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eLife Assessment
This work is an important contribution to the development of a biologically plausible theory of 
statistical modeling of spiking activity. The authors convincingly implemented the statistical infer-
ence of input likelihood in a simple neural circuit, demonstrating the relationship between synaptic 
homeostasis, neural representations, and computational accuracy. This work will be of interest to 
neuroscientists, both theoretical and experimental, who are exploring how statistical computation is 
implemented in neural networks.

Abstract Studying and understanding the code of large neural populations hinge on accurate 
statistical models of population activity. A novel class of models, based on learning to weigh sparse 
nonlinear Random Projections (RP) of the population, has demonstrated high accuracy, efficiency, 
and scalability. Importantly, these RP models have a clear and biologically plausible implementation 
as shallow neural networks. We present a new class of RP models that are learned by optimizing the 
randomly selected sparse projections themselves. This ‘reshaping’ of projections is akin to changing 
synaptic connections in just one layer of the corresponding neural circuit model. We show that 
Reshaped RP models are more accurate and efficient than the standard RP models in recapitulating 
the code of tens of cortical neurons from behaving monkeys. Incorporating more biological features 
and utilizing synaptic normalization in the learning process, results in accurate models that are more 
efficient. Remarkably, these models exhibit homeostasis in firing rates and total synaptic weights of 
projection neurons. We further show that these sparse homeostatic reshaped RP models outper-
form fully connected neural network models. Thus, our new scalable, efficient, and highly accurate 
population code models are not only biologically plausible but are actually optimized due to their 
biological features. These findings suggest a dual functional role of synaptic normalization in neural 
circuits: maintaining spiking and synaptic homeostasis while concurrently optimizing network perfor-
mance and efficiency in encoding information and learning.

Introduction
The potential ‘vocabulary’ of spiking patterns of a population of neurons scales exponentially with the 
size of the population, and so, mapping the rules of neural population codes and their semantic orga-
nization, cannot rely on direct sampling of the vocabulary for more than a handful of neurons. More-
over, the stochastic nature of neural activity implies that the characterization of neural codes must rely 
on probability distributions over population activity patterns. Therefore, to describe and analyze the 
structure and content of the code with which neural circuits respond to stimuli, process information, 
and direct action – we must learn statistical models of their activity. Such models have been used 
to study neural population codes in different systems: Models of the directional coupling between 

RESEARCH ARTICLE

*For correspondence: 
elad.schneidman@weizmann.ac.il

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 14

Preprint posted
18 December 2023
Sent for Review
11 March 2024
Reviewed preprint posted
01 July 2024
Reviewed preprint revised
18 November 2024
Version of Record published
16 December 2024

Reviewing Editor: Tatyana 
O Sharpee, Salk Institute for 
Biological Studies, United States

‍ ‍ Copyright Mayzel and 
Schneidman. This article is 
distributed under the terms 
of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.96566
mailto:elad.schneidman@weizmann.ac.il
https://doi.org/10.1101/2023.03.05.530392
https://doi.org/10.7554/eLife.96566.1
https://doi.org/10.7554/eLife.96566.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Mayzel and Schneidman. eLife 2024;13:RP96566. DOI: https://doi.org/10.7554/eLife.96566 � 2 of 17

neurons, such as Generalized Linear Models, have been used to replicate the stimulus-dependent rates 
of populations of tens of neurons (Truccolo et al., 2005; Pillow et al., 2008; Calabrese et al., 2011; 
Weber et al., 2012). Maximum entropy models have accurately captured the joint activity patterns of 
more than 100 neurons, using simple statistical features of the population, like firing rates, pairwise 
correlations, synchrony, and other low-order statistics (Schneidman et al., 2006; Shlens et al., 2006; 
Tang et al., 2008; Tkačik et al., 2014; Ganmor et al., 2011; Marre et al., 2009; Ohiorhenuan et al., 
2010; Granot-Atedgi et al., 2013; Meshulam et al., 2017). These models have further been used 
to characterize the semantic organization of population codes (Ganmor et al., 2015; Tkačik et al., 
2013a). Auto-encoder models have been employed to replicate the detailed structure of population 
activity – yielding generative models that can be used to study the code, but their design is difficult 
to interpret (Pandarinath et al., 2018; Barrett et al., 2019; Gonçalves et al., 2020). Importantly, 
scaling of these models to hundreds of neurons is computationally demanding (Tkačik et al., 2015; 
Meshulam et al., 2019; Ganmor et al., 2011), which has been a major challenge in modeling large 
neural systems.

While statistical models are invaluable for describing and studying neural codes, it is not clear 
whether the brain relies on such models or implements them when representing or processing infor-
mation (Schneidman, 2016; Karpas et al., 2019). Consequently, much of the analysis of neural codes 
has focused on decoding population activity, typically using simple decoders (Panzeri et al., 2017; 
Tkačik et al., 2013b; Pillow et al., 2008; Botella-Soler et al., 2018; Shi et al., 2019; Whiteway et al., 
2020), or metrics over the structure of population activity patterns (Ganmor et al., 2015; Gallego 
et al., 2020; Chaudhuri et al., 2019). Yet, if neural circuits do implement such statistical models, 
and in particular, ones that compute the likelihood of their inputs – this would present a realizable 
mechanism for real neural circuits to carry Bayesian computation and decision making (Maoz et al., 
2020; Vertes and Sahani, 2018; Zemel et al., 1998). Such network models are, therefore, of interest 
not only as a way to study neural codes, but also as a potential way for biological neural networks 
to implement efficient learning and overcome the credit assignment problem. In addition, they may 
be useful for improving learning in artificial neural networks using biological features (Bengio et al., 
2016; Yamins and DiCarlo, 2016; Poirazi et al., 2003; Richards et al., 2019; Zhong et al., 2022; 
Chavlis and Poirazi, 2021).

Both structured architectural features of neural circuits and random connectivity patterns have 
been suggested to shape the computation carried out by neural circuits (Litwin-Kumar et al., 2017; 
Maoz et al., 2020; Haber and Schneidman, 2022a; Kim et al., 2019; Pechuk et al., 2022; Haber 
and Schneidman, 2022b). These computations rely on the nature of synaptic connectivity and the 
coupling between synapses in terms of how they change during learning. Competition mechanisms 
between synapses or other regularization mechanisms have also been suggested to be important 
components of computation and learning in artificial neural networks as well as in cortical circuits 
(Heeger, 1992; Carandini and Heeger, 2011). One such mechanism is the homeostatic scaling of 
synaptic plasticity, which has been observed in vitro and in vivo at the level of incoming synapses to 
a neuron and outgoing ones (Turrigiano et al., 1998; Keck et al., 2013; Hengen et al., 2013; Turri-
giano, 2008). This mechanism has been commonly attributed to the regulation of firing rates, while 
its functional implications remain mostly unclear, but of interest computationally and mechanistically 
(El-Boustani et al., 2018; Wu et al., 2020; Keck et al., 2017; Zenke and Gerstner, 2017; Toyoizumi 
et al., 2014). A related computational feature has been presented by network models that include 
divisive normalization, suggested as an important component of computations performed by cortical 
circuits (Simoncelli and Heeger, 1998).

Here, we bring these ideas together to present a biologically-inspired variant of a new family of 
statistical models for large neural population codes. Adding biological features to these population 
models enabled us to improve the models, and to explore designs that real neural circuits could 
employ to implement such models. Specifically, we expand the Random Projections (RP) model (Maoz 
et al., 2020), which was shown to be highly accurate in recapitulating the detailed spiking patterns 
of more than 100 neurons in different neural systems. Importantly, in addition to being accurate and 
requiring little amounts of training data, these RP models can be readily implemented by a simple 
neural circuit model – suggesting how real neural circuits can learn a statistical model of their own 
inputs and compute the likelihood of the inputs. We show that we can make these models better 
by ‘reshaping’ the randomly chosen sparse non-linear projections that they rely on, achieving highly 

https://doi.org/10.7554/eLife.96566


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Mayzel and Schneidman. eLife 2024;13:RP96566. DOI: https://doi.org/10.7554/eLife.96566 � 3 of 17

accurate models using significantly fewer projections. We further show that reshaping of projections 
that incorporates normalization of synaptic weights during learning, results in more accurate models 
that are also more efficient, and makes the models homeostatic in terms of neural activity and total 
synaptic weights. Thus, we present a new class of accurate and efficient statistical models for large 
neural population codes that also suggests a clear computational benefit of homeostatic synaptic 
normalization and its potential role in biological neural networks and artificial ones.

Results
The RP model is a class of highly accurate, scalabale, and efficient statistical models of the joint activity 
patterns of large populations of neurons (Maoz et al., 2020; Vertes and Sahani, 2018). These models 
are based on random and sparse nonlinear functions, or ‘projections’, of the population: Given a 
recording of the spiking activity of a population of neuorns, the model is a probability distribution over 
discrete activity patterns (quantized into small time bins, e.g. 10–20ms), that relies on a set of random 
non-linear functions of the population activity,

	﻿‍
fi (⃗x) =

∑
j

(∑
aijxj − θi

)
,
‍� (1)

where ‍aij‍ are randomly sampled coefficients such that most of them for any ‍i‍ are zero (i.e. the set is 
sparse), ‍θi‍ are thresholds, and ‍σ(·)‍ are nonlinear functions (e.g. the Heaviside step function). The RP 
model is the maximum entropy distribution ‍p(⃗x)‍ (Jaynes, 1957), which is consistent with the observed 
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Figure 1. Reshaped Random Projections (RP) models outperform RP models. (A) A short segment of the spiking activity of 100 cortical neurons used for 
the analysis and comparison of different statistical models of population activity (see Materials and methods). (B) Schematics of the neural circuits that 
implement the different RP models we compared: The ‘standard’ RP model, where the coefficients ‍aij‍ that define the projections are randomly selected 
and fixed whereas the factors ‍λi‍ are learned (see text). The Reshaped RP model, where the coefficients ‍aij‍ that define the projections are tuned and 
the factors ‍λi‍ s are fixed. The backpropagation model, where we tune both the ‍aij‍ s and ‍λi‍ s. (C) The predicted probability of individual populations’ 
activity patterns as a function of the observed probability for RP, Reshaped, and backpropagation models. Gray funnels denote 99% confidence interval. 
(D) Average performance of models of the three classes is shown as a function of the number of projections, measured by log-likelihood, over 100 sets 
of randomly selected groups of 50 neurons. Reshaped models outperform RP models and are on par with backpropagation; the shaded area denotes 
the standard error over 100 models. (E–F) Mean firing rates of projection neurons and mean correlation between projections. Reshaped models show 
lower correlations and lower firing rates compared to RP and backpropagation models. Standard errors are smaller than marker’s size, hence invisible.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Comparison of different Random Projections (RP) model variants .

Figure supplement 2. Comparison of different Reshaped Random Projections (RP) model variants.
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average values of the random projections, ‍⟨fi⟩p = ⟨fi⟩data‍ (see Materials and methods). Thus, it is the 
least structured distribution that retains the average values of the projections, is mathematically 
unique, and is given by

	﻿‍
pRP (⃗x) = 1

Z
exp

(
−
∑

i
λifi (⃗x)

)
,
‍�

(2)

where ‍λi‍ are Lagrange multipliers, and ‍Z ‍ is a normalization factor or the ‘partition function’, which can 
be found numerically. Applied to cortical data from multiple areas (see, e.g. Figure 1A), this model 
proved to be highly accurate in predicting individual activity patterns, using small amounts of training 
data (Maoz et al., 2020). Importantly, unlike many other statistical models of population activity, RP 
models have a simple, biologically plausible neural circuit that can implement them (Maoz et  al., 
2020): Figure 1B shows such a feed-forward circuit with one intermediate layer and an output neuron, 
where the random coefficients of the sparse projections, ‍aij‍, are the synaptic weights connecting the 
input neurons ‍⃗x ‍ to an intermediate layer of neurons ‍{fi}‍. Each intermediate neuron implements one 
projection of the input population. The Lagrange multipliers, ‍λi‍, are the synaptic weights connecting 
the intermediate layer to the output neuron, whose membrane potential or output gives the log-
likelihood of the activity pattern of ‍⃗x ‍, up to a normalization factor.

The model in Equation 2 harbors a duality between the projections, ‍fi‍, and their coefficients, ‍λi‍: In 
the maximum entropy formalism of the model, the projections are randomly sampled and then fixed, 
and their corresponding weights, ‍λi‍’s, are tuned to maximize the entropy and satisfy the constraints. 
Alternatively, we may consider the case of training the model by keeping the ‍λi‍’s fixed and changing 
or tuning the projections ‍fi‍ to maximize the likelihood. In the corresponding neural circuit, this would 
imply that we would learn a circuit that implements the statistical model by training the sparse set of 
synaptic connections, ‍aij‍, which define the projections, instead of training the synapses that weigh the 
projections, ‍λi‍ (Figure 1B).

Notably, a variant of the RP model in which projections that were weighted by a low value of ‍λi‍ 
are pruned and replaced with new RP proved to be more accurate than the original RP model, while 
using fewer projections (Maoz et al., 2020). This procedure of pruning and replacement is a crude 
form of learning of the model through changing the projections, and finding more efficient ones. We, 
therefore, asked here whether instead of the heuristic pruning and replacement, we can directly learn 
more accurate and efficient models by tuning the projections.

Reshaping RP gives more accurate and compact models
We first learned a new class of RP models for populations of tens of cortical neurons from the prefrontal 
cortex of monkeys performing a visual classification task (Kiani et al., 2014) by tuning their randomly 
selected projections. Specifically, given an initial draw of sparse projections, the random weights that 
define the projections, ‍aij‍, are then changed to maximize the likelihood of the model:

	﻿‍
∆aij = ηλi

(⟨
∂σ(⃗x)
∂aij

⟩

p
−

⟨
∂σ(⃗x)
∂aij

⟩

data

)
,
‍�

(3)

where ‍η‍ is the learning rate. We note that unlike the RP model presented in Maoz et al., 2020, here 
we used a sigmoid function for the nonlinearity of the projections,

	﻿‍
σ(x) = 1

1 + e−βx ,
‍�

(4)

where ‍β‍ sets the slope of the sigmoid. In this formulation, the model ranges from an independent 
model of the population for ‍β → 0‍, to the original RP model of Maoz et al., 2020 for ‍β → ∞‍. The 
rule for changing the projections (Equation 3) means that the specific set of inputs to each projection 
neuron is retained, but their relative weights are changed, and so the projections are ‘reshaped’.

We compared the RP and the Reshaped RP models by quantifying their performance on the same 
set of initial projections. We first learned the RP model as in Maoz et al., 2020, using a Heaviside non-
linearity for the projections, and RP models that used a sigmoid non-linearity, where both models used 
the same set of RP, and found the latter models to be be more accurate (see Figure 1—figure supple-
ment 1A). We then learned Reshaped RP models in which we optimize the same initial projections 
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while keeping all ‍λi = 1‍. We note that while in its maximum entropy formulation, the RP model is the 
unique solution to a convex optimization problem, the Reshaped RP models are not guaranteed to 
reach a global optimum. We also considered another class of models, in which the projections and the 
Lagrange multipliers ‍λi‍ are optimized simultaneously, similar to backpropagation-based learning used 
to train feed-forward neural networks (see Materials and methods). Figure 1C shows an example of 
the accuracy of the sigmoid RP models, Reshaped RP models, and backpropagation-based models 
in predicting the probability of individual activity patterns for one group of 20 neurons, recorded 
from the cortex of behaving monkeys (Kiani et al., 2014). The activity patterns are predicted by the 
reshaped RP model to an accuracy that is within the sampling noise (denoted by the 99% confidence 
interval funnel), and is similar to the performance of the full backpropagation model. The standard RP 
model, in comparison, has many more patterns that are outside the 99% confidence interval funnel. 
We quantified the performance of the three classes of models by calculating the mean log-likelihood 
of the models over 100 groups of 50 neurons on held out datasets, as a function of the number of 
projections that we used (Figure 1D). The reshaped models outperform the RP ones for a low number 
of projections, whereas the performances of all three models converge to a similar value for large 
number of projections.

Because reshaping may change all the existing synapses of each projection, the number of param-
eters is the number of projections times the projections in-degree. While this is much larger than the 
number of parameters that we learn for the RP model (one for each projection), we submit that the 
performance of the reshaped models is not a mere result of having more parameters. In particular, we 
have seen that RP models that use a small set of projections can be very accurate when the projections 
are optimized using the pruning and replacement process (Maoz et al., 2020; see also Figure 1—
figure supplement 1B). Thus, it is really the nature of the projections that shapes the performance. 
Indeed, our results here show that a small fixed connectivity projection set with weight tuning is 
enough for accurate performance which is on par or better than an RP model with more projections.

To compare the ‘mechanistic’ nature of these different models, we calculated the mean correlation 
between the projections within each model class, and the average values of each projection (where 
the average is over the population activity patterns), which correspond to the mean firing rates of 
the neurons in the intermediate layer. Interestingly, the firing rates of the neurons in the intermediate 
layer are considerably lower for the reshaped models, and this sparseness in activity becomes more 
pronounced as a function of the number of projections (Figure 1E). We further find that the correla-
tions between the projections in the reshaped models are considerably lower compared to RP and 
backpropagation models (Figure 1F).

The projections’ thresholds ‍θi‍, which are analogous to the spiking thresholds of the projection 
neurons, may affect the performance of the models. We, therefore, asked how optimizing ‍θi‍, in addi-
tion to reshaping the coefficients of each projection, affect the reshaped RP and the backpropagation 
models. We find that this addition has a small effect on the performance of the models in terms of 
their likelihood (Figure 1—figure supplement 2A). We also find that this has a small effect on the 
firing rates of the projection neurons: backpropagation models with tuned thresholds show lower 
firing rates compared to backpropagation models with fixed threshold, whereas reshaped RP models 
with optimized thresholds show higher firing rates compared to models with fixed threshold. Yet, both 
versions of the reshaped RP models show lower firing rates compared to both versions of the back-
propagation models. Given the small effect of tuning threshold on models’ performance and their 
internal properties, we henceforth focus on Reshaped RP models with fixed thresholds.

An additional set of parameters that might affect the Reshaped RP models are the coefficients 

‍λi‍, that weigh each of the projections. Above, we used ‍λi = 1‍ for all projections, here we investi-
gated the effect of the value of ‍λ‍ on the performance of the Reshaped RP models (Figure 1—figure 
supplement 2B). We find that for models with a small set of projections, high values of ‍λ‍ result in 
better performance than models with low values. We find an opposite relation for models with large 
number of projections. (We submit that the performance decrease of Reshaped RP models with 
high value of ‍λ‍, as the number of projections grows, is a reflection of the non-convex nature of the 
Reshaped RP optimization problem). The mean firing rates of the projection neurons for models with 
different values of ‍λ‍ show a clear trend, where higher values result in lower mean firing rates. Thus, 
we conclude that there is an interplay between the number of projections and the value of ‍λ‍ one 
should pick. For the population sizes and projection sets we have used here, ‍λ = 1‍ is a good choice, 
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but, we note that in general, one should seek the appropriate value of ‍λ‍ for different population 
sizes or data sets.

Thus, the reshaped projection models suggest a way to learn more accurate models of population 
activity, by tuning of projections. These models are also more efficient, requiring fewer projections. 
These projections also have lower firing rates (i.e. reshaped projections use fewer spikes), and they are 
less correlated. Given their accuracy and efficiency, we next asked how adding biological features or 
constraints to a Reshaped RP circuit may affect its performance and efficiency.

Normalized reshaping of RP gives more accurate and efficient models
We studied the effect of adding two classes of biological features or constraints on the performance 
and nature of the Reshaped RP circuit model. The first constraint stems from the biophysical limits 
on individual synapses, and so we bound the maximal strength of individual synapses such that the 
strength of all synaptic weights are smaller than a ‘ceiling’ value: ‍

∣∣aij
∣∣ < ω‍. The other is a normaliza-

tion of the synaptic weights during the reshaping, inspired by the synaptic re-scaling that has been 
observed experimentally (Turrigiano, 2008), and divisive normalization of synaptic weights (Heeger, 
1992). We consider multiple mechanisms of this kind later, but begin here with fixing the total sum 
of the incoming synaptic strength of each projection such that 

‍

∑
j

��aij
�� = ϕ

‍
. Thus, when the strength 

of one synapse increases (decreases), the strength of the rest of the incoming synapses decreases 
(increases) such that the total synaptic weight incoming into the projection is kept constant. We term 
this constraint ‘homeostatic synaptic normalization’. We emphasize that the notion of homeostatic 
mechanisms is commonly reserved for designating regulation processes that retain a functional prop-
erty of neurons, whereas normalization of synaptic weights might seem more mechanistic than func-
tional. But, as we show later, learning with synaptic normalization also regulates the firing rate of the 
projection neurons, and so, we use this name henceforth.

To compare the effect of these constraints, we used the same set of initial RP, and then learn by 
reshaping them, each time with a different value of their corresponding parameters, ‍ϕ‍ or ‍ω‍. We esti-
mated the likelihood of each of the models on 100 groups of 50 neurons, over 100 random sets of 150 
projections. To quantify the ‘synaptic budget’ of each model, we measured the total sum of the abso-
lute values of synaptic weights available to each model in units of the total synaptic strength of the 
initial set of projections (this is equivalent to defining the total sum of the synaptic weights of the initial 
set of projections as ‘1’, and then measuring total synaptic weights in these units). For the models 
with bounded synapses, the total available synaptic budget is given by the number of synapses times 
‍ω‍, whereas for the homeostatic constraint, it equals ‍ϕ‍ times the number of projections in the model. 
Figure 2B shows the log-likelihood of each model class vs. the total available synaptic budget of 
the different models: For a wide range of synaptic budgets, the homeostatic models outperform the 
bounded models, and only for very high values of available synaptic budget, the performance of the 
bounded models is on par with the homeostatic models.

The differences between the homeostatic normalization models and the bounded synaptic strength 
models are further reflected in Figure 2C, which shows the performance of each model class as a 
function of the total sum of synaptic weights that is used by that model at the end of the training, 

‍

∑
ij

��aij
��
‍
. We note that the curve of the homeostatic model is identical to the one from Figure 2B 

by definition; the curve of the bounded models shows that at a certain value of ‍ω‍ the sum of the 
synaptic weights starts to decrease and converges to the unconstrained reshaped model. The poor 
performance of the bounded models compared to the homeostatic ones suggests that the coupled 
changes in the synaptic weights improve learning. Specifically, during reshaping, the homeostatic 
models move synaptic “mass" from less important synapses to more important ones. This redistribu-
tion of resources results in accurate models even for relatively low values of synaptic weights – making 
them more efficient in terms of the total synaptic weight needed.

The dominance of the homeostatic learning over the bounded synaptic weights is clear not just for 
the average over models, but also at the level of individual models: Figure 2D shows the performance 
of the homeostatic and bounded models that are initialized with the same set of RP; all bounded 
constraint models are inferior to the corresponding RP ones, whereas all the homeostatic constraint 
models are superior to the RP models (and clearly all the homeostatic models are superior to the 
corresponding bounded models).

https://doi.org/10.7554/eLife.96566
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We further find that the mean firing rates of the reshaped projection neurons, as well as the 
correlations between them, are lower in the homeostatic models compared to the bounded models 
(Figure 2E–F), making them more energetically efficient (in terms of spiking activity). We recall that 
this is consistent with the notions of efficient coding by decorrelated neural populations (Barlow, 
1961; Olshausen and Field, 1997).

Exploring the effect of synaptic normalization on models with different values of ‍λ‍ (Figure 2—
figure supplement 1), we find that homeostatic Reshaped RP models are superior to the non-
homeostatic Reshaped RP models: For low values of ‍λ‍, the homeostatic and Reshaped RP models 
show similar performance in terms of log-likelihood, whereas the homeostatic models are more 
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Figure 2. Reshaped RP models that use homeostatic synaptic normalization outperform RP models and bounded RP models. (A) Schematic drawing 
of the different models we studied: standard RP model, unconstrained reshaped model, and two types of constrained reshaped models: Bounded 
models in which each synapse separately obeys ‍

∣∣aij
∣∣ < ω‍ during learning, and normalized input reshaped models, where we fix the total synaptic weight 

of incoming synapses 
‍

∑
j

��aij
�� = ϕ

‍
. (B) The mean log-likelihood of the models is shown as a function of the total available budget. The normalized 

input reshaped RP models give optimal results for a wide range of values of available synaptic budget, outperforming the bounded models and the RP 
model. (C) The mean log-likelihood of the models is shown as a function of the total used budget. Aside from the bounded models, all other models 
are the same as in (B) by construction. For high available budget values, bounded models show better performance while utilizing a lower synaptic 
budget, similar to the unconstrained reshape model. (D) Comparison of the performance of 100 individual examples of each model class and their 
corresponding RP models, where all models relied on the same set of initial projections. Normalized input models outperformed the RP models in 
all cases (all points are above the diagonal), while all bounded models were worse (points below the diagonal). (E–F) The mean correlation and firing 
rates of projections as a function of the model’s cost. Normalized reshape models show low correlations and mean firing rates, similar to unconstrained 
reshaped models. Note that in panels B, C, E, and F, the standard errors are smaller than the marker size, and are therefore invisible.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Homeostatic models are superior to Reshaped RP models for every choice of ‍λ‍.

https://doi.org/10.7554/eLife.96566
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efficient. Importantly, for high values of ‍λ‍ homeostatic models are not only more efficient but also 
show better performance. We conclude that the benefit of the homeostatic model is insensitive to the 
specific choice of ‍λ‍.

Normalized reshaping of RP results in more efficient codes and 
homeostasis of firing rates
The experimental characterization of synaptic re-scaling has shown it to be a homeostatic mechanism 
that regulates the firing rates of neurons (Turrigiano, 2008). We therefore asked whether the synaptic 
normalization we employ for the Reshaped RP models has a similar effect. Figure 3A shows that the 
overall performance of the model in terms of capturing the population codebook is similar between the 
‘free’ reshape model and different values of synaptic normalization. Similarly, reshaping with normal-
ization or without it drives the projection neurons to converge to similar average firing rate values 
(Figure 3B). However, the distribution of firing rates over the different neurons becomes narrower 
with tighter normalization values (Figure 3C). Importantly, while different normalization values imply 
very different initial firing rates of the projection neurons, after reshaping the values converge to 
similar average values (Figure 3D). Moreover, reshaping with normalization implies smaller changes 
in the reshaping process (Figure 3E). Thus, normalized reshaping results in homeostatic regulation of 
the firing rates, which validates the naming of these models as homeostatic normalization reshaping 
of RP.

Having established the computational benefits and efficiency of the homeostatic reshaped projec-
tion models that rely on synaptic normalization, we turned to ask how the connectivity itself, rather 
than the synaptic weights, may affect the performance of the models.

Optimal sparseness of Reshaped Projections models under homeostatic 
constraints
The benefits of reshaping a given set of projections, reflected in the figures above, raise the question 
of the importance of the nature of the RP we choose (which are then reshaped). We, therefore, asked 
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how the initial random ‘wiring’ of the projections affects the performance of the model, and whether 
non-RP would result in even better models. To quantify the effects of the projections’ connectivity on 
the performance and efficiency of reshaped models, we used simulated population activity that we 
generated using RP models that were trained on real data. By using synthetic data that was generated 
by a known model, we can compare the learned models to the ‘ground truth’ in terms of connectivity, 
as well as extensively sampling of activity patterns from the model.

We learned homeostatic reshaped models for the synthetic data, using different initial connec-
tivity structures (Figure 4A–B): (i) A ‘true’ connectivity model in which we reshaped a RP model that 
has the same connectivity as the projections of the model that generated the data. (ii) A Random 
connectivity model in which we reshaped projections with sparse and connectivity that is randomly 
sampled and is independent of the model that generated the synthetic data. (iii) A full connectivity 
model in which we reshaped RP with full connectivity, that is all input neurons are connected to all the 
projections, but with random initial weights. We carried out homeostatic reshaping of the projections 
in all three models with different values of ‍ϕ‍. Surprisingly, the true and random connectivity models 
performed very similarly (Figure 4C). Although the full connectivity model contains the ‘ground truth’ 
connectivity, and could recreate the true connectivity by canceling out unnecessary synapses during 
reshaping – we find that the full connectivity models are inferior to the other models, except for the 
case of high model costs.

Figure 4. Models that rely on projections that use random connectivity show similar performance to models that use the correct connectivity. 
(A) Synthetic population activity data is sampled from an RP model with known connectivity (i.e. the ‘ground truth’ model; see Materials and methods). 
(B) Homeostatic Reshaped random projections models that differ in their connectivity are learned to fit the synthetic data. The ‘True connectivity’ model 
uses projections whose connectivity is identical to the ‘ground truth’ model. The ‘Random connectivity’ model uses projections that are randomly 
sampled using sparse random connectivity. The ‘Full connectivity’ model is a homeostatic reshaped model that uses projections with full connectivity. 
(C) The mean log-likelihood of the models is shown as a function of the model’s cost. The true connectivity model is only slightly better than the random 
connectivity model, with both outperforming the full connectivity model for low model budget values. (D) The firing rates of the projection neurons, 
shown as a function of the model cost. (E) The mean correlation between the activity of the projection neurons, shown as a function of the model cost. 
We note that true and random connectivity models are indistinguishable. (F) The performance of homeostatic reshaped RP models, shown as a function 
of their normalized in-degree of the projections (0–disconnected, 1–fully connected), for different normalization values, shown by the model’s synaptic 
cost. (G) The performance of the homeostatic Reshaped RP models, shown as a function of the synaptic cost normalized by the in-degree of the 
projections. Curves of different cost values coincide, suggesting a fixed optimal cost/activity ratio. Note that in panels D-G the standard errors over 100 
models are smaller than the size of markers and are, therefore, invisible.

https://doi.org/10.7554/eLife.96566
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The mean correlations between projections at the end of reshaping and the mean firing rates of 
the models that use the true and random connectivity were also very similar (Figure 4D–E), whereas 
the full connectivity models showed, again, very different behavior. These results reflect another 
computational benefit of homeostatic reshaping: there is no need to know the optimal circuit 
connectivity, and there is no apparent benefit to all-to-all connectivity, which would be expensive 
in terms of the energetic cost, the space needed, and the biological construction. Thus, starting 
from random connectivity and optimizing the circuit under homeostatic constraints seems to provide 
optimal results.

Given the inefficiency of the fully connected reshaped projections model, we also quantified the 
effect of the sparseness of the projections on reshaped RP models. We recall that for the standard RP 
model, sparse projections were optimal for a wide range of network sizes (Maoz et al., 2020), and so 
we measured the performance of homeostatic reshaped RP models for different values of in-degree of 
the projections, while keeping the total synaptic budget of the models fixed. We found that different 
synaptic budgets have a different optimal in-degree (Figure 4F), and that the value of the optimal 
in-degree seems to grow with the total synaptic budget.

We further estimated the efficiency of the models by the synaptic cost per connection in the projec-
tions (Figure 4G). We find that curves for different total synaptic costs seem to coincide and have a 
similar peak value – suggesting an optimal ratio between the total available resources and the number 
of synapses.
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the incoming synapses 
‍

∑
j

��aij
�� = ϕ

‍
; Homeostatic output models in which we fixed the total synaptic weight of the outgoing synapses 

‍

∑
i

��aij
�� = ϕ

‍
; 

and Homeostatic circuit models in which we fixed the total synaptic weight of the whole synaptic circuit 
‍

∑
ij

��aij
�� = ϕ

‍
. (B) The mean log-likelihood of 

models, shown as a function of the total used synaptic cost. All three homeostatic model variants show similar behavior. (C) Schematic drawing of how 

projections rotate during reshaping: starting from the initial projections (grey lines), they rotate to their reshaped orientation (black lines) by angle ‍αi‍. 
(D) Rotation angles after reshaping, shown for different pairs of models. All four panels show models that initialized with the same set of projections. 
The different labels specify the constraint type and strength, namely, the specific value of ‍ϕ‍ and ‍ω‍. (E) The mean rotation angle of the projections due to 
reshaping, shown as a function of the model synaptic budget.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Homeostatic model variants show similar firing rates and correlation, but different rotation angles and distribution of weights.

https://doi.org/10.7554/eLife.96566
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Different homeostatic mechanisms for reshaping RP models result in 
different projection sets
We explored two other forms of synaptic normalization rules for the reshaping of projections 
(Figure  5A). In the first, we fixed and normalized the outgoing synapses from each neuron, such 
that 

‍

∑
i

��aij
�� = ϕ

‍
. In the second, we kept the total synaptic weight of the whole circuit fixed, namely, 

‍

∑
ij

��aij
�� = ϕ

‍
. Figure 5B shows that the performance of the models that use these other homeostatic 

mechanisms is surprisingly similar in terms of the model’s likelihood over the test data, as well as the 
firing rates of the projection neurons (Figure 5—figure supplement 1A), and correlations between 
them (Figure 5—figure supplement 1B).

As the homeostatic reshaping of RP proved to be similarly accurate and efficient for the three 
homeostatic model variants, we asked which features of normalized reshaping might differentiate 
between homeostatic models in terms of their performance. Since each projection defines a hyper-
plane in the space of population activity patterns, reshaping can be interpreted as a rotation or 
a change of the angle of these hyperplanes, depicted schematically in Figure  5C. We, therefore, 
compared the different homeostatic variants of the reshaped projections models by initializing them 
from the same set of RP, and evaluating the corresponding rotation angles, ‍α‍, of all of the projections 
due to the reshaping.

Figure 5D shows an example of the rotations of the same initial projections for one model under 
different reshaping constraints. While the rotation angles of the bounded model with a high value 
of ‍ω‍ is almost identical to the rotation angels of the unconstrained Reshaped RP model (Figure 5D 
top left), as one would expect, the other three panels in 5D reflect substantial differences between 
models reshaped under different conditions: unconstrained Reshaped RP model vs. a homeostatic 
one (bottom left), different homeostatic model variants with the same synaptic cost (top right), and 
homeostatic models with different synaptic cost (bottom right).

Figure 5E shows the mean rotation angle over 100 homeostatic models as a function of synaptic 
cost – reflecting that the different forms of homeostatic regulation results in different reshaped projec-
tions. We show in Figure 5—figure supplement 1C the histogram of the rotation angles of several 
different homeostatic models, as well as the unconstrained Reshape model. Interestingly, although 
the three homeostatic variants show unique rotation angle histograms, they all show a similar minimal 
mean rotation angle at the same value of synaptic cost. We note that while there is dependency or 
even redundancy between these different homeostatic mechanisms, it is not immediately clear why 
their minimal values would be so similar. Analyzing the distribution of the synaptic weights ‍aij‍ after 
learning leads to a similar conclusion (Figure 5—figure supplement 1D): The peak of the histograms 
is at ‍aij = 0‍, implying that during reshaping most synapses are effectively pruned. While the distri-
bution is broader for models with higher synaptic budget, it is asymmetric, showing local maxima at 
different values of ‍aij‍.

The diversity of solutions that the different model classes and parameters show imply a form of 
redundancy in model choice or learning procedure. This reflects a multiplicity of ways to learn or opti-
mize such networks, that biology could use to shape or tune neural population codes.

Discussion
We presented a new family of statistical models for large neural populations that is based on sparse 
and random non-linear projections of the population, which are adapted during learning. This new 
family of models proved to be more accurate than the highly accurate RP class of models, using 
fewer projections and incurring a lower ‘synaptic cost’ in terms of the total sum of synaptic weights 
of the model. Moreover, we found that reshaping of the projections gave even more accurate and 
efficient models in terms of synaptic weights of the neural circuit that implements the model, and was 
optimal for random and sparse initial connectivity, surpassing fully connected network models. The 
synaptic normalization mechanism resulted in homeostatic regulation of the firing rates of neurons in 
the model.

Our results suggest a computational role for the experimentally observed scaling or normaliza-
tion of synapses during learning: In addition to ‘regularizing’ the firing rates in neural circuits, in our 
Reshaped RP models, homeostatic plasticity optimizes the efficiency of network models in scenarios 
of limited resources and random connectivity. Moreover, the similarity of the performance of models 

https://doi.org/10.7554/eLife.96566
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that use different homeostatic synaptic mechanisms suggests a possible universal role for homeostatic 
mechanisms in computation.

We note that while homeostatic synaptic scaling regulates the firing rates of neurons (Turrigiano, 
2008), it is not immediately clear what ‘sets’ the desired firing rate of each neuron. The synaptic 
normalization constraints we used here offer a simple solution: a universal value of the total incoming 
synaptic weights for the neurons in the circuit (or outgoing ones), results in a widely distributed firing 
rates of neurons (which may change considerably during the learning), but converge to a similar 
average value. Thus, rather than requiring some mechanism to define and balance the firing rates of 
individual neurons, our model suggest a single global synaptic feature that would set this for the RP.

The shallowness of the circuit implementation of the Reshaped RP model implies that the learning 
of these models does not require the backpropagation of information over many layers, which distin-
guishes deep artificial networks from biological ones. Moreover, the locality of the reshaping process 
itself points to the feasibility of this model in terms of real biological circuits. The biological plausibility 
is further supported by the robustness of the model to the specific connectivity used for the reshaped 
models, and to the specific choice of the homeostatic mechanism we used.

A key remaining issue for the biological feasibility of the RP family of models is the feedback signal 
from the readout neuron to the intermediate neurons. The noise-dependent learning mechanism for 
RP models presented in Maoz et al., 2020 and for other local feedback and synaptic learning mecha-
nisms that approximate backprogapation (Poirazi et al., 2003) offers clear directions for future study. 
Our results may also be relevant for learning in artificial neural networks, whose training relies on non-
convex approaches that necessitate different regularization techniques (Goodfellow et al., 2016). 
The homeostatic mechanism we focused on here is a form of ‘hard’ L1 regularization, but on the sum 
of the weights. This approach limits the search space, compared to regularization over the weights 
themselves, but defines coupled changes in weights, in a manner highly effective for the cortical data 
we studied. We, therefore, hypothesize that homeostatic normalization may be beneficial for artificial 
architectures (see, e.g. Zhong et al., 2022).

Materials and methods
Experimental data
Extra-cellular recordings were performed using Utah arrays from populations of neurons in the 
prefrontal cortex of macaque monkeys performing a direction discrimination task with random dots. 
For more details see Kiani et al., 2014.

Data pre-processing
Neural activity was discretized using 20ms bins, such that in each time bin a neuron was active (‘1’) if 
it emitted a spike in that bin and silent (‘0’) if not. Recorded data was split randomly into training sets 
and held-out test sets: 100 different random splits were generated for each model setup, consisting 
of 160,000 samples in the training set and 40,000 in the test set.

Constructing sparse RP
Following (Maoz et al., 2020), the coefficients ‍aij‍ of the RP are set using a two stage process. First, 
the connectivity of the projections is set such that the average in-degree (‍indegree‍) of the projec-
tions matches a predetermined sparsity value: each input neuron connects to each projection with a 
probability ‍p = indegree/n‍, where ‍n‍ is the number of neurons in the input layer. The corresponding ‍aij‍ 
coefficients are then sampled from a Gaussian distribution, ‍aij ∼ N (1, 1)‍, and the remaining ‍aij‍ values 
are set to zero. The threshold of each projection, ‍θi‍, was set to 1.

The average in-degree of sparse models used here was 5, unless specified otherwise in the text. 
For the fully connected models ‍indegree = n‍ (i.e. sparsity =0).

Training RP models
Given empirical data X and a set of projections defined by ‍aij‍, we train the RP models by searching for 
the parameters ‍λi‍ that maximize the log-likelihood of the model given the data, 

‍
arg max

λi
(L(X))

‍
, where 

‍
L(X) =

∑
x⃗∈X

log pRP (⃗x)
‍
. This is a convex function whose gradient is given by

https://doi.org/10.7554/eLife.96566
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	﻿‍ ∇λi L(X) =
⟨
fi
⟩

X −
⟨
fi
⟩

pRP
.‍� (5)

We found the values ‍λi‍ that maximize the log-likelihood by gradient descent with momentum or 
ADAM algorithms. We computed the empirical expectation in ‍

⟨
fi
⟩

X‍ by summing over the training 
data, and the expectation over the probability model ‍

⟨
fi
⟩

pRP‍ by summing over synthetic data gener-
ated from ‍pRP‍ using Metropolis–Hasting sampling.

For each of the empirical marginals ‍
⟨
fi
⟩

X‍, we used the Clopper–Pearson method to estimate 
the distribution of possible values for the real marginal given the empirical observation. We set the 
convergence threshold of the numerical solver such that each of the marginals in the model distri-
bution falls within a Confidence Interval of one Standard Deviation under this distribution, from its 
empirical marginal.

Reshaping RP models
Given empirical data X, we optimize the RP models by modifying the coefficients ‍aij‍ such that the 
log-likelihood of the model is maximized, 

‍
arg max

aij
(L(X))

‍
. Starting from an initial set of projections, ‍a

0
ij‍, 

using the update rule of Equation 3, we optimize the projections by applying the gradient descent 
with momentum algorithm. Importantly, only non-zero elements of ‍a

0
ij‍ are optimized.

Optimizing backpropagation models
Full backpropagation models are optimized using the learning rules of the trained RP models and the 
reshaped models simultaneously in each gradient descent step, that is Equations 3 and 5.

Homeostatic reshaping of RP models
The homeostatic RP models are reshaped as follows: We first define a set of unconstrained projections 
where the coefficients ‍̃aij‍ are randomly sampled. Each of the projections is then normalized homeo-
statically, such that ‍aij‍ are a function of this unconstrained set: 

‍
aij = ϕ · ãij/

∑
k

��ãik
��
‍
, where ‍ϕ‍ is the 

available synaptic budget for each projection. We then optimize ‍̃aij‍ to maximize the log-likelihood 
of the model given the empirical data X: 

‍
arg max

ãij
(L(X))

‍
. The computed constrained projections ‍aij‍ are 

then used in the resulting homeostatic RP model.

Bounded reshaping of RP models
Similar to reshaping homeostatic RP models, we define a set of unconstrained projections ‍̃aij‍, where 
the projections are a function of this unconstrained set: ‍aij = min

(
max

(
ãij,−ω

)
,ω

)
‍, where ‍ω‍ is the 

‘ceiling’ value of each synapse.

Generating synthetic data from RP models with known connectivity
Synthetic neural activity patterns were obtained by training RP models on real neural recordings as 
described above and then generating data from these models using Metropolis–Hastings sampling.
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