈 = 𝑒𝑒−𝑖𝑖 �𝐻𝐻eff𝑡𝑡 = 𝑒𝑒𝑖𝑖𝛼𝛼𝑡𝑡 �𝐸𝐸†−i𝛼𝛼∗𝑡𝑡 �𝐸𝐸

�𝐸𝐸| ⟩𝜓𝜓 = 𝑖𝑖 𝛼𝛼 𝑡𝑡| ⟩𝜓𝜓

Example 1: linear system: �𝐷𝐷 Harmonic-oscillator lowering operator

Quantum-Classical “correspondence”

Classical state of the dipole Classical state of the field



Coherently radiating spin states: “CRSS”

Example 2: nonlinear system, spin �𝐷𝐷 = 𝐽𝐽 SU(2) lowering operator𝑗𝑗 = 𝑁𝑁/2

Q-entangled state of the dipole (macro-spin) Classical state of the field

Question: how does a dipole radiate “classical” coherent state? 

Answer: when it is pumped to a dipole eigenstate

�𝐸𝐸| ⟩𝜓𝜓 ∝ | ⟩𝜓𝜓

�𝐷𝐷
�𝐸𝐸𝑑̂𝑑𝑛𝑛

�𝐻𝐻=�𝐷𝐷† �𝐸𝐸 + �𝐸𝐸†�𝐷𝐷generic dipole-field coupling (RWA)

�𝐷𝐷| ⟩𝜓𝜓 𝑡𝑡 = 𝛼𝛼| ⟩𝜓𝜓(𝑡𝑡)

Q1: Do eigenstates of exist?

A1: Yes! For 𝑁𝑁 = 2𝑗𝑗 ≫ 1

𝐽𝐽 Q2: is there Q-C correspondence?

A2: not really! They are entangled states



𝐽𝐽
�𝐸𝐸

1. CRSS exist: eigenstates of 

𝐽𝐽| ⟩𝛼𝛼 = 𝛼𝛼| ⟩𝛼𝛼CRSS = coherently radiating spin states

𝐽𝐽

2. CRSS are physical: underlie steady-state of superradiance

3. CRSS are entangled:  spin squeezing 𝑁𝑁−1/3

4. CRSS radiate classically: dipole-projected squeezing

5. outlook
Ori Somech
(MSc student)



�𝑱𝑱

In general: no eigenstates apart from 

Formally:

| ⟩𝑗𝑗,−𝑗𝑗 = | 𝛼𝛼 = 0⟩

- We find a state that minimizes the error

- Show error vanishes for               𝑗𝑗 → ∞

 We find approximate eigenstates  for 𝛼𝛼 < 𝑗𝑗 in the limit 𝑗𝑗 → ∞

Define proximity error

Demand:

𝑗𝑗 → ∞

𝜖𝜖 = 𝐽𝐽| 𝛼𝛼⟩ − 𝛼𝛼| 𝛼𝛼⟩

lim
𝑗𝑗→∞

𝜖𝜖 = 0 keeping 𝑟𝑟 = 𝛼𝛼 /𝑗𝑗 fixed

while taking the limit

𝑟𝑟 = sin𝜃𝜃

 CRSS

𝐽𝐽 = Spin-j lowering operator

𝛼𝛼 = 𝑗𝑗𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖= Complex amplitude (eigenvalue)

Look for eigenstates:

𝐽𝐽| 𝛼𝛼⟩ = 𝛼𝛼| 𝛼𝛼⟩



�𝑱𝑱

Insert a general state into Eq. (1)

(1)

𝜖𝜖 = 𝐽𝐽|𝜓𝜓⟩ − 𝛼𝛼|𝜓𝜓⟩ = 𝑗𝑗|𝑎𝑎𝑠𝑠| ≠ 0

lim
𝑗𝑗→∞

𝜖𝜖 = 0

1. recursion relations for coeff.

2. “inconsistent” result: 

|𝜓𝜓⟩= ∑𝑚𝑚=−𝑗𝑗
𝑠𝑠 𝑎𝑎𝑚𝑚 | 𝑗𝑗 ,𝑚𝑚⟩ 𝑠𝑠 ≤ 𝑗𝑗

Find 𝑠𝑠 for which  |𝑎𝑎𝑠𝑠| = 𝜖𝜖/𝑗𝑗 minimal

roots 𝑚𝑚±

 Verify: 

|𝛼𝛼⟩= ∑𝑚𝑚=−𝑗𝑗
𝑚𝑚+ 𝑎𝑎𝑚𝑚 | 𝑗𝑗 ,𝑚𝑚⟩ Our CRSS ansatz: 

𝐽𝐽 = Spin-j lowering operator

𝛼𝛼 = 𝑗𝑗𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖= Complex amplitude (eigenvalue)

Look for eigenstates:

𝐽𝐽| 𝛼𝛼⟩ = 𝛼𝛼| 𝛼𝛼⟩

 obtain: 

 Minimize error: 

have coeff. 𝑎𝑎𝑚𝑚 numerically & analytically (for j>>1) 



�𝑱𝑱

1. We found CRSS ansatz state

|𝜓𝜓⟩ = ∑𝑚𝑚=−𝑗𝑗
𝑚𝑚+ 𝑎𝑎𝑚𝑚 | 𝑗𝑗 ,𝑚𝑚⟩

𝑗𝑗 = 100

error decays ~ exponentially for

For given 𝑟𝑟= 𝛼𝛼
𝑗𝑗

< 1
𝑗𝑗 ≫ 1

We find asymptotically: 

 satisfies lim
𝑗𝑗→∞

𝜖𝜖 = 0

via the conditon

𝜖𝜖(𝑟𝑟, 𝑗𝑗) = 𝐽𝐽|𝜓𝜓⟩ − 𝑗𝑗𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖|𝜓𝜓⟩ ~ 𝑒𝑒−𝑔𝑔 𝑟𝑟 𝑗𝑗

2. State minimizes the error

 CRSS!

“Range of validity” 𝑟𝑟 < 𝑟𝑟𝑗𝑗For given finite 𝑗𝑗 ≫ 1 define

𝜖𝜖(𝑟𝑟𝑗𝑗 , 𝑗𝑗) = 1/𝑒𝑒

𝛼𝛼

 For 𝑟𝑟 < 𝑟𝑟𝑗𝑗 our ansatz state ≈ CRSS

𝑟𝑟 = 0.4

𝑟𝑟 = 0.7

𝑟𝑟 = 0.9



𝐽𝐽
�𝐸𝐸

1. CRSS exist: eigenstates of 

𝐽𝐽| ⟩𝛼𝛼 = 𝛼𝛼| ⟩𝛼𝛼CRSS = coherently radiating spin states

𝐽𝐽

2. CRSS are physical: underlie steady-state of superradiance

3. CRSS are entangled:  spin squeezing 𝑁𝑁−1/3

4. CRSS radiate classically: dipole-projected squeezing

5. outlook
Ori Somech
(MSc student)



 Master equation for atoms/macro-spin

Lindblad form master eq.: 
Steady state is a pure state iff it is eigenstate of 𝐽𝐽 and

 CRSS is e.s. of  𝐽𝐽| ⟩𝛼𝛼 = 𝛼𝛼| ⟩𝛼𝛼

𝐽𝐽 �𝐸𝐸
σ̂𝑛𝑛

𝛺𝛺

Resonant laser drive 𝛺𝛺 + collective dissipation to photon reservoir �𝐸𝐸

dipole-dipole shift𝛥𝛥 =
collective decay𝛾𝛾 =

𝐽𝐽
 CRSS is e.s. of  for

CRSS underlies 

driven-dissipative superradiance



Example: dissipative Dicke phase transition

𝐽𝐽𝑧𝑧
𝑁𝑁
≈ − 1

2
1 − |𝛺𝛺|2

𝛺𝛺𝑐𝑐2

Mean-field theory prediction (“magnetization”): 

CRSS theory prediction: identical!

𝐽𝐽𝑧𝑧
𝑁𝑁
≈ − 1

2
1 − 𝑟𝑟2 ;

 Phase transition for 

𝛺𝛺 > 𝛺𝛺𝑐𝑐 = (𝑁𝑁/4) 𝛾𝛾2 + 4𝛥𝛥2

= 𝑟𝑟
𝒓𝒓𝒋𝒋

𝑟𝑟 =
𝛼𝛼
𝑗𝑗

=
|𝛺𝛺|
𝛺𝛺𝑐𝑐

where CRSS cease to exist Phase transition for 𝑟𝑟 > 1 crossover at “Range of validity” 𝑟𝑟 < 𝑟𝑟𝑗𝑗
𝑗𝑗Finite     CRSS prediction:

mean field

exact solution
(N = 2𝑗𝑗 = 20 atoms)

 Existence of CRSS underlies 
Dicke phase transition 



𝐽𝐽
�𝐸𝐸

1. CRSS exist: eigenstates of 

𝐽𝐽| ⟩𝛼𝛼 = 𝛼𝛼| ⟩𝛼𝛼CRSS = coherently radiating spin states

𝐽𝐽

2. CRSS are physical: underlie steady-state of superradiance

3. CRSS are entangled:  spin squeezing 𝑁𝑁−1/3

4. CRSS radiate classically: dipole-projected squeezing

5. outlook
Ori Somech
(MSc student)



Spin vector 𝐉̂𝐉 = (𝐽𝐽𝑥𝑥, 𝐽𝐽𝑦𝑦, 𝐽𝐽𝑧𝑧)

𝐉̂𝐉 = 𝐉̂𝐉 (sin𝜃𝜃cos𝜑𝜑, sin𝜃𝜃sin𝜑𝜑,−cos𝜃𝜃)

Spin squeezing parameter

𝜉𝜉2 = 𝑁𝑁

𝐉̂𝐉 2 min
𝐧𝐧⊥

Var[𝐽𝐽𝐧𝐧⊥] 𝐽𝐽𝐧𝐧⊥= 𝐧𝐧⊥ � 𝐉̂𝐉

𝜉𝜉2 < 1

 Pairwise entanglement  (btwn atoms)

𝜉𝜉2 ≥ 1/𝑁𝑁

Mean spin:

CRSS: 

CSS= Coherent spin states

independent atoms (”classical” spin)

𝐉̂𝐉 = 𝑗𝑗 = 𝑁𝑁/2

mean spin

𝐽𝐽𝑧𝑧 = −𝑗𝑗 1 − 𝑟𝑟2
;

𝐉̂𝐉 = 𝑗𝑗 = 𝑁𝑁/2𝑟𝑟 = sin𝜃𝜃

 Q-enhanced metrology

“standard quantum limit” 

𝜉𝜉2 = 1

𝜉𝜉2 =?

 Q metrology, sensing

Spin squeezing

unit vector      to mean spin⊥

𝐉̂𝐉

Heisenberg limit:



j=100
j=25

Steady-state superradiance:

 CRSS theory well predicts squeezing in superradiance

CRSS theory:

𝜖𝜖(𝑟𝑟𝑗𝑗 , 𝑗𝑗) = 1/𝑒𝑒𝑟𝑟 < 𝑟𝑟𝑗𝑗

Analytical result: master 
equation

Finite              validity range:𝑗𝑗 ≫ 1

 optimal squeezing (within CRSS theory, finite              ):𝑗𝑗 = 𝑁𝑁/2

Asymptotic scaling (CRSS theory):

j=25, 100

CRSS theory

master equation 

CRSS theorysolve Dicke master equation exactly for



𝐽𝐽
�𝐸𝐸

1. CRSS exist: eigenstates of 

𝐽𝐽| ⟩𝛼𝛼 = 𝛼𝛼| ⟩𝛼𝛼CRSS = coherently radiating spin states

𝐽𝐽

2. CRSS are physical: underlie steady-state of superradiance

3. CRSS are entangled:  spin squeezing 𝑁𝑁−1/3

4. CRSS radiate classically: dipole-projected squeezing

5. outlook
Ori Somech
(MSc student)



“input-output” relation to total field

Steady-state superradiance:

Prove              is coherent state for field:

 Coherent state of the field 

…as expected:

�𝐸𝐸| ⟩𝜓𝜓 ∝ | ⟩𝜓𝜓

�𝐻𝐻=𝐽𝐽† �𝐸𝐸 + �𝐸𝐸†𝐽𝐽

�𝐷𝐷| ⟩𝜓𝜓 𝑡𝑡 = 𝛼𝛼| ⟩𝜓𝜓(𝑡𝑡)

input vacuum field field scattered by dipole

CRSS field state

Dipole in pure state (CRSS)  total dipole+field state separable

Use input-output relation + CRSS property

“eigenstate of dipole radiates coherent light”

Dicke superradiance pumps the system to a dipole eigenstate (CRSS)  coherent light radiation



- Why a nonlinear spin-squeezed dipole scatters light classically? (like a linear system)

- Why not, e.g.,  squeezed light?

Light only “feels”  

“dipole-projected squeezing”

�𝐻𝐻=𝐽𝐽† �𝐸𝐸 + �𝐸𝐸†𝐽𝐽 𝐽𝐽 = 𝐽𝐽𝑥𝑥 − 𝑖𝑖 𝐽𝐽𝑦𝑦
 Focus on noise projected to x,y plane

Field quadrature

dipole quadrature

Relation between noises:

CRSS

CSS
< For light squeezing need: “dipole” squeezed, spin not

 spin quantum
light classical

 light quantum 
spin classical

𝜉𝜉2 = cos𝜃𝜃
spin squeezed, “dipole” not



𝐽𝐽
�𝐸𝐸

New family of collective spin states:

𝐽𝐽| ⟩𝛼𝛼 = 𝛼𝛼| ⟩𝛼𝛼CRSS = coherently radiating spin states

Ori Somech
(MSc student)

1. Underlies Dicke superradiance
 New tool to study superradiance phenomena: superraidant lasers, beynd permutation symmetry?
 Predictions for cavity experimemets

2. The nature of CRSS
 New class / scaling of spin squeezed states? 
 Can be produced by Hamiltonian unitaries?

𝑁𝑁−1/3

3. CRSS in quantum magnetism? 
 Underlies Hamiltonian quantum phase transitions?
 Appears in certain spin models? arXiv: 2204.05455
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