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Abstract

A population of neurons typically exhibits a broad diversity of responses
to sensory inputs. The intuitive notion of functional classification is that
cells can be clustered so that most of the diversity is captured in the iden-
tity of the clusters rather than by individuals within clusters. We show
how this intuition can be made precise using information theory, with-
out any need to introduce a metric on the space of stimuli or responses.
Applied to the retinal ganglion cells of the salamander, this approach re-
covers classical results, but also provides clear evidence for subclasses
beyond those identified previously. Further, we find that each of the gan-
glion cells is functionally unique, and that even within the same subclass
only a few spikes are needed to reliably distinguish between cells.

1 Introduction

Neurons possess an enormous variety of shapes and molecular compositions. Already in his
classical work Cajal [1] recognized that the shapes of cells can be classified, and he iden-
tified many of the cell types that we recognize today. Such classification is fundamentally
important, because it implies that instead of having to describe∼1012 individual neurons,
a mature neuroscience might only need to deal with a few thousand different classes of
nominally identical neurons. There are three broad methods of classification: morpholog-
ical, molecular, and functional. Morphological and molecular classification are appealing
because they deal with a relatively fixed property, but ultimately the functional properties
of neurons are the most important, and neurons that share the same morphology or molec-
ular markers need not embody the same function. With attention to arbitrary detail, every
neuron will be individual, while a coarser view might overlook an important distinction; a
quantitative formulation of the classification problem is essential.

The vertebrate retina is an attractive example: Its anatomy is well studied and highly or-
dered, containing repeated micro-circuits that look out at different angles in visual space
[1]; its overall function (vision) is clear, giving the experimenter better intuition about rele-
vant stimuli; and many of its output neurons, ganglion cells, can be simultaneously recorded
using a multi–electrode array, allowing greater control of experimental variables than pos-
sible with serial recordings [12]. Here we exploit this favorable experimental situation to
highlight the mathematical questions that must lie behind any attempt at classification.

Functional classification of retinal ganglion cells typically has consisted of finding qualita-
tively different responses to simple stimuli. Classes are defined by whether ganglion cells



fire spikes at the onset or offset of a step of light or both (ON, OFF, ON/OFF cells in frog
[2]) or whether they fire once or twice per cycle of a drifting grating (X, Y cells in cat [3]).
Further elaborations exist. In the frog, the literature reports 1 class of ON-type ganglion
cell and 4 or 5 classes of OFF-type [4]. The salamander has been reported to have only 3 of
these OFF-type ganglion cells [5]. The classes have been distinguished using stimuli such
as diffuse flashes of light, moving bars, and moving spots. The results are similar to earlier
work using more exotic stimuli [6]. In some cases, there is very close agreement between
anatomical and functional classes, such as the (α,β) and (Y,X) cells in the cat. However,
the link between anatomy and function is not always so clear.

Here we show how information theory allows us to define the problem of classification
without any a priori assumptions regarding which features of visual stimulus or neural
response are most significant, and without imposing a metric on these variables: All notions
of similarity emerge from the joint statistics of neurons in a population as they respond to
common stimuli. To the extent that we identify the function of retinal ganglion cells as
providing the brain with information about the visual world, then our approach finds exactly
the classification which captures this functionality in a maximally efficient manner. Applied
to experiments on the tiger salamander retina, this method identified the major types of
ganglion cells in agreement with traditional methods, but on a finer level we found clear
structure within a group of 19 fast OFF cells that suggests at least 5 functional subclasses.
More profoundly, even cells within a subclass are very different from one another, so that
on average the ganglion cell responses to simplified visual stimuli provide∼6 bits/sec
of information about cell identity. This is sufficient to identify uniquely each neuron in
an “elementary patch” of the retina within one second, and a typical pair of cells can be
reliably distinguished by observing an average of just two or three spikes.

2 Theory

Suppose that we could give a complete characterization, for each neuroni = 1, 2, · · · , N
in a population, of the probabilityP (r|~s, i) that a stimulus~s will generate the response
r. Traditional approaches to functional classification introduce (implicitly or explicitly)
a parameteric representation for the distributionsP (r|~s, i) and then search for clusters in
parameter space. For visual neurons we might assume that responses are determined by
the projection of the stimulus movie~s onto a single template or receptive field,P (r|~s, i) =
F (r;~ti·~s); classifying neurons then amounts to clustering the receptive fields~ti. But it is
not possible to cluster without specifying what it means for these vectors to be similar; in
this case, since the vectors come from the space of stimuli, we need a metric or distortion
measure on the stimuli themselves. It seems strange that classifying the responses of visual
neurons requires us to say in advance what it means for images or movies to be similar.1

Information theory suggests a formulation that does not require us to measure similarity
among either stimuli or responses. Imagine that we present a stimulus~s and record the
responser from a single neuron in the population, but we don’t know which one. This re-
sponse tells us something about the identity of the cell, and on average this can be quantified
as the mutual information between responses and identity (conditional on the stimulus),

I(r; i|~s) =
1
N

N∑
i=1

∑
r

P (r|~s, i) log2

[
P (r|~s, i)
P (r|~s)

]
bits, (1)

1If each cell is selective for a small number of relevant features, then the set of vectors~si must lie
on a low dimensional manifold, and we can use this selectivity to guide the clustering. But we still
face the problem of defining similarity: even if all the receptive fields in the retina can be summarized
meaningfully be the diameters of the center are surround (for example), why should we believe that
Euclidean distance in this two dimensional space is a sensible metric?



whereP (r|~s) = (1/N)
∑N

i=1 P (r|~s, i). The mutual informationI(r; i|~s) measures the
extent to which different cells in the population producereliably distinguishable responses
to the same stimulus; from Shannon’s classical arguments [7] this is the unique measure of
these correlations which is consistent with simple and plausible constraints. It is natural to
ask this question on average in an ensemble of stimuliP (~s) (ideally the natural ensemble),

〈I(r; i|~s)〉~s =
1
N

N∑
i=1

∫
[d~s]P (~s)P (r|~s, i) log2

[
P (r|~s, i)
P (r|~s)

]
; (2)

〈I(r; i|~s)〉~s is invariant under all invertible transformations ofr or~s.

Because information is mutual, we also can think of〈I(r; i|~s)〉~s as the information that
cellular identity provides about the responses we will record. But now it is clear what we
mean by classifying the cells: If there are clear classes, then we can predict the responses
to a stimulus just by knowing the class to which a neuron belongs rather than knowing its
unique identity. Thus we should be able to find a mappingi → C of cells into classes
C = 1, 2, · · · ,K such that〈I(r;C|~s)〉~s is almost as large as〈I(r; i|~s)〉~s, despite the fact
that the number of classesK is much less than the number of cellsN .

Optimal classifications are those which use theK different class labels to capture as much
information as possible about the stimulus/response relation, maximizing〈I(r;C|~s)〉~s at
fixed K. More generally we can consider soft classifications, described by probabilities
P (C|i) of assigning each cell to a class, in which case we would like to capture as much
information as possible about the stimulus response relation while constraining the amount
of information that class labels provide directly about identity,I(C; i). In this case our
optimization problem becomes, withT as a Lagrange multiplier,

max
P (C|i)

[〈I(r;C|~s)〉~s − TI(C; i)] . (3)

This is a generalization of the information bottleneck problem [8].

Here we confine ourselves to hard classifications, and use a greedy algorithm [9] which
starts withK = N and makes mergers which at every step provide the smallest reduction
in I(r;C|~s). This information loss on merging cells (or clusters)i andj is given by

D(i, j) ≡ ∆Iij(r;C|~s) = 〈DJS [P (r|~s, i)||P (r|~s, j)]〉~s, (4)

whereDJS is the Jensen–Shannon divergence [10] between the two distributions, or equiv-
alently the information that one sample provides about its source distribution in the case
of just these two alternatives. The matrix of “distances”∆Iij characterizes the similarities
among neurons in pairwise fashion.

Finally, if cells belong to clear classes, then we ought to be able to replace each cell by a
typical or average member of the class without sacrificing function. In this case function is
quantified by asking how much information cells provide about the visual scene. There is a
strict complementarity of the information measures: information that the stimulus/response
relation provides about the identity of the cell is exactly information about the visual scene
which will be lost if we don’t know the identity of the cells [11]. Our information theoretic
approach to classification of neurons thus produces classes such that replacing cells with
average class members provides the smallest loss of information about the sensory inputs.
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Figure 1: Responses of salamander ganglion cells to modulated uniform field intensity. a: The
retina is presented with a series of uniform intensity “images”. The intensity modulation is Gaussian
white noise distributed.b: A 3 sec segment of the (concurrent) responses of 21 ganglion cells to
repeated presentation of the stimulus. The rasters are ordered from bottom to top according to the
average firing rate of the neurons (over the whole movie).c: Firing rate and Information rates of the
different cells as a function of their rank, ordered by their firing rate.d: The average stimulus pattern
preceding a spike for each of the different cells. Traditionally, these would be classified as 1 ON cell,
1 slow-OFF cell and 19 fast-OFF cells.

3 The responses of retinal ganglion cells to identical stimuli

We recorded simultaneously from 21 retinal ganglion cells from the salamander using a
multi-electrode array.2.The visual stimulus consisted of 100 repeats of a 20 s segment of
spatially uniform flicker (see fig. 1a), in which light intensity values were randomly selected
every 30 ms from a Gaussian distribution having a mean of 4 mW/mm2 and a temporal
contrast of 18%. Thus, the photoreceptors were presented with exactly the same visual
stimulus, and the movie is many correlation times in length, so we can replace averages over
stimuli by averages over time (ergodicity). A 3 s sample of the ganglion cell’s responses to
the visual stimulus is shown in Fig. 1b. There are times when many of the cells fire together,
while at other times only a subset of these cells is active. Importantly, the same neuron may
be part of different active groups at different times. On a finer time scale than shown here,
the latency of the responses of the single neurons and their spiking patterns differ across
time. To analyze the responses of the different neurons, we discretize the spike trains into
time bins of size∆t. We examine the response in windows of time having lengthT , so that
an individual neural responser becomes a binary ‘word’W with T/∆t ‘letters’3.

2The retina is isolated from the eye of the larval tiger salamander (Ambystoma tigrinum tigrinum)
and perfused in Ringer’s medium. Action potentials were measured extracellularly using a multi-
electrode array [12], while light was projected from a computer monitor onto the photoreceptor layer.
Because erroneously sorted spikes would strongly effect our results, we were very conservative in
our identification of cleanly isolated cells.

3As any fixed choice ofT and∆t is arbitrary, we explore a range of these parameters.
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Figure 2: Clustering ganglion cell responses. a: Average distances between the cells responses;
cells are ordered by their average firing rate.b: Dendrogram of cell clustering. Cell names corre-
spond to their firing rate rank. The height of a merge reflects the distance between merged elements.
c: The information that the cells’ responses convey about the clusters in every stage of the clustering
in (b), normalized to the total information that the responses convey about cell identity. Using differ-
ent response segment parameters or clustering method (e.g., nearest neighbor) result in very similar
behavior.d: reordering of the distance matrix in (a) according to the tree structure given in (b).

Since the cells in Fig. 1b are ordered according to their average firing rate, it is clear that
there is no ‘simple’ grouping of the cells’ responses with respect to this response parameter;
firing rates range continuously from 1 to 7 spikes per second (Fig. 1c). Similarly, the rate
of information (estimated according to [13]) that the cells encode about the same stimulus
also ranges continuously from 3 to 20 bits/s. We estimate the average stimulus pattern
preceding a spike for each of the cells, the spike triggered average (STA), shown in Fig. 1d.
According to traditional classification based on the STA, one of the cells is an ON cell, one
is a slow OFF cells and 19 belong to the fast OFF class [14]. While it may be possible to
separate the 19 waveforms of the fast OFF cells into subgroups, this requires assumptions
about what stimulus features are important. Furthermore, there is no clear standard for
ending such subclassification.

4 Clustering of the ganglion cells responses into functional types

To classify these ganglion cells we solved the information theoretic optimization problem
described above. Figure 2a shows the pairwise distancesD(i, j) among the 21 cells, ordered
by their average firing rates; again, firing rate alone does not cluster the cells. The result of
the greedy clustering of the cells is shown by a binary dendrogram in Fig. 2b.

The greedy or agglomerative approximation [9] starts from every cell as a single cluster.
We iteratively merge the clustersci and cj which have the minimal value ofD(ci, cj),
and display this distance or information loss as the height of the merger in Fig. 2b. We
pool their spike trains together as the responses of the new cell class. We now re-estimate
the distances between clusters and repeat the procedure, until we get a single cluster that
contains all cells. Fig. 2c shows the compression in information achieved by each of the
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Figure 3: Every cell is different than the others. a: Clustering of cell responses after randomly
splitting every cell into 2 “siblings”. The nearest neighbor of each of the new cells is his sibling and
(except for one case) so is the first merge. From the second level upwords, the tree is identical to
Fig. 2b (up to symmetry of tree plotting).b: Cumulative distribution of pairwise distances between
cells. The distances between siblings are easily discriminated from the continuous distribution of
values of all the (real) cells.

mergers: for each number of clusters, we plot the mutual information between the clusters
and the responses,〈I(r;C|~s)〉~s, normalized by the information that the response conveys
about the full set of cells,〈I(r; i|~s)〉~s. The clustering structure and the information curve
in Fig. 2c are robust (up to one cell difference in the final dendrogram) to changes in the
word size and bin size used; we even obtain the same results with a nearest neighbor clus-
tering based onD(i, j). This suggests that the top 7 mergers in Fig. 2b (which correspond
to the bottom 7 points in panel c) are of significantly different subgroups. Two of these
mergers, which correspond to the rightmost branches of the dendrogram, separate out the
ON and slow OFF cells. Thus, there are 5 subclasses of fast OFF cells. However, Fig. 2d
which shows the dissimilarity matrix from panel a, reordered by the result of the clustering,
demonstrates that while there is clear structure within the cell population, the subclasses
there are not sharply distinct.

How many types are there?

While one might be happy with classifying the fast OFF cells into 5 subclasses, we further
asked whether the cells within a subclass are reliably distinguishable from one another;
that is, are the bottom mergers in Fig. 2b-c significant? We therefore randomly split each
of the 21 cells into 2 halves, or ‘siblings’, and re-clustered. Figure 3a shows the resulting
dendrogram of this clustering, indicating that the cells are reliably distinguishable from one
another: The nearest neighbor of each new half–cell is its own sibling, and (almost) all of
the first layer mergers are of the corresponding siblings (the only mismatch is of a sibling
merging with a neighboring full cell and then with the other sibling). Figure 3b shows the
very different cumulative probability distributions of pairwise distances among the parent
cells and that of the distances between siblings.

How significant are the differences between the cells?

It might be that cells are distinguishable, but only after observing their responses for very
long times. Since 1 bit is needed to reliably distinguish between a pair of cells, Fig. 3b
shows that more than 90% of the pairs are reliably distinguishable within 2 seconds or less.
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Figure 4:Diversity is high a: The average information that a response segment conveys about the
identity of the cell as a function of the entropy of the responses. Every point stands for a time point
along the stimulus. Results shown are for 2-letter words of 5 ms bins; similar behavior is observed
for different word sizes and binsb: Cumulative distribution of the average number of spikes that are
needed to distinguish between pair of cells.

However, since ganglion cells have relatively low firing rates, we calculated the information
about cell identity which is given by 10 ms response segments at each time during the
stimulus. Clearly, at times where none of the cells is spiking, it is impossible to distinguish
between them. To place a bound on how large this information could be, we compared
it to the entropy of the responses at each time, shown in Fig. 4a. Most of the points lie
rather close to the origin, but many of them reflect discrete times when the responses of the
neurons are very different and hence highly informative about cell identity: roughly 30%
of the response variability between cells is informative about their identity.4 On average
observing a single neural response gives about 6 bits/s about the identity of the cells. We
also compute the average number of spikes per cell which we need to observe to distinguish
reliably between cellsi andj,

nd(i, j) =
1
2 (rate(i) + rate(j))

D(i, j)
. (5)

Figure 4b shows the cumulative probability distribution of the values ofnd. Evidently,
more than 80% of the pairs are reliably distinguishable after observing, on average, only 3
spikes from one of the neurons. Since ganglion cells fire in bursts, this suggest that most
cells are reliably distinguishable based on a single firing ‘event’! We also show that for the
11 most similar cells (those in the left subtree in Fig. 2b) only a few more spikes, or one
extra firing event, are required to reliably distinguish them.

5 Discussion

We have identified a diversity of functional types of retinal ganglion cells, by clustering
them to preserve information about their identity. Beyond the easy classification of the ma-
jor types of salamander ganglion cells—fast OFF, slow OFF, and ON—in agreement with
traditional methods, we have found clear structure within the fast OFF cells that suggests at

4Since the cells receive the same stimulus and often possess shared circuitry, an efficiency as high
as 100% is very unlikely.



least 5 more functional classes. Furthermore, we found evidence that each cell is function-
ally unique. The analysis revealed that the cell responses convey∼6 bits/s of information
about cell identity. Ganglion cells in the salamander interact with each other and collect
information from a∼250µm radius; given the density of ganglion cells, the observed rate
implies that a single ganglion cell can be discriminated from all the cells in this “elemen-
tary patch” within 1 s. This is a surprising degree of diversity, given that 19 cells in our
sample would be traditionally viewed as nominally the same.

One might wonder if our choice of uniform flicker limits the results of our classification.
However, we found that this stimulus was rich enough to distinguish every ganglion cell in
our data set. It is likely that stimuli with spatial structure would reveal further differences.
Using a larger collection of cells will enable us to explore the possibility that there is a
continuum of unique functional units in the retina.

How might the brain make use of this diversity? Several alternatives are conceivable. By
comparing the spiking of closely related cells, it might be possible to achieve much finer
discrimination among stimuli that tend to activate both cells. Diversity also can improve
the robustness of retinal signalling: as the retina is constantly setting its adaptive state
in response to statistics of the environment that it cannot estimate without some noise,
maintaining functional diversity can guard against adaptation that overshoots its optimum.
Finally, great functional diversity opens up additional possibilities for learning strategies,
in which downstream neurons select the most useful of its inputs rather than merely sum-
ming over identical inputs to reduce their noise. It is interesting to note that the retinas
of many invertebrates are constructed with almost crystalline anatomical precision. Since
this strategy had already been invented before the evolution of the vertebrates, one might
speculate that the increased anatomical disorder found in the vertebrate retina might serve
a beneficial purpose.
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