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A simple model that shows an additional attraction between sol-
vated surfactant-coated systems is developed. The model simply
calculates the van der Waals attraction between the solvated sur-
factant layers. This attraction was previously neglected as it was
expected to have a small energetic contribution. This is indeed the
case; however, despite the small energetic contribution the force is
large. In other words, although the expression that we get is small in
energy, it is large in force. This is particularly important for surface
force balance measurements, where using the developed expres-
sion, some apparent discrepancies between measured and theoret-
ical values may now have a possible explanation, and especially
those associated with surfactant-coated surfaces. We apply the new
expression to a given system, and compare with the experimental
results. C© 2002 Elsevier Science (USA)

Key Words: surface force apparatus (SFA); functional group;
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INTRODUCTION

Surfaces modified by surfactants have found uses ranging
from stabilizing colloidal dispersions (1) to magnetic disk stor-
age devices (2) in computers. Experimentally, an important tool
for characterization of such systems is the surface force balance
(see, for example, (3, 4)). Interactions between surfaces bear-
ing solvated surfactant layers using the surface force balance
(SFB) (5–7, 17, 18) show in all the investigated systems (see,
for example, (3, 4)) an attractive well. Particularly, this attrac-
tive well is always much bigger than the calculated London–van
der Waals (vdW) attraction between two such opposing surfaces,
as is noted in those references, and left there as a puzzle. The
calculation of the theoretical vdW attraction in these references
takes into account the mica–mica attraction across the solvent
medium (mica being the material on which surface the surfac-
1 To whom correspondence should be addressed and present address:
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tants are grafted in the SFB). The contribution of the surfac-
tant layers to the vdW attraction was neglected in these studies
probably because the medium was assumed to have a Hamaker
constant similar to that of the solvated surfactant chains. This
would result in a very small energetic contribution. Additionally
the surfactant layer is quite thin, which would further decrease
the energetic contribution of this layer, and would also require
establishment of a proper expression for the energy contribution
from thin shells (8)—a work that one would not do in order just
to discover that the energetic contribution is negligible.

Indeed, as is shown in the following sections, the contribu-
tion of the surfactant layers to the total vdW energy is small in
part because of the similar refractive indices (and hence sim-
ilar Hamaker constants), and in part because of the thinness
of the two layers. However, particularly because of the small
thicknesses, this contribution has such a force law that makes
the force—the derivative of the energy—high, and thus the the-
ory may still be consistent with the SFB measurements, which
measure forces rather than energies. At the same time colloidal
stability is still obeyed since the energetic contribution of the
surfactant layers is small.

Apart from proposing an explanation for the additional at-
tractive force between surfactant-coated surfaces, we also cal-
culate the value of such a contribution for one specific case.
We also confirm that adding the additional attraction to the total
expression for the energy still corresponds to a stable colloidal
suspension in this particular case.

LONDON–VAN DER WAALS ENERGY BETWEEN
TWO OPPOSING SHELLS

The first stage is to write the expression for the vdW attraction
between two shells that will mimic the two surfactant layers. The
general case was already established (8), and we only write here
the corresponding derivative for our specific geometry, including
the cylindrical case of the SFA.

Two solid spherical particle of radii R1 and R2, a distance
d apart (d is the shortest distance between the surfaces of
the particles), have a London–van der Waals attraction energy
1 0021-9797/02 $35.00
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FIG. 1. A schematic representation of the model for vdW energy between
two shells.

Esph(R1, R2, d) which is given by (9)

Esph(R1, R2, d)

= − A

6

{
2R1 R2

2(R1 + R2)d + d2
+ 2R1 R2

4R1 R2 + 2(R1 + R2)d + d2

+ ln

[
2(R1 + R2)d + d2

4R1 R2 + 2(R1 + R2)d + d2

]}
, [1]

where A is the Hamaker constant appropriate to the interac-
tion of the spherical material across the medium between the
spheres.

Consider now two identical solid spheres of radius Rt. Imagine
each sphere is composed of two parts: one being the spherical
core of radius Ri (=Rt − h) (see Fig. 1) and the other part the
spherical shell of thickness h with Ri + h (=Rt) and Ri as the
outer and inner radii, respectively.

Let Eshell(Ri + h, Ri, d) = EG (shell, shell) be the interaction
energy between two identical shells. This is a function of the
outer radius Ri + h of the shells, the inner radius Ri of the shells,
and the closest distance d between the shells. We write the total
interaction between the two solid spheres of the same radius Rt as

EG (sphere, sphere) = EG (shell, shell) + EG (core, core)

+ 2EG (core, shell), [2]

where EG(x, y) is the interaction energy between a geometrical
body x and a geometrical body y, subjected to the geometrical
conditions of Fig. 1. For instance, EG (core–shell) is a function
that describes the vdW interaction energy between the spherical
core (radius Ri) and the spherical shell (Ri + h, Ri for outer and
inner radii) when separated by a closest distance d + h apart.
Similarly we can write

EG (core, shell) = EG (core, sphere) − EG (core, core). [3]

Substituting Eq. [3] into Eq. [2] and rearranging we get

EG (shell, shell) = EG (sphere, sphere) − 2EG (sphere, core)
+ EG (core, core). [4]
ADMOR

Finally in the notations of Eq. [1] this reads as

Eshell(Ri + h, Ri, d)

= Esph(Ri + h, Ri + h, d) − 2Esph(Ri + h, Ri, d + h)

+ Esph(Ri, Ri, d + 2h), [5]

and since all terms on the right-hand side of Eq. [5] are known
from Eq. [1], then Eq. [5] is analytic. Equation [5] describes the
vdW energy between two identical shells. The force Fshell, which
corresponds to the energy Eshell, is simply Fshell = (∂ Eshell/∂d).
Writing the term for the force is straightforward (a derivative
of the analytic Eq. [5]). To simplify the resulting expression
(which is rather lengthy) we write an approximate expression
for Fshell/R for the case of R � d, h. We first obtain Fshell/R =
1/R(∂ Eshell/∂d) and then neglect terms of order d/R or smaller
than 1. This yields

Fshell

R
= 1

R

∂ Eshell

∂d

= A

12

(
1

d2
+ 1

(2h + d)2
− 2

(h + d)2

)
R � d, h. [6]

Equations [5] and [6] describe the nonretarded (19) vdW in-
teractions of two thin layers. We note w.r.t. Eq. [6] that accord-
ing to the Derjaguin approximation (10) for R � d, FGL/R =
1/2 FC/RC = π EA, where FGL and FC are the forces between
spherical and crossed cylindrical objects respectively, and EA is
the interaction energy per unit area between two infinite para-
llel flat objects, all obeying the same force—distance law. The
relation to FC allows us to compare with the SFB measurements
in which the surfaces are crossed cylinders. The experimental
data of the SFA are given as FC/RC and the relation to EA shows
that it is possible to compare different experiments by normal-
izing the measured force by the cylinder radius. For the case
of the force law in Eq. [6], we need to replace FGL with Fshell,
and then the energy per unit area EA corresponds to parallel flat
membranes, as can be derived in a different way (11). Note that
for SFB measurements, RC � d, h.

Obviously the force and the energy have different distance
dependences, and in order to see this different dependence we
plot the two for a particular case. The case involves a previous
publication (4) in which the surfactant used is oleic-trimethyl-
ammonium-iodide (CH3(CH2)7CH==CH(CH2)8N+(CH3)3�),
from now on “OTAI,” which is adsorbed by its ionic head on a
mica surface and solvated by the solvent medium—hexadecane
(HD). The measured attraction between the surfaces in the
SFB, which utilizes ∼1 cm radius crossed cylinders, is in this
case ∼3 times bigger than the calculated one (4) based only on
the vdW attraction due to the semi-infinite mica surfaces (on
which the thin OTAI layer is grafted).

In order to add the energetic contributions in Eq. [5] or [6]
to the previously calculated attraction between the semi-infinite

surfaces (in order to compare with the experimental results),
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we need to know the value of the Hamaker constant associ-
ated with the attraction of one solvated surfactant layer with
the other across the hexadecane medium. For the Hamaker con-
stant, one only requires information on the refractive index of
the substance (and the dielectric constant, which in our case
is a negligible term). This information is not available expe-
rimentally, for a two reasons: (1) Any bulk data on OTAI are
very different from its actual grafted to mica and solvated in
HD form since it would include the grafted end group. This
end group includes the iodide which is no longer in the sys-
tem (4) (since it is replaced by the negative charge on the mica)
and would give rise to an apparent higher refractive index (12).
(2) It is well known that different functional groups (in a chemi-
cal compound) contribute differently to the refractive index (see,
for example, Chap. 10 in Ref. (12)). Usually some average is
made over these functional groups in order to obtain the average
refractive index (12) of the compound. However, clearly in our
case, different groups on the surfactant layer are not randomly
distributed along the thickness of the layer, but rather there is
some order with respect to the distance normal to the surface
along the thickness of the layer. This order is expected in any
set of grafted chains, and it is higher the shorter is the chain and
the longer is the persistence length of the chain, and surely with
the relatively short surfactant hydrophobic tail it is a dominant
effect. This forces us to view the refractive index of different lay-
ers away from the mica surface individually with respect to the
corresponding concentrations of the different functional groups
in that layer. There are two aspects to this phenomenon: (1) How
are the different functional groups distributed along the thick-
ness of the surfactant layer? (2) What is the refractive index
value that we should use for a given distribution of functional
groups, or how can we calculate the refractive index based on
a known distribution of functional groups? In what follows, we
suggest some answer to the second question (how to calculate a
contribution of a functional group to the refractive index). Then,
rather than answering the first question, we check what should
be the distribution so that the experimental results may finally
be fitted, and discuss the deviations in case of other possible
distributions.

There are three components in the hydrophobic tail of the
OTAI: CH2 groups, a CH==CH group, and a CH3 group. The CH2

groups are dominant in the HD, and therefore the contribution
of this group to the OTAI–OTAI interaction across HA cancels
(6, 11). We are left with CH3 group, and the CH==CH. In case
the CH3 group is concentrated at some layer away from the
surface, it would contribute to a refractive index different from
that of the HD. The CH==CH group, which is nonexistent in the
HD, would also contribute to an attractive three-layer Hamaker
constant, and the magnitude of this contribution again depends
on the concentration of this layer and its location normal to the
surface. Since the HD solvent has also CH3 groups, then the
contribution of the CH3 groups depends also on the alignment

of the HD molecules, which makes it a more difficult problem,
and we focus here on the CH==CH group.
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THE CONTRIBUTION OF THE DOUBLE BOND
TO THE HAMAKER CONSTANT

We first determine the highest possible refractive index of
a phase composed only of CH==CH groups ndb (db stands for
double bond, which is the phenomenon that makes this group
different), and then we dilute it to a value that is expected in the
concentration of the grafted to the surface OTAI in HD.

In order to calculate ndb we compare a simple alkane chain
with that of an identical length alkene chain. Since the only dif-
ference between those chains is the double bond (db), we may
learn from this difference about ndb. For example, the refrac-
tive index of nonane (C9) is 1.4050, and that of nonene (13) is
1.4190. By subtracting we get 0.014. Doing the same subtrac-
tion for tetradecene and tetradecane we get 1.438 − 1.429 =
0.009. Apparently these two results are very different; however,
in order to relate these two results we should bear in mind that
the longer is the chain, the smaller would be the difference in
the refractive index. For example, an infinite chain with only
one double bond will have the same refractive index as the
same infinite chain without this one double bond just because
the concentration of the double bond is negligible in the infi-
nite chain. Thus, in order to compare properly we need to divide
the value that we get for the refractive index difference due to
one double bond, by the concentration of it w.r.t the total amount
of carbons in the chain (14). For example in nonene there are
9 carbons; hence the concentration of the double bond is 1

9 (14),
and we need to divide by 1

9 , or simply multiply by 9, to
get 0.014/( 1

9 ) = 0.014 ∗ 9 = 0.126. The same for tetradecene
where there are 14 carbons: 0.009/( 1

13 ) = 0.009 ∗ 13 = 0.126.
Making the same calculation for 6, 8, 9, 10, and 14 carbon chains
always results in the same value of 0.126 with very small de-
viations (especially for the smaller molecules where the double
bond and the end methyl group start to interfere). Since we divide
by the concentration, we in fact obtain the value that corresponds
to a dens phase of double bonds.

Putting the above in general terms we may write that the
refractive index n( j, 1 db) of an alkene with j carbons and one
double bond is higher than the refractive index n( j, 0) of an
alkane with the same number ( j) of carbons but with 0 double
bonds. However, in order to know how much bigger will be the
refractive index of a phase composed only of double bonds than
that of only single bonds, we should divide the difference by the
concentration of the double bond in the chain (divide by 1/j or
multiple by j). A phase composed only of db’s has a refractive
index ndb of

ndb = n( j, 0) + �ndb, [7]

where �ndb
∼= j[n( j, 1db) − n( j, 0)].

Equation [7] (and �ndb) describes the approximate difference
in the refractive index of an imaginary phase composed only
of db’s. Our alkane medium in the experiment is hexadecane

∼
with nhd(=n3) = 1.423; we therefore can write ndb = 1.423 +
0.126 = 1.549.
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We cannot have a dense phase of db’s since the fraction of
OTAI occupied adsorbing sites on the mica surface imposes
an average lateral (two-dimensional) density of approximately
1
4 (Ref. (4)). Thus even if all the db’s are exactly at the same
height from the surface (same vertical displacement), the maxi-
mal volume fraction that the db’s can get is also approximately
1
4 . Thus, the maximal value that the refractive index n1 of that
layer or thin shell within which the db’s are localized is

n1(max) = (ndb + 3nhd)/4 = 1.4545.

Any vertical diffusion of the double bond would further mini-
mize n1. This can be written by the simple number average over
the length

n1 = [
n1(max)ldb + nhd(h − ldb)

]/
h, [8]

where ldb is the length of one double bond and h is the thick-
ness of the diffused db layer. Note that the thickness h is not
necessarily that of the surfactant L (i.e., h ≤ L).

The two media we consider are hexadecane (refractive index
n3) and the db-rich phase (refractive index n1). The nonretarded
Hamaker constant for two identical phases 1 interacting across
a medium 3 is given by the excellent approximation (6)

A = 3kT

4

(
ε1 − ε3

ε1 + ε3

)2

+ 3hνe

16
√

2

(
n2

1 − n2
3

)2

(
n2

1 + n2
3

)3/2

∼= 3hνe

16
√

2

(
n2

1 − n2
3

)2

(
n2

1 + n2
3

)3/2 for hydrocarbon chains, [9]

where k is the Boltzmann constant, T is the temperature, ε1 and
ε3 are the static dielectric constants of the two media, h is the
Planck constant, and νe is the so-called plasma frequency of the
free electron gas, and is the main electric absorption frequency
in the UV, typically around 3 × 1015 s−1 (6).

Similarly we can estimate the corresponding values of
εdb, ε1(max), and ε1. We note though that for hydrocarbon sys-
tems the contribution of the first (ε-dependent) term of Eq. [9]
is negligible (see values in Ref. (6)) compared with the second
one, and we neglect it.

In order to predict what should be the additional attraction
due to the surfactant layer in general and the db contribution in
particular, we need to know what is the thickness of this layer and
where the db is located (at what height from the surface). This
should involve energy minimization, which takes into account
the stiffness of the chains, the entropic gain in increasing the
thickness, and the enthalpic gain in decreasing the thickness.
This is beyond the scope of this paper, and here we merely
describe how the db attractive contribution changes with the
thickness of the db layer, and whether it can possibly explain
the apparent discrepancy between theory and measurements in

force measurements of surfactant-coated surfaces. The Hamaker
constant A is therefore a function of the thickness of the db layer.
ADMOR

Substituting Eq. [8] in Eq. [9] gives this h dependence:

A ∼= 3hνe

16
√

2

[
1
h2

(
n1(max)ldb + n3(h − ldb)

)2 − n2
3

]2

[
1
h2

(
n1(max)ldb + n3(h − ldb)

)2 + n2
3

]3/2 . [10]

THE TOTAL ENERGY

All parameters in Eq. [10] are known constants except for h,
which is also the only unknown parameter in Eqs. [5] and [6].
Thus, substituting Eq. [10] into Eq. [5] or [6] adds no degrees of
freedom to the expressions for the shells. By substituting Eq. [10]
into Eq. [5] or [6], we may finally fit the experimental data of
Ref. (4). Yet, in order to give a full description of the energy
between the surfaces, we incorporate the osmotic repulsion due
to the steric effects of the OTAI layer as was derived in Ref. (4),
and write for the osmotic repulsive energy

ES = kT

a3

(
ln

1

1 − �
− �

)(
πδ2

12
(6R + L − δ)

)
, [11]

where a is the monomer dimension, � is the concentration of
the surfactants between the surfaces, and δ is the maximal depth
with which the two OTAI layers overlap (δ = 2L − D).

The total interaction energy between two particles of radius R,
which have attached surfactants of thickness L on their surfaces,
and considering a thin shell of a different Hamaker constant
inside these layers, has the form

Etot = Esph(R, R, D) + Ecsh + Es. [12]

The first term on the r.h.s. of Eq. [12] is the vdW energy
between two solid spherical particles according to Eq. [1], the
second term is the contribution of the shells (Eq. [5]), and the
last term is the osmotic repulsion (Eq. [11]). Each of the two db
shells attracts also the solid particle on which the opposing sur-
factants are grafted. This should add two more (identical) terms
(of the type of Eq. [3]) to Eq. [12]. However, their contribution
was found to be small compared with the shell–shell interaction
energy and therefore we neglected it in Eq. [12]. Using Eqs. [1],
[5], [11], and [12] we calculate the different contributions to the
energies for a colloidal particle of R = 5 nm as in the case of
the ferrofluid dispersion (4), which is known to be stable (4, 15),
and for R = 1 cm as in the SFA experiment (see Fig. 2).

In the inset to Fig. 2a we see the fit of the total interaction
(Eq. [12]) to the experimental data from Ref. (4). The fit uses
the value of h = 1.62 Å (corresponding to a Hamaker constant
of A = 1.76 10−22 J) when the two db-rich phases are d = 1.7 Å
away from each other (6, 16). The theoretical curve can finally
reach the depth of the measured attraction. Note that h and d are
interdependent—the smaller is h, the higher is d, and thus there
are more pairings of these two numbers that will give a similar

result; however the values of the h and d are close to the edge
of the feasible limit (6, 16). Therefore it is likely that the db
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FIG. 2. Calculated values using Eqs. [1], [5], [11], and [12] for the interac-
tion between two OTAI-covered surfaces across hexadecane. (a) The deduced
forces normalized by the radius between crossed cylinders of RC = 1 cm, coated
with OTAI, versus the closest separation between the cylinder surfaces. The inset
shows the total force (deduced from Eq. [12]) compared with data from Ref. (4).
(b) Energies between OTAI-coated spherical particles of R = 5 nm versus the
closest separation between the surfaces of the particles. This size corresponds
to the commercial Fe3O4 particles whose suspension is stabilized with such a
surfactant (15). (c) Deduced energies between crossed cylinders of RC = 1 cm
(as in (a), but for energies rather than forces). We see that whereas the shell
contribution (the attractive contribution associated with the surfactant layer) to
the force in (a) is very large, the corresponding contribution to the energy is very
small. The Hamaker constant for calculating the vdW interaction between the
solid particles is A = 9 × 10−21 J for (a) and (c) (corresponding to mica surfaces
as in the SFA), and A = 7 × 10−20 J for (b) (corresponding to Fe3O4 interact-

ing across HD (4)). For the shell–shell interaction we used A = 1.76 10−22 J as
discussed in the text.
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contribution is in fact smaller, and is only one part of the addi-
tional attraction. Other components of the additional attraction
due to the surfactant layers should include the contribution of
the methyl groups, and also a possible flattening of the surfaces
which would increase the area of contact, and therefore would
enhance the contribution of these two groups. Nonetheless, the
fit shows that the surfactant layer can explain the experimental
attraction which is three times deeper than that previously cal-
culated without the surfactant attraction, and as we show later
on, this deep attraction in the force has a negligible energetic
contribution, which is a phenomenological requirement.

In Fig. 2a we see the calculated interactive F/R between two
crossed cylinders according to the previously developed equa-
tions, and the fitted h and d. The three contributions to the total
force between the surfaces are considered: the vdW attraction
between the solid particles, the vdW attractions between the
db shells, and the steric repulsion. It is shown in Fig. 2a that
the shell contribution to the attractive force is the most signifi-
cant one, and about twice the vdW attraction between the solid
particles.

In contrast to the large attractive force attributed to the
shell–shell interaction and shown in Fig. 2a, the corresponding
attractive energy between the small ferrofluid particles is small,
as shown in Fig. 2b. This attraction hardly influences the total
attraction, which is only slightly deeper than the vdW attraction
between the solid particles (Esph curve). This assures that
the above theory would still correspond to a stable colloidal
suspension, which is a phenomenological requirement (15).
To realize this apparent discrepancy between the energy and
FC/RC(=2(∂ EGL/∂ D)/R), we show in Fig. 2c the energies
that correspond to the forces in Fig. 2a, i.e., that correspond
to crossed cylinders with a radius of 1 cm. The relative
contribution of the shell–shell interaction energy to the total
energy is a bit larger than that of the 5-nm spherical particles
simply because the Hamaker constant of the solid ferroparticles
(commercial colloidal dispersion (15)) across hexadecane is
larger than that of mica across hexadecane (SFB experiment),
and not because of the different sizes of the particles. However,
the contribution of the shells to the total energy is still very
small. This shows that it is only the force—that is the derivative
of the shell–shell interaction energy—that is significantly high
(although the energy contribution of the shell–shell interaction
is relatively small).

CONCLUSIONS

In conclusion, we show in this paper how a very small ener-
getic “spike,” which is a result of a surfactant layer that covers
a surface, may cause a negligible energetic contribution, but a
substantial force contribution. The force is so high only because
of the spike shape of the energy, which results in a very high
derivative with the distance. This phenomenon is a possible ex-

planation for the very high attractive forces measured with SFB
of surfactant-coated mica surfaces, whereas the corresponding
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colloidal findings suggested an attractive force that is smaller
and an attractive energy and smaller than kT ).
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