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The Juno orbiter entered into a polar 53-day orbit around 
Jupiter in 2016 (ref. 1) and transmitted detailed observations 
of its poles2,3 (Fig. 1). The images showed a unique config-

uration of cyclonic vortices at both poles3. Each pole contains a 
polar cyclone (PC) with its centre positioned close to the pole and 
is surrounded by a ring of circumpolar cyclones (CPCs). The ring 
incorporates eight cyclones around the north pole and five cyclones 
around the south pole3. These constellations of cyclones are very 
stable and only drifted slightly with no substantial changes in vor-
tex morphologies and sizes for over two years4,5. The observable 
diameters of the PCs and CPCs range between 4,000 and 6,000 km 
(ref. 5), and the velocities inside the cyclones reach up to 100 m s−1 
(ref. 6). Such vortex-crystal formations were previously predicted as 
a two-dimensional (2D) relaxation mechanism of turbulence and 
were found in experiments that simulated 2D flow with magnetized 
electron columns7,8. However, these configurations are not observed 
in nature other than at the poles of Jupiter.

Saturn is generally similar to Jupiter and displays comparable 
dynamics9–11. Both poles of Saturn also contain a central polar 
cyclone, each faster and more extensive than each of the Jovian 
PCs12. However, neither of the Saturnian poles have an observable 
circumpolar ring of vortices. Any theory for the Jovian polar CPCs 
must also explain the absence of CPCs on Saturn.

For the poles of Jupiter, the polygonal structure of the CPCs 
was modelled using a single-layer shallow-water model13 to inves-
tigate their depth and structure and provide evidence for anticy-
clonic shielding around the CPCs, which was shown to be necessary 
to inhibit cyclone mergers. In another approach, it was shown, 
using deep 3D models, that Jovian cyclones could extend deep 
and may emanate from the convection of heat14–16 and drift pole-
ward17,18. Such a 3D vortex behaviour was also studied in laboratory 
experiments19,20.

A primary mechanism that is fundamental to vortex dynamics 
is a secondary drift that acts on a vortex due to the sphericity of the 
planet21,22, and is commonly known as a ‘β-drift’. The direction of 
the drift is determined by the sign of the vortex and by the direction 
in which the background planetary vorticity (f) rises, which results 

in selective transport of cyclonic anomalies poleward, whereas 
anticyclonic anomalies move equatorward. This mechanism is a 
major contributor to the poleward migration of tropical cyclones on 
Earth23–27. Using a 2.5-layer shallow-water model, it was shown that 
moist convection, formed beneath the cloud level of a gas giant, can 
generate such cyclonic anomalies28,29. These, in turn, converge at the 
poles due to the β-drift and can lead to coherent PCs, such as those 
on Saturn28,30,31. In addition to the β-drift, an equivalent mechanism 
can drive a vortex through the presence of any background vorticity 
gradient. For example, this gradient can be induced by jet streams 
and influence the movement of a crossing vortex32,33. This general-
ization appears to be crucial to understand the stability of the cir-
cumpolar vortices on Jupiter.

Vortex drift by a background vorticity gradient
To understand the stability of the CPCs, it is essential to generalize 
the β-drift as a force that acts in the direction of a rising background 
vorticity. For intuition, one can think of a simplistic scenario in 
which the conserved potential vorticity (PV) is a superposition of 
constant vorticity by a solid-disc anticlockwise rotating vortex, and 
of an unspecified background vorticity (ω in Fig. 2) that monotoni-
cally rises northward. A fluid parcel that starts on the southern edge 
of the vortex, where the background vorticity is small, will be carried 
by the vortex circulation to the eastern edge, where background vor-
ticity is higher (Fig. 2a). To conserve the PV, a negative relative vor-
ticity would be induced. The opposite will happen with a northern 
parcel, which will induce a positive vorticity while reaching the west 
side. This dipole of induced vorticity, usually termed ‘β-gyres’34,35, 
then shears the velocity field and thus generates a northward veloc-
ity profile (Fig. 2b). The mean force that acts on a vortex due to 
this phenomenon is proportional to the gradient of the background 
vorticity, both in magnitude and in direction. Anticlockwise rotat-
ing vortices are pulled towards the highest ascent of background 
vorticity, whereas clockwise rotating vortices are pulled towards the 
highest descent. In the planetary context (considering ω as the plan-
etary vorticity), this results in cyclones being pulled poleward and 
anticyclones being pulled equatorward.

The number and location of Jupiter’s circumpolar 
cyclones explained by vorticity dynamics
Nimrod Gavriel! ! ✉ and Yohai Kaspi! !

The Juno mission observed that both poles of Jupiter have polar cyclones that are surrounded by a ring of circumpolar cyclones 
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Meridional stability of circumpolar cyclones
If the only vorticity gradient present in the background of a 
cyclone is due to the planetary sphericity, it will tend to move pole-
ward until this gradient vanishes precisely at the pole. Assuming 
a PC is already present at the pole (Fig. 3), the PC will induce a 
vorticity gradient of itself around the pole. The velocity profiles 
observed for the PCs of Jupiter and Saturn resemble a solid-disc 
rotation in an inner region, and an exponential decay outside of it 
(Extended Data Figs. 1 and 2). Where the velocity decays exponen-
tially, the relative vorticity is negative due to the functional rela-
tion between velocity and vorticity (Methods and Extended Data  
Fig. 3). As the vorticity of the PC must vanish far away, an annulus 
of a positive relative vorticity gradient should exist around a PC 
due to its presence. However, f has its maximum magnitude at the 
poles and is 0 at the equator. Therefore, its gradient ( Ȁ ≡

ȺG

ȺS

, where 
r is the distance from the pole) is always negative away from the 
pole. The magnitude of β is highest near the equator and vanishes 
at the poles36. These trends mean that, theoretically, there can be a 
latitude at which a poleward-migrating CPC will be in equilibrium 
as the gradients of vorticity due to the PC and due to the planetary 
sphericity are equal and opposite13. We propose this criterion of 
whether a PC can generate a vorticity gradient that opposes β as a 
separating threshold between two polar states: one state in which 
a circumpolar ring of vortices can be stably held, and one in which 
the planetary gradient of vorticity is always greater, where any 
incoming CPC will be merged into the PC.

Considering the meridional balance on a CPC, we define
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where ξPC is the vorticity of the PC. Fθ is proportional to the net 
meridional force on a CPC (FPC − Fβ in Fig. 3). It is required that 
Fθ = 0 for a CPC to be in a meridional balance. Moreover, if Fθ is 

negative, the force is in the poleward direction; a positive Fθ pushes 
cyclones equatorward.

In Fig. 4a, Fθ is plotted as a function of latitude. The four curves 
are drawn according to relative vorticity gradients calculated from 
idealized profiles of the PCs’ tangential velocity (vPC) (Methods). 
These profiles are determined according to the maximum velocities 
and the radii of the maximum velocities evaluated for the respec-
tive PCs on the north and south poles of Jupiter and Saturn6,12 
(Methods). Temporal and local variations of the velocity fields are 
not taken into account. The β profiles are calculated according 
to the respective planetary radii and rotation rates of Jupiter and 
Saturn (Methods).

It is evident (Fig. 4a) that both poles of Saturn cannot sustain a 
meridional equilibrium, and therefore do not have CPCs. In con-
trast, each pole of Jupiter exhibits two equilibrium points. However, 
the equilibrium point closer to the pole (in each of the red curves) 
is unstable. This is because a perturbation in the latitude of the CPC 
poleward from that point will further pull it to merge with the PC 
due to the negative vorticity gradient poleward of that point. A per-
turbation away from the pole brings the vortex to the farther point 
of equilibrium. That point is in a stable equilibrium, situated at lati-
tude ~84° for both poles. The circumpolar ring observed at J-NP 
lies approximately along 83° N, whereas at J-SP it is roughly at 84° S  
(ref. 4). This agreement between the calculated latitudes of equilib-
rium (Fig. 4) and the observations, and the lack of such equilib-
rium on Saturn, support the suggested mechanism as the stabilizing  
balance that holds the CPCs of Jupiter stable.

It can be seen (Fig. 4b) that the stable equilibrium is achieved 
farther from the poles when the PC rotates faster (smaller Ω/ωPC, 
where Ω is the planetary rotation rate and ωPC is the rotation rate of 
the PC). This is because the vorticity gradient of the PC is propor-
tional to its rotation rate, so faster-rotating PCs can ‘overcome’ the 
planetary vorticity gradient for greater distances from their centres. 
Larger polar vortices (smaller a/RPC, where a is the planetary radius 
and RPC is the radius of maximum velocity of the PC) also result 
in farther latitudes of equilibrium. In this case, this is due to their 
vorticity gradient profiles being stretched farther. This, however, 
has a limitation. A PC too big, relative to the planet, will be in a 
state where its region of positive vorticity gradient is too far from 
the pole, where β dominates. In these cases, equilibrium cannot be 
reached, as is the case of the Saturnian poles.

Zonal stability of circumpolar cyclones
Next, we investigate how many cyclones can fit in a circumpolar 
ring. All cyclones in the circumpolar ring are of nearly similar size  
and strength, with a comparable space between adjacent pairs4–6. 

North pole South pole

Jupiter
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Fig. 1 | Observations of the PCs and CPCs of Jupiter and Saturn. The 
images of Jupiter are infrared measurements taken by Juno’s JIRAM 
camera3 (adapted with permission). The images of Saturn were captured 
by the Cassini ISS37 (adapted with permission). Longitude lines point to the 
poles and are 15° apart. For Jupiter, longitude 0° in System III is positioned 
at the centre right of the images. A latitude circle is shown at 80° N/S for 
Jupiter and at 85° N/S for Saturn.
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Fig. 2 | Generalized β-drift schematic. Grey contours represent streamlines 
of a vortex. Blue contours represent lines of equal background vorticity 
(ω), and their increasing thickness represents the gradual increase in the 
magnitude of the background vorticity. a, The Lagrangian motion of two 
fluid parcels leads to a dipole of induced vorticity due to the conservation of 
PV during the motion led by the vortex. b, A velocity profile induced in the 
vortex by the shearing due to the vorticity dipole illustrated in a.
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Thus, in the following analysis, a ring of equally spaced identical 
cyclones is considered. Then, it is postulated that the cyclones are 
sustained by mutual rejection between their two neighbouring vor-
tices in the zonal direction, according to the force derived by their 
respective vorticity gradients (Fig. 5a). CPC2 is assumed to be exactly 
between CPCs 1 and 3, such that the zonal forces applied on it are 
equal and opposite. The remaining question, however, is whether this 
equilibrium is stable. To understand the stability criterion for a ring 
of CPCs, it is insightful to consider the second derivative in the zonal 
direction of the vorticity (only the vorticity induced by CPCs 1 and 3)  
at the centre of CPC2 as a function of L, the distance between two 
neighbouring cyclones (Fig. 5b). When L is too short, a small per-
turbation in the location of CPC2 to the left encounters a negative 
vorticity gradient (Fig. 5c), which pulls the vortex further to the 
left. The opposite happens with a perturbation to the right. This 
constitutes an unstable equilibrium that exists as long as the second 
derivative of the vorticity is positive. When the second derivative 
of the vorticity is negative, a stable equilibrium is formed (Fig. 5d). 
The limiting distance, Llim = 4.54RCPC (where RCPC is the radius of 

maximum velocity for a CPC; see Methods), in which the second 
derivative vanishes, is the minimal distance between the CPCs that 
can maintain a stable equilibrium. This means that the vortex cen-
tres have to be more than Llim apart for the CPCs to be in a sustain-
able configuration.

The available space for CPCs in the circumferential ring is 
approximately �ɿB(��

◦
− |Ȇ
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◦, where θeq is the latitude 

of equilibrium for the respective pole (Fig. 4b). Therefore, the 
maximal number of vortices to fit in the ring can be estimated  
according to
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Here, values for RCPC at the north and south poles of Jupiter are eval-
uated using Juno’s JIRAM imager5. Higher values inside the vari-
ability range of RCPC are taken for the smallest constraint (Methods). 
Inserting the numbers for the north and south poles into equation 
(2) results in N ≈ 11.05 and 7.26, respectively. However, as N should 
be an integer that describes the maximal number of stable CPCs, 
these numbers are rounded down to give
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where the subscripts N and S represent the north and south poles.
Although this last analysis can be explained intuitively, to obtain 

a more accurate constraint, a 2D analysis is performed that does not 
treat CPC2 as a singular point but instead considers the different 
influence, weighted by the meridional velocity of CPC2, around the 
spread of the vortex. The force that acts on CPC2 by the presence of 
CPCs 1 and 3 is proportional21 to the integral
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around CPC2. Here, v2 is the meridional velocity of CPC2, and ξ1 
and ξ3 are the vorticities of CPCs 1 and 3. The results from this anal-
ysis are qualitatively similar to those shown in Fig. 5; however, the 
limiting distance for stability (Llim) is found to be 5.87RCPC instead 
(Methods). This constrains Nmax further as CPC2 is now influenced 
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Fig. 4 | Latitudes of equilibrium in the gas giants. a, Curves of Fθ as a function of latitude. The red curves are calculated for the north (solid) and south 
(dashed) poles of Jupiter (J-NP and J-SP, respectively); the blue curves represent the north (solid, S-NP) and south (dashed, S-SP) poles of Saturn.  
Only Jupiter has points of equilibrium in which Fθ is zero. A stable balance for Jupiter’s poles is achieved at the equilibrium points farther from the pole.  
b, The latitude (N/S) of equilibrium as a function of the ratio between a and RPC, and of the ratio between Ω and ωPC. Only the stable solutions for Fθ!=!0 are 
considered. The white area on the left side of the contour is where equilibrium cannot be achieved. The values that represent the curves in a are shown as 
points. Both poles of Saturn are in the region with no solution.
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Fig. 3 | An illustration of the balance holding a CPC around the PC. The 
green curve is the vertical component of the planetary vorticity f. The blue 
curve is the profile around the PC of the idealized axisymmetric tangential 
velocity (vPC) in the vortex. ξPC is the relative vorticity due to the presence of 
the PC. The red arrows are vorticity gradient forces on the CPC, induced by 
the PC and by planetary sphericity.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience


ARTICLES NATURE GEOSCIENCE

more by regions closer to CPCs 1 and 3. Using this value instead of 
4.54RCPC in equation (2) results in N ≈ 8.54 and 5.62 for the north 
and south poles, respectively, such that

/

NBY
/

≈ �
 /

NBY
4

≈ �� 	�


This constraint correctly predicts the actual number of  
vortices in the north and south poles of Jupiter. It is interesting to 
note that the estimate of Nmax,S is between 5 and 6, and, consistently, 
two years’ observations of the south pole found a constant gap in 
the south polar ring4, which implies a space that is slightly larger  
than that required for the five CPCs. This gap was temporarily  
occupied with a sixth vortex around the time of Juno’s 18th peri-
jove5, but as the formation was not stable, this additional vor-
tex disappeared by the time of the 19th perijove, which indicates 
that the 5.62 value has a dynamical meaning. These predictions  
further support the described mechanism for the stability of the 
CPCs on Jupiter.

Polar cyclones on the gas giants
The analysis presented here is based on the assumption that the 
large-scale movement of vortices is mainly due to advection of the 
background vorticity with the tangential velocity of the vortex, and 
that this movement is proportional, both in magnitude and in direc-
tion, to the background vorticity gradient. This logic implies that, if 
the background vorticity gradient is zero at the centre of a vortex, 
that vortex will not move. The gradient of planetary vorticity that 
acts on a CPC in the meridional direction can be opposed under 
certain conditions by the gradient of vorticity induced by the polar 
cyclone (equation (1)). Such an equilibrium is shown (Fig. 4b) to be 
favoured for small and strong PCs, relative to their host planets. In 
the zonal direction, it is shown (Fig. 5) that stability can be sustained 
for up to a certain number of vortices in a circumpolar ring. More 
vortices can fit in the ring for poles in which the meridional stabil-
ity is achieved at latitudes farther from the pole, and for poles with 
smaller CPCs. These analyses only treat the assumed highest-order 
forces that control the stability of circumpolar vortices and suggest 
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Fig. 5 | Zonal stability of CPCs. a, Schematic for the equilibrium between CPC2 and the adjacent vortices in the zonal direction, namely CPC1 and CPC3.  
x is the distance from CPC1 in the zonal direction. ξCPC is the vorticity profile produced by the presence of CPCs 1 and 3. The magenta and green curves are 
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c,d, Plots representing an unstable and a stable case, respectively, of the vorticity gradient profiles as a function of x. In b–d, for a generalization of the 
plots, the variables with a circumflex are non-dimensional (Methods).
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that the governing dynamics are controlled by 2D (barotropic) PV 
conservation. There are other forces, such as ones that derive from 
the 3D structure of a cyclone, that may be responsible for the small 
changes in the locations, speeds and sizes observed in the circum-
polar vortices of Jupiter4.

Although this study explains the existence of CPCs on Jupiter 
in contrast to the absence of such on Saturn, it does so by consid-
ering the specifics of their observed corresponding PCs. However, 
it does not explain the variation between the PCs of the planets. 
Theoretically, Saturn could sustain circumpolar vortices if its PCs 
were smaller or were to spin faster. As the stability criterion for a cir-
cumpolar ring in the north pole of Saturn is nearly reached, it may 
be that minor future variations in the polar conditions of Saturn (for 
example, due to its seasonality) would manifest in a circumpolar 
ring or that such a ring existed in the past. It is also possible that 
cyclic variations in the solar forcing may alternate the number of 
circumpolar vortices between the north and south poles of Jupiter. 
Nonetheless, the match of the meridional and zonal force balances 
to the observations provides strong evidence that the physical bal-
ances outlined in this study are responsible for setting the location, 
stability and number of CPCs on the gas giants.
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Methods
Idealized cyclone profiles. The observed velocity profiles for the vortices at the 
poles of Jupiter6 are very similar to those of a solid-disc rotation in an inner region 
and an exponential decay outside of it (Extended Data Fig. 1). This behaviour is 
expressed by an idealized cyclone tangential velocity profile given as
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where r is the distance from the centre of the cyclone, V is the maximum velocity in 
the vortex and R is the edge of the solid disc. This profile is compared in Extended 
Data Fig. 3a with a profile suggested for a study of tropical cyclones23 and with a 
profile fit specifically for the PCs of Jupiter6. This velocity profile (equation (6)) is also 
compared with wind measurements from Jupiter and Saturn in Extended Data Figs. 1 
and 2, respectively. The stronger decay of velocity around 3,000 km at the Jovian poles 
(Extended Data Fig. 1) can be attributed to the presence of the velocity fields of the 
CPCs, as no such trend appears in the PC-only cases of the Saturnian poles (Extended 
Data Fig. 2). The relative vorticity around the centre of the cyclone is calculated for a 
cyclone placed in a medium that is otherwise at rest as Ȍ =
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This profile is compared with the vorticity calculated from the two other velocity 
profiles in Extended Data Fig. 3b. The vorticity gradient is thus
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This profile is again compared with the two other profiles in Extended Data 
Fig. 3c. The velocity profile from the numerical study23 is an inverse high-order 
polynomial. This means that the second derivative of this velocity profile, which is 
the requested term, is very noisy. However, the curve fit for J-NP6 is only suited for 
a small range of r and shows a large vorticity gradient near r = R that is an artifact 
of the chosen curve. For these reasons, we chose to perform the calculations of this 
study with the suggested piecewise profile (equations (6)–(8)).

Equations for the meridional stability. The planetary background vorticity is

G = �Ω DPT(S�B)� 	�


The planetary vorticity gradient is

Ȁ ≡
ȺG

ȺS

= −�ΩB

−�
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To show Fig. 4 in terms of latitude, the transformation r = a(90° − θ)π/180° is used 
in equation (1). The two terms in equation (1) are defined by equations (8) and 
(10), respectively. For the planetary rotation rates (Ω), the values 1.76 × 10−4 and 
1.65 × 10−4 s−1 are used for Jupiter and Saturn, respectively. The mean planetary 
radii (a) used here are 69,911 km for Jupiter and 58,232 km for Saturn. Maximum 
velocities (V) and radii of maximum velocity (R = RPC) are estimated for Jupiter 
(Fig. 6 in Grassi et al.6) and Saturn (Table 2 in Baines et al.12) from observations. 
For J-NP, J-SP, S-NP and S-SP, these values are V = 80, 85, 136 and 174 m s–1 and 
RPC = 900; 1,100; 1,728 and 2,541 km, respectively.

In Fig. 4b, the contour shows the solutions θeq for Fθ = 0, reduced to
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where G is a function defined by using equations (8) and (10), and ωPC = V/RPC is 
the rotation rate of the solid-disc part of the PC. Although at some range of a/RPC 
and Ω/ωPC there is no solution, as can be seen in Fig. 4b, for the rest of the range, 
there are two possible solutions. Only the stable solutions (where Ⱥ'Ȇ

ȺȆ

∣

∣

∣

Ȇ=Ȇ

FR

� �

) are 
taken for Fig. 4b.

Equations for zonal stability. To plot the general trends in Fig. 5, equation (8) (for 
the CPC, in the zonal direction) is normalized according to
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where variables with a circumflex are non-dimensional, Ŷ is the non-dimensional 
distance from the centre of CPC1 in the eastward direction, RCPC is the radius of 
maximum velocity of the CPCs and VCPC is the maximum velocity of the CPCs. 
These scalings result in equation (8) becoming
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The total vorticity gradient in the zonal direction, felt on CPC2 by CPCs 1 and 3, is 
therefore
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In Fig. 5b, the expression 
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 is plotted against L/RCPC. The 

minimum distance between CPCs required for stability (Llim) is the solution L for 
the equation
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This value is found to be Llim = 4.54RCPC. In Fig. 5c,d, equation (14) is plotted against 
Ŷ for two different values of L. In Fig. 5c, L is smaller than Llim, which illustrates an 
unstable equilibrium that would result in a merger with either CPC1 or CPC3. In 
Fig. 5d, L is larger than Llim, and the equilibrium is stable.

To solve equation (2), RCPC is evaluated according to 3
$1$

= 3

1$

3
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SBUJP

, where 
the ratios between the radii of the PC and the CPCs (Rratio) are estimated from 
Adriani et al.5 (Fig. 5b). We used the minimal (for the most restrictive constraint) 
observed values of Rratio = 1 for J-NP, and Rratio = 0.75 for J-SP. Values for RPC are 
the same as those for the meridional analysis. For 

∣
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∣

∣, the values 84.1° and 83.7° 
found from Fig. 4 for J-NP and J-SP, respectively, are used. The resulting Nmax is 
rounded down, as rounding up would result in an unstable number of CPCs.

Accurate estimation of Llim. For a more accurate prediction of the limiting 
distance between vortices for stability, a 2D analysis is done instead of the 1D 
analysis done for Fig. 5. We use here the notion that the vorticity gradient force is 
proportional to the integral shown in equation (4). Stability is achieved when this 
force is positive (pushes right) when the position of CPC2 is perturbed to the left 
and is negative when this position is perturbed to the right. Therefore, the limiting 
L for stability (Llim) is the value of L in which the gradient of the force with respect 
to the location of CPC2 vanishes.

To perform the integration in equation (4), the ideal profiles (equations (6) and 
(7)) are converted into a Cartesian coordinate system. This gives (in normalized 
variables according to equation (12), where W = Ŵ7
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 is the normalized (by RCPC) distance between the centres of CPCs 1 and 2, and Ẑ 
is the northward meridional distance from the centre of CPC1, normalized by RCPC. 
Llim is then the value of L that solves the equation
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For validation, the domain of integration is determined to be very 
small, in which case the resulting Llim approached the value from the 1D 
analysis (4.54RCPC). The domain of integration is ultimately chosen to be 
{Ŷ

�

− (-�3
$1$

− �) 
 Ŷ
�

+ (-�3
$1$

− �)} for Ŷ, and {–(L/RCPC – 2), (L/RCPC – 2)} 
for Ẑ. In this way, the resulting force does not stem from the predominant areas of 
CPCs 1 and 3. The solution Llim to equation (18) is thus Llim = 5.87.

Formal asymptotic derivation of the suggested balance on the CPCs: 
momentum balance approach. To show how the described balance suggested in 
this study results from the equations of motion, an asymptotic derivation is laid 
out. First, a timescale that is long enough to describe the changes in the CPCs is 
needed. This timescale is derived here from the vorticity equation by balancing 
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between the vorticity change with time and the β term, as this term is assumed to 
be a substantial contributor to the motion of Jovian cyclones. Thus, it follows that
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which leads to the scaling argument
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where Jovian values are assumed, β is estimated at latitude 84° (near the centre of 
the CPCs) and L ≈ 2,000 km is estimated according to the observed radii of the 
CPCs. This timescale is of the same order as the time between perijoves (~53 days), 
in which slight variations can be observed in the locations and sizes of the CPCs4,5. 
To continue, we assume that the flow is 2D, inviscid and barotropic. We start from 
the horizontal conservation of momentum equation36 in the form

ȺV

ȺU

+ (G + Ȍ)
ˆ
L × V = −

�

ȏ

∇Q −
�

�

∇
(

V

�

)


 	��


where ˆL is a unit vector in the vertical direction, p is pressure and u is the velocity 
vector. We scale and expand the variables at the core of a CPC according to
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Here, Ro is the Rossby number, taken as the small asymptotic expansion constant 
(3P =

6

G

�

-

≈ ����), where U is the velocity scale (~40 m s−1) and f0 is evaluated at 
latitude 84°. The velocities (and therefore the pressure and vorticity as well) due 
to the PCs are assumed to be O(Ro) smaller than those of the CPC as the PC is far 
when looking at the core of a CPC. The pressure here is scaled according to the 
geostrophic balance. Note that here the meridional direction is northward (y) and 
not equatorward (r) as defined in the main text. This expansion results in
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The non-dimensional number 
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G
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 is evaluated at latitude 84° as ~0.003, which is 
O(Ro2). In the leading order we have (back in dimensional variables) a geostrophic 
balance on the CPC
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For the second order we get a modified geostrophic balance for the PC

G

�

ˆ
L × V

1$

= −
�

ȏ

∇Q

1$

− Ȍ

$1$

ˆ
L × V

$1$

− ∇ (V
$1$

· V
$1$

) � 	��


For the third order, where the time evolution appears, we have
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Expanding equation (26) in the meridional direction and using equation (24) gives
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As the PC terms are zonally symmetric, and as the CPC terms on the right-hand 
side are antisymmetric in the zonal direction relative to the core of the CPC, a 
concentric integration of equation (27) around the core of the CPC results in the 
vanishing of all the terms on the right-hand side. Therefore, we obtain
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where Fy is the meridional force density on the CPC core. By considering the 
anti-symmetry of uCPC in the meridional direction, one can show that Fy vanishes 
only when 
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+ ȀZ) E4 = �, which results in the condition Fθ = 0 
(equation (1)). Taking the zonal direction of equation (26), and replacing the 
velocities according to Fig. 5 similarly results in
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Formal asymptotic derivation of the suggested balance on the CPCs: vorticity 
balance approach. Another way to arrive at the condition Fθ = 0 (equation (1)) is 
to look at the vorticity equation. Taking the curl of equation (24) gives
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Taking the curl of equation (25) gives
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Assuming that the core of the CPC rotates, in equilibrium, as a solid body 
( ȺȌ

$1$

ȺY

=

ȺȌ

$1$

ȺZ

= �

) gives that

∇ · V
1$

= �� 	��


Taking the curl of equation (26) gives
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Using the solid-body rotation assumption again, together with equations (30) and 
(32), and noting that ξPC is zonally symmetric, gives
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where the term in the parentheses can be regarded as Ⱥȗ

ȺZ

 in Fig. 2. As vCPC is 
antisymmetric in the zonal direction, two opposite vorticity anomalies can be 
generated in the two sides of the CPC core when Ⱥȗ

ȺZ

̸= �, which results in a net 
meridional acceleration on the core.
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Extended Data Fig. 1 | Measurements of the Jovian PC velocity profiles. The velocity profiles from Extended Data Fig. 3a, overlaid on Fig. 6 from Grassi 
et al., 20186 (adapted with permission), showing the observed velocities around the north (a) and south (b) poles of Jupiter. The idealized velocity profiles 
are calculated using the Jovian values for R and V (Methods). The green curves (vPC) represent the velocity profiles used for the analyses in this study.
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Extended Data Fig. 2 | Measurements of the Saturnian PC velocity profiles. Two velocity profiles from Extended Data Fig. 3a, overlaid on Fig. 8 from 
Baines et al., 200912 (adapted with permission), showing the observed velocities around the north (solid) and south (dashed) poles of Saturn. Error bars 
are calculated as standard deviations12. The idealized velocity profiles are calculated using the Saturnian values for R and V (Methods). The green curves 
(vPC) represent the velocity profiles used for the analyses in this study.
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Extended Data Fig. 3 | Idealized profiles of velocity, vorticity, and vorticity gradient. a, The vortex velocity profile according to the suggested piece-wise 
function (green solid curve) from equation (6) compared with two other ideal vortex profiles6,23 (for the Grassi curve6, γ!=!1.5 is taken). b, The vorticity 
calculated for the same profiles as a. c, Vorticity gradient (in log scale), calculated for the same three profiles. In addition, the minus of the β profiles are 
shown for the northern and southern poles of Saturn and Jupiter. The 4 curves for!−!β differentiate as the vorticity gradient is normalized according to each 
polar cyclone, and as the length is scaled by the radius of maximum velocity for the respective PC. The points where the vorticity gradient curves cross 
the!−!β curves represent equilibrium. Here, 0 in the r/R axis represents the pole.
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