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SUMMARY

Hippocampal theta oscillations were proposed to be
important for multiple functions, including memory
and temporal coding of position. However, previous
findings from bats have questioned these proposals
by reporting absence of theta rhythmicity in bat hip-
pocampal formation. Does this mean that temporal
coding is unique to rodent hippocampus and does
not generalize to other species? Here, we report
that, surprisingly, bat hippocampal neurons do
exhibit temporal coding similar to rodents, albeit
without any continuous oscillations at the 1–20 Hz
range. Bat neurons exhibited very strong locking to
the non-rhythmic fluctuations of the field potential,
such that neurons were synchronized together
despite the absence of oscillations. Further, some
neurons exhibited ‘‘phase precession’’ and phase
coding of the bat’s position—with spike phases shift-
ing earlier as the animal moved through the place
field. This demonstrates an unexpected type of neu-
ral coding in the mammalian brain—nonoscillatory
phase coding—and highlights the importance of syn-
chrony and temporal coding for hippocampal func-
tion across species.
INTRODUCTION

Brain oscillations have long been thought to play a major role in

many brain functions (Buzsáki, 2006; Laurent, 2002; Singer,

2017). The rodent hippocampal formation—a brain region that

was studied extensively in relation to spatial codes displayed

by place cells (O’Keefe and Nadel, 1978; Wilson and

McNaughton, 1993) and grid cells (Hafting et al., 2005; Barry

et al., 2007)—is of particular interest for the study of oscilla-

tions, because in behaving rodents, the hippocampal formation

exhibits a very prominent �8 Hz continuous rhythm called
the theta oscillation (Buzsáki, 2002). The theta oscillation was

suggested to support functions as diverse as memory (Huerta

and Lisman, 1993; Lisman and Jensen, 2013), navigation

(O’Keefe and Recce, 1993; Skaggs et al., 1996), neural commu-

nication (Colgin et al., 2009), sequence learning (Skaggs et al.,

1996; Mehta et al., 2002; Foster and Wilson, 2007), and

lattice generation in grid cells (Burgess et al., 2007; Giocomo

et al., 2007).

Recent findings from bats showed spatially tuned neurons in

the hippocampal formation, including place cells (Ulanovsky

and Moss, 2007; Yartsev et al., 2011; Yartsev and Ulanovsky,

2013), grid cells (Yartsev et al., 2011) and head direction cells

(Finkelstein et al., 2015), with similar functional properties to ro-

dents—but no continuous oscillations were found in bats at the

theta frequency range (Ulanovsky and Moss, 2007; Yartsev

et al., 2011; Yartsev and Ulanovsky, 2013). However, two major

arguments were raised against the reported absence of theta

oscillations in bats (Barry et al., 2012; Heys et al., 2013): (1) the

frequency of oscillations could be lower in bats versus rats, as

supported by in vitro experiments in bat entorhinal slices that re-

vealed low-frequencymembrane resonance (�1.6–3.0 Hz) (Heys

et al., 2013, 2016)—very different from the theta resonance re-

ported in rodents (Giocomo et al., 2007; Heys et al., 2013), and

(2) firing rates of bat neurons were claimed to have been too

low to enable robust detection of oscillations (Barry et al.,

2012; Climer et al., 2015). Therefore, before examining temporal

coding in the bat hippocampus, we started off by addressing

these two concerns and found no continuous oscillations at

any frequency in the 1–20 Hz range—including not in hippocam-

pal interneurons, which exhibit very high firing rates. However,

bat neurons did exhibit very strong locking to the non-rhythmic

fluctuations of the field potential at the 1–20 Hz range. These

fluctuations synchronized neurons together; moreover, some

neurons also displayed phase precession and phase coding of

the bat’s position relative to the ‘‘phase’’ of these non-rhythmic

fluctuations. Our results suggest that normal hippocampal func-

tion entails synchronization of cell assemblies, as well as phase

coding, which can be non-rhythmic as in bats or rhythmic as in

rodents—but in both cases, the underlying neuronal coding prin-

ciples might be surprisingly similar across species.
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RESULTS

Bat Hippocampal Interneurons, Place Cells, and Grid
Cells Do Not Exhibit Behavior-Related Oscillations, in
Contrast to the Strong Theta Oscillations in Rats
We first focused on recording from hippocampal interneurons in

Egyptian fruit bats, during both crawling and flight behaviors.

Fast spiking interneurons are ideally suited for detecting oscilla-

tions—if these exist—because (1) interneurons exhibit very

high firing rates (Figures 1A and 1B) and thus provide robust

statistical power for identifying oscillations, (2) they are active

nearly continuously, which facilitates detection of low-frequency

rhythms (Climer et al., 2015), and (3) in rodents, hippocampal in-

terneurons are highly theta-modulated—hence they are often

called ‘‘theta cells’’ (Buzsáki, 2006). We recorded 44 putative

interneurons from hippocampal area CA1 during crawling

(n = 6 cells) or flight (n = 38 cells); interneurons were separated

from pyramidal cells based on spike width and firing rate. To

assess firing rate rhythmicity in single neurons, we computed

the spike train autocorrelation for spikes emitted during behavior

(see the STAR Methods). The autocorrelation was computed

over a long timescale of ±2 s, to enable detection of possible

slow oscillations at sub-theta frequencies. For comparison, we

also computed the autocorrelations of published data from hip-

pocampal and entorhinal neurons of rats (Hafting et al., 2005,

2008; Sargolini et al., 2006; Mizuseki et al., 2009). These rat neu-

rons exhibited very strong theta oscillations (Figures 1C and 1D,

bottom: note repetitive vertical bands). By contrast, the 44 bat in-

terneurons exhibited rather flat autocorrelations (Figures 1A, ex-

amples, and 1D, top—population: no vertical bands). This

suggests a lack of oscillatory modulation in bat interneurons,

during either flight or crawling. Likewise, no oscillations could

be readily observed in spatially tuned neurons: namely, bat hip-

pocampal place cells recorded during crawling (n = 42) or in-

flight (n = 55), as well as medial entorhinal cortex (MEC) grid cells

recorded during crawling (n = 25) (Figure 1D, top: no vertical

bands). Thus, qualitative visual inspection did not reveal oscilla-

tions in the spike trains of either interneurons, place cells, or

grid cells.

Next, we systematically quantified possible rhythmicity in the

spike trains of single cells by applying two different analysis

methods (Royer et al., 2010; Deshmukh et al., 2010; Langston

et al., 2010; Wills et al., 2010) (see the STAR Methods). First,

we fitted the autocorrelations with a decaying cosine function

(Figures 2A–2F and S1A–S1C), which allows detecting both

high and low frequencies (Figures S1B and S1C). In rat neurons,

this method successfully fitted large oscillatory components

(Figure 2A, red lines denote the fit). By contrast, bat neurons

did not exhibit substantial oscillations (Figure 2D). To quantify

the oscillation strength, we defined a ‘‘temporal fit oscillation in-

dex’’ (see the STAR Methods). Rat neurons exhibited much

higher values of the oscillation index as compared to bat neurons

(Figures 2B versus 2E; two-sided t test, comparing the rat data in

2B to each of the bat datasets in 2E: p < 10�20; p < 10�14;

p < 10�3). While most rat neurons were significantly oscillatory

(310/409, or 76%), very few bat neurons were significantly oscil-

latory (14/166, or 8.4%; see the STAR Methods). Moreover, the

significant rat neurons were concentrated within a narrow fre-
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quency band around the theta frequency (Figure 2C, dots cluster

around �8 Hz), while in the bat, those few cells that were signif-

icant were scattered across all possible frequencies (Figure 2F,

dots do not cluster at any specific frequency). In a second

analysis method, we computed the power spectrum of the auto-

correlations (Figures S1D–S1I). Power spectra of rat neurons ex-

hibited prominent peaks at the theta frequency (Figure 2G, see

peak around �8 Hz), usually accompanied by some power at

very low frequencies, representing the slow decay in the auto-

correlations (Figure 2G). By contrast, power spectra of bat neu-

rons did not show any clear peaks at a single frequency in the

1–20 Hz range (Figure 2J). Similar to the temporal fit analysis,

we computed a ‘‘spectral oscillation index’’ and best frequency

for each neuron (see the STAR Methods). Rat neurons exhibited

much higher oscillation index than bat neurons (Figure 2H versus

2K; two-sided t test, comparing the rat data in Figure 2H to each

of the bat datasets in Figure 2K: p < 10�5; p < 10�5; p < 10�6;

p < 10�3). Similar to the previous analysis, almost all rat neurons

(332/409 or 81%) passed the oscillation significance test, while

only a few of the bat neurons were found to be significantly oscil-

latory (9/166, or 5.4%), and the frequencies of these few signifi-

cant bat neurons were much more scattered (Figure 2L;

compare to Figure 2I for rats). Further, 67% of the rat neurons

(273/409 cells) were detected to be significantly oscillatory by

both the temporal fit and spectral analyses; and moreover, rat

neurons exhibited the same frequency in both analyses (Fig-

ure 2M: blue dots fall primarily along the identity diagonal). By

contrast, 0% of bat neurons (0/166 cells) were found by both

methods to exhibit significant oscillations (Figure 2N). This

finding strongly suggests that there are no behavior-related

continuous oscillations at the 1–20 Hz range in bat hippocampal

or entorhinal neurons.

Bat Neurons Exhibit Phase Locking to the Non-rhythmic
LFP Fluctuations, which Synchronizes the Network
Notably, some models relating rodent theta oscillations to mem-

ory may not require strictly sinusoidal oscillations, but could

function just as well with non-rhythmic fluctuations of the local

field potential (LFP), as long as these fluctuations synchronize

the network (Lisman and Jensen, 2013; Mehta, 2015; Kay

et al., 2016). We thus hypothesized that it is the synchrony of

cell assemblies, rather than their rhythmic periodicity, that is

crucial for the proposedmemory functions of the theta oscillation

(Mehta, 2015). To explore this idea, we next examined the nature

of LFP fluctuations in CA1 and MEC of behaving bats and

whether these fluctuations synchronize the network’s spiking

activity.

Recordings in bat CA1 and MEC during behavior revealed

large non-rhythmic fluctuations in the LFP (Figure 3A, top and

middle traces), which had an approximately 1/f spectrum (Fig-

ure 3A, right panels; see similar plots also in Ulanovsky and

Moss [2007] and Yartsev et al., 2011). Here, we analyzed the

LFP only from crawling data and not flight data, because in flight

the LFP signal (but not the single unit spikes) is often contami-

nated by wing beat artifacts. The LFP fluctuations were synchro-

nized across different tetrodes (Figures S4E and S4F). Because

spikes of rodent CA1 pyramidal neurons tend to phase lock

slightly after the theta oscillation trough (Buzsáki, 2002) (as
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Figure 1. Spike Train Autocorrelations of Bat Interneurons, Place Cells, and Grid Cells

(A) Spike train autocorrelations of four example interneurons frombatCA1; range of time lags,±2,000ms; bin size, 10ms. Shown are also their spikewaveforms on

the four channels of the tetrode,with spikewidths indicated. The top two interneuronswere recordedduring crawling and the other twowere recordedduring flight.

(B) Histogram of mean firing rates of bat interneurons.

(C) Spike train autocorrelation of an interneuron from rat CA1, plotted for comparison. Same binning as for the bat.

(D) Top: autocorrelations of all 166 analyzed bat cells: interneurons (n = 38 in flight and n = 6 in crawling), 2D place cells (n = 42), 3D place cells (n = 55), and grid

cells (n = 25). Rows, autocorrelations of single cells; grayscale normalized tomin-max values of the autocorrelation for each neuron. Bottom: similar display for rat

cells from medial entorhinal cortex (MEC) layer 2/3. Bin size, 10 ms. Same binning and graphical display for rats and bats. Rat data, courtesy of M.-B. Moser and

E.I. Moser from: https://www.ntnu.edu/kavli/research/grid-cell-data. Note the vertical bands in the rat data at �120-ms intervals, corresponding to the theta

oscillation and the lack of any vertical bands in the bat data, indicating lack of continuous oscillations.
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Figure 2. Absence of Behavior-Related Neuronal Oscillations in Bats

(A–F) Temporal fit analysis.

(A and D) Example neuron from each dataset (A, rat, in blue; D, bat, in black). Autocorrelations are overlaid with a fitted decaying sinewave function (red). Range of

time lags, ± 2,000 ms; bin size, 10 ms. Inset: time lag zoom between ±500 ms. Same binning and graphical display for rat and bat.

(B and E) Distributions of oscillation index (temporal fit-based) for rats (B) and bats (E). Dark bars, significantly oscillatory cells; light-colored bars, non-significant

cells. Datasets: ratMEC cells (n = 409), bat interneurons (n = 44, pooling together 38 cells recorded in flight and 6 cells in crawling), 2D place cells (n = 42), 3D place

cells (n = 55), and grid cells (n = 25).

(legend continued on next page)
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schematized in Figure 3B, bottom)—we hypothesized that in

bats, pyramidal neuronswould discharge slightly after the trough

of the non-rhythmic LFP fluctuations (as schematized in Fig-

ure 3B, top: see red ticks). To test this, we computed the phase

of each spike relative to the LFP fluctuations (Figure 3C). LFP

phase was measured by filtering the LFP between 1–10 Hz, de-

tecting the troughs (as in Figure 3C, inverted gray triangles), and

then computing the cycle-by-cycle phase of the non-rhythmic

LFP (0–360� for each cycle) by linearly interpolating the times be-

tween consecutive LFP troughs. To reduce noise in the phase

estimation, we included only those LFP cycles (and spikes

occurring within these cycles) that exceeded the 25% percentile

of LFP power: this excluded the LFP cycleswhere the power was

too low to allow reliable detection of the LFP troughs (see the

STAR Methods). We found that, indeed, many neurons in bat

CA1 and MEC exhibited phase locking to a particular phase of

the LFP fluctuations (see examples in Figures 3D and 3F, top

panels, and S5C). Spikes locked at a later time within long cycles

than within short cycles, suggesting a phase locking mechanism

rather than time locking mechanism (Figures S2A and S2B).

Across all bat CA1 neurons, 47% of the place cells (14/30 neu-

rons) and 38% of the nonspatial principal cells (5/13) exhibited

significant phase locking (see the STARMethods; binomial tests:

p < 10�10 and p < 0.001, respectively). Together, 44% of the CA1

principal cells (19/43) exhibited significant phase locking (bino-

mial test, p < 10�13). As a population, CA1 neurons showed

phase locking around a phase of �30�, slightly after the trough

of the local LFP fluctuations (Figure 3E, top)—very similar to

theta phase locking in rat CA1 place cells (Buzsáki, 2002). Pool-

ing spikes across cells yielded similar results (Figure 3E, bottom).

In bat MEC, 20% of the grid cells (5/25 neurons) and 29% of the

nonspatial principal cells (13/45) exhibited significant phase

locking (binomial tests: p < 0.01 and p < 10�6, respectively).

Across the MEC population, phase locking tended to be around

a phase of �200� (Figure 3G). Phase locking of spikes was also

evident in spike-triggered LFP analysis (Figures 3H, left, and

S3A, top plots—see distinct peaks at around t = 0 s). Note the

lack of oscillations around this peak—in striking contrast to the

prominent theta oscillations in rat spike-triggered LFP (Figures

3H, right, and S3B). Spike-triggered LFP analysis revealed phase

locking of spikes across frequencies—both when the LFP traces
(C and F) Scatterplot of oscillation index versus fitted frequency, for all significant

while in bats (F) there is paucity of significant dots, and moreover, the dots are s

(G–L) Spectral analysis.

(G and J) Example neuron from each dataset. For each cell, the inset shows th

indicated), and themain plot shows the power spectrum. Note the clear spectral p

bat data (J).

(H and K) Distributions of oscillation index (spectral-based) for rats (H) and bats

cells; rightmost bar, oscillation index R60. Note the much larger values of the os

(I and L) Scatterplot of the oscillation index versus extracted frequency, for all the s

(theta), while in bats (L) there are very few dots, and these dots are scattered ac

(M) Combined temporal fit and spectral analyses for rat data. Scatterplot of fitted f

Inset: zoom around �8 Hz. Both analyses captured similar frequencies, as indica

cells that passed the oscillation significance tests in both analysis methods (n =

(N) Percentage of cells that were significantly oscillatory using both methods (c

significantly oscillatory cells in the rat (273/409 cells, or 67%) versus the complete

cells in 2D, 0/55 place cells in 3D, and 0/25 MEC grid cells).

See also Figures S1 and S2.
were filtered between 1–100 Hz prior to averaging (Figures 3H

and S3A), as well as when the LFP was filtered between

1–10 Hz or between 10–20 Hz (Figure S3C). This indicates a

rather broadband phase locking of spikes to LFP fluctuations,

which was not limited to a particular frequency band. Notably,

because bat LFP exhibited wide frequency changes over short

periods of time (Figures 3A and S4A), the LFP frequency also oc-

casionally passed through the theta band, yielding ‘‘theta bouts’’

(Figure S4B: see around t = 12 s)—that explains why in previous

studies we found theta bouts, during which spikes exhibited

theta locking (Ulanovsky and Moss, 2007; Yartsev et al., 2011).

However, our new analyses suggest a notion that is rather

different from that of oscillatory bouts—namely, the underlying

process is that of non-rhythmic fluctuations to which the spikes

are locked.

This notion was further supported by three additional analyses

that we conducted (Figures 3D–3J). First, we examined spike

phase versus instantaneous LFP frequency—this demonstrated

a frequency-independent phase locking that occurred across all

frequencies at a similar phase (Figures 3D and 3F, bottom

panels; note the vertical stripes). Second, we examined the

cycle-to-cycle variability of LFP frequencies during putative

LFP bouts (see the STAR Methods)—and found that in the bat,

the LFP frequencies were extremely variable, almost as variable

as in a random shuffle (Figure 3J, compare black to gray)—and

very different from the highly stable frequencies in the rat (Fig-

ure 3J, blue). A similar result was found when the same analysis

was performed separately for specific frequency bands. In each

of the analyzed frequency bands, from 1 to 20 Hz, bat LFP fre-

quencies varied from cycle-to-cycle as much as expected from

a random shuffle (Figures S4C, examples: compare the black

lines [data] to the gray shaded areas [shuffle], and S4D, popula-

tion; the separation into frequency bands was done by the fre-

quency of the first cycle in each bout, while all subsequent cycles

in the bout could be at any frequency). This demonstrates that

hippocampal LFP in the bat is non-stationary, with variable cycle

durations—which argues against an underlying oscillatory pro-

cess. Third, we computed the spike-LFP coherence—a highly

sensitive measure for detecting neural oscillations (Fries et al.,

1997) (see the STAR Methods). We found that the coherence

function in the bat was very flat and did not reveal any spectral
cells (dots). Note that in rats (C), nearly all the dots cluster around�8 Hz (theta),

cattered across all possible frequencies.

e spike train autocorrelation (with spike count and autocorrelation maximum

eak at�8Hz in the rat data (G) and the absence of such clear single peaks in the

(K). Dark bars, significantly oscillatory cells; light-colored bars, non-significant

cillation indices in rats versus bats.

ignificant cells (dots). Note that in rats (I), nearly all the dots cluster around 8 Hz

ross all possible frequencies.

requency in the spectral analysis (y axis) versus the temporal fit analysis (x axis).

ted by the clustering of dots around the diagonal identity line. Shown are only

273).

onjunctively), plotted separately for each dataset. Note the large fraction of

absence of significantly oscillatory cells in the bat (0/44 interneurons, 0/42 place
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Figure 3. Bat Neurons Exhibit Phase Locking to the Non-rhythmic LFP Fluctuations

(A) Left: LFP traces from bat CA1 (top), bat MEC (middle), and rat CA1 (bottom). Note the difference between the clearly rhythmic continuous oscillations in the rat

versus the relatively irregular large fluctuations in the bat LFP, which did not exhibit continuous oscillations. The LFP traces were filtered between 1–40 Hz;

positivity pointing up; scale bars, 1 s, 300 mV. Right: Power spectrum of the LFP for the entire recording session from which the trace on the left was taken. Bat

data are from 2D arenas; CA1 and MEC traces were recorded from different bats. Rat CA1 data, courtesy of G. Buzsáki from http://crcns.org/data-sets/hc/hc-3.

(B) Schematic illustrating that spikes (red ticks) occur slightly after the LFP troughs in rat CA1 (bottom illustration) (Buzsáki, 2002); we hypothesized that in bats,

similar phase locking of spikes might occur slightly after the trough of their non-rhythmic LFP fluctuations (top illustration). Scale bar, 1 s.

(C) Example of spike phase extraction; data from bat CA1. Black line, LFP (1–40 Hz). Gray line, LFP filtered 1–10 Hz; this filtering was used to identify LFP troughs

(see gray inverted triangles). Red ticks, spikes. Scale bars. 0.5 s, 300 mV.

(D and F) Examples of 3 significantly phase-locked neurons recorded in bat CA1 (D) and 3 phase-locked neurons from bat MEC (F). Two cycles are shown for

clarity. Top rows: spike phase histogram (bars); bin size, 30�; red line, cosine fit to the histogram. Bottom rows: frequency-by-phase firing rate maps. Green line,

(legend continued on next page)
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peaks (Figure 3I, left)—in striking contrast to the large spectral

peak seen in the rat coherence function at �8 Hz, in both CA1

and MEC (Figure 3I, right). Interestingly, we found that during

crawling, the frequency of the non-rhythmic LFP fluctuations

increased with the movement speed of the bat (Figure 3K; two-

tailed t test comparing LFP frequency at high speeds [>median

speed] versus low speeds [<median]: p < 10�5)—similar to the

speed dependence of theta frequency in rats (Maurer et al.,

2005; Buzsáki, 2006). This is an important result, because it

indicates behavioral relevance for the nonoscillatory LFP fluc-

tuations. Finally, spike-triggered LFP analysis for sleep data

has demonstrated that CA1 neurons exhibited clear phase lock-

ing also during sleep (Figure S3D; we excluded from this anal-

ysis ±10-s epochs around each sharp-wave ripple in order to

exclude any possible ripple-related locking); this suggests that

phase locking occurs both during behavior and during sleep.

Taken together, these results suggest that hippocampal-entorhi-

nal circuits in bats use the non-oscillatory LFP fluctuations to

synchronize neuronal cell assemblies, which could support the

same functions that were proposed for theta oscillations in ro-

dents—such as inter-regional communication, learning, and

memory (Buzsáki, 2002, 2006; Mizuseki et al., 2009; Huerta

and Lisman, 1993; Mehta, 2015).

Nonoscillatory Phase Precession and Phase Coding of
Position in Bat Hippocampal Neurons
Next, we examined whether neurons in the hippocampal-ento-

rhinal system of bats exhibit phase precession, similar to the

phase precession in rodents (O’Keefe and Recce, 1993;

Skaggs et al., 1996; Reifenstein et al., 2012), despite the non-

rhythmic nature of the LFP in the bat. We employed a method

used previously in rats (Mizuseki et al., 2009), which is particu-

larly appropriate for analyzing phase precession in 2D environ-

ments and especially when the LFP is variable (see the STAR

Methods). This method is based on computing the autocorrela-

tion over the accumulated (‘‘unwrapped’’) phases of the spikes

relative to the LFP. For neurons that exhibit phase precession,

this ‘‘phase autocorrelation’’ shows multiple peaks at a rate

faster than the LFP (Mizuseki et al., 2009) (see examples from

rat neurons in Figures 4A–4C and S5A, top). We found that,

indeed, some neurons in the bat exhibited phase precession.
depiction of LFP phase (trough at 0�). Note that in both (D) and (F), the phase lockin

of frequencies and is not limited to a specific frequency (bottom rows in D and F

(E and G) Population analysis of phase locking for all the significantly phase-locke

depiction of LFP phase (trough at 0�). Top: histograms of best-fitted phase for ea

probability: spikes were pooled across all significantly phase-locked neurons; bin

rhythmic LFP (phase �30�), similar to the theta locking at �30� in rat CA1 (Buzs

(H) Left: spike-triggered LFP average, computed for all the spikes of bat CA1 neur

spike-triggered LFP for rat data, plotted for comparison. The LFP traces, for both

indicates time of spike; gray area, mean ± SEM.

(I) Spike-field coherence, computed for the data included in (H). Frequency bin

coherence. Same filtering and binning were used for the bat and rat data. Gray a

(J) Cumulative distribution of the changes in the frequencies of consecutive LFP

STAR Methods). Dark blue line, rat data; black line, bat data; light blue area a

respectively. Red dashed lines indicate the frequency differences encompassing

(K) LFP frequency in bat CA1 during crawling increased with movement speed—i

Shown is a population histogram of frequency differences between LFP recorded

versus low movement speed (<median); computed for sessions where place cel

See also Figures S2, S3, S4, and S5.
Figure 4D (middle) shows an example of phase precession in

a bat CA1 place cell (note the autocorrelation peaks, marked

by red arrowheads, occurred faster than integer multiples of

the LFP cycle, marked by green dashed lines). Phase preces-

sion was less common than phase locking: 23% of the CA1

place cells (7/30 neurons) exhibited significant phase preces-

sion according to a shuffle analysis (see the STAR Methods;

binomial test: p < 0.001; in MEC we also found examples of

phase precession, as shown in Figure 4E, but the low amplitude

of LFP recordings in MEC precluded systematic analysis). The

power spectrum of these phase autocorrelations showed that

the spiking activity was faster than the local LFP (Figure 4F:

population average; see examples in Figure S5D), indicating

phase precession.

Further, we directly examinedwhether there is also phase cod-

ing of spatial position—which is difficult to analyze in 2D, and

therefore we linearized the animal’s position to 1D (using trajec-

tories that passed near the place field center; see the STAR

Methods). Figure 4G shows an example cell whose spike phases

were negatively correlatedwith thebat’s spatial position (two left-

most panels: r = –0.47, p < 0.001). This systematic change of

spike phases when passing through the place field was captured

also by comparing the spike-triggered average LFP for spikes

occurring in early positions versus late positions along the tra-

verse (Figure 4G, right—note the phase shift between the green

and red curves; additional examples in Figure S5E; STAR

Methods). At the population level, there was a systematic differ-

encebetweenspike-triggeredLFP tracescomputedusingspikes

occurring at early positions versus spikes occurring at late posi-

tions. This difference was manifested by negative correlations

between LFP traces in early versus late positions (Figure 4H,

magenta), as compared to positive correlations between similar

locations (Figure 4H, cyan); this indicates that the timing of spikes

relative to the LFP carried information about the animal’s posi-

tion. Such significant phase coding of position was found in

38% (16/42) of the CA1 place cells (binomial test: p < 10�10).

Thus, although phase precession and phase coding were less

prevalent than phase locking, these results nevertheless suggest

that neurons in the hippocampal formation of bats can exhibit

nonoscillatory phase coding—a surprising form of neuronal tem-

poral coding.
g observed in the phase histograms (top rows) is maintained over a wide range

—notice the vertical stripes).

d bat neurons (E, n = 19 cells from CA1; G, n = 18 cells from MEC). Green line,

ch cell (gray bars, counts of neurons); bin size, 60�. Bottom: spike phase firing

size, 60�. Note that CA1 cells were locked slightly after the trough of the non-

áki, 2002), while MEC cells were locked to a different phase (�200�).
ons (top) and bat MEC neurons (bottom) that were included in (E) and (G). Right:

bat and rat data, were filtered between 1–100 Hz prior to averaging. Red line

, 0.25 Hz. LFP traces were filtered between 1–100 Hz prior to computing the

rea, mean ± SEM.

cycles, computed only for cycles that occurred during putative bouts (see the

nd gray area, 95% confidence intervals of the shuffled data for rat and bat,

80% of the data.

ndicating the likely behavioral relevance of the nonoscillatory LFP fluctuations.

during highmovement speed of the bat (>median speed in the crawling session)

ls were recorded (n = 16 sessions).
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Figure 4. Nonoscillatory Phase Precession and Phase Coding in Bat Hippocampal Neurons

(A and B) Examples of a rat CA1 place cell (A) and a rat MEC grid cell (B), exhibiting phase precession. Left plots: Firing rate maps; scale bars, 20 cm.Middle plots:

accumulated phase spike train autocorrelation (in short: ‘‘phase autocorrelation’’; see the STAR Methods). Note that the peaks in these phase autocorrelations

(red arrowheads) occurred faster than the LFP period (green dashed vertical lines), indicating phase precession. Right plots for each cell, standard spike train

temporal autocorrelation (as in Figure 2). Note that the rhythmicity in these rat data is seen in both the phase autocorrelation (middle) and time autocorrelation

(right). RatMEC data, courtesy of M.-B.Moser and E.I. Moser from https://www.ntnu.edu/kavli/research/grid-cell-data; rat CA1 data, courtesy of G. Buzsáki from

http://crcns.org/data-sets/hc/hc-3.

(C) Population analysis for rat data: Average power spectrum for all the significantly phase precessing rat neurons (n = 56 cells; see the STARMethods). Gray area,

mean ± SEM.

(D and E) Examples of a bat CA1 place cell (D) and a bat MEC grid cell (E), showing phase precession. Same conventions as in (A) and (B). Note the periodicity

revealed in the phase autocorrelation (middle), which is not present in the time autocorrelation (right), indicating a non-rhythmic process.

(F) Population analysis for bat data: average power spectrum for all the significantly phase precessing bat CA1 neurons. Same conventions as in (C) (n = 7 cells;

see the STAR Methods).

(G) Example of a bat CA1 place cell showing phase coding of the bat’s position (linearized 1D position: see the STARMethods). Left: negative correlation between

spike phase and position. Middle: phase-by-position firing rate map. Right: spike-triggered LFP averages (filtered 1–6 Hz), calculated separately for spikes

(legend continued on next page)

1126 Cell 175, 1119–1130, November 1, 2018

https://www.ntnu.edu/kavli/research/grid-cell-data
http://crcns.org/data-sets/hc/hc-3


Table 1. Prevalence of Phase Locking and Phase Coding in Bats versus Rodents

Phase Locking Phase Precession and Phase Coding

Bats (this study) 47% (place cells) 23% (place cells: phase precession)

44% (principal cells) 38% (place cells: phase coding)

Rodents (published) 97% (rats: place cells); Schlesiger et al., 2015 74% (rats: place cells); Schlesiger et al., 2015

84% (rats: principal cells); Mizuseki et al., 2009 88% (rats: principal cells); Mizuseki et al., 2009

89% (rats: principal cells); Fujisawa and Buzsáki, 2011 55% (mice: place cells); Allen et al., 2011

27% (mice: place cells); Zutshi et al., 2018

Comparison between CA1 place cells in bats versus rodents (rows) in terms of the percentage of significantly phase-locked neurons (left column) and

significantly phase precessing and phase coding neurons (right column). Note that the different studies used different experimental setups (1D and 2D)

and employed somewhat different metrics for quantifying phase coding and phase precession—hence the exact percentage values should be

compared cautiously; nevertheless, it is clear that the percentages in bats are lower than in rodents.
DISCUSSION

Here, we reported several key results. First, we found that there

was no spike train rhythmicity at any frequency in the 1–20 Hz

range—in either bat interneurons, place cells, or grid cells, during

either 2D or 3D locomotion (Figures 1 and 2). This strongly argues

against classical ‘‘oscillatory interference models’’ of grid cells

(Burgess et al., 2007; Giocomo et al., 2007), although some

non-classical versions of the model may be compatible with

our results (Orchard, 2015). Second, we found substantial phase

locking of principal neurons in bat CA1 and MEC to the non-

rhythmic LFP fluctuations (Figure 3)—consistent with a cross-

species role for synchronicity in hippocampal function. It remains

unclear why behavior-related fluctuations in the LFP of rodents

are very rhythmic (i.e., theta oscillations), while LFP fluctuations

in humans, monkeys, and bats tend to be non-rhythmic (Jacobs

et al., 2007; Stewart and Fox, 1991; Ulanovsky and Moss, 2007;

Yartsev et al., 2011) (although see Bohbot et al. [2017])—but our

results suggest that in all these species, synchronicity of cell as-

semblies might play an important role. Third, we found that

despite the absence of periodic rhythmicity in spike trains and

in the LFP, some bat neurons exhibited rat-like phase precession

and phase coding (Figure 4). To our knowledge, these results

provide the first demonstration of nonoscillatory phase coding

in any brain region of any species—a unique form of temporal

coding.

The percentage of significantly phase-locked neurons in bat

CA1 (47% of place cells, 44% of principal cells) was lower than

the percentage of phase-locked neurons reported in rodent

CA1 (�84%–97%; see Table 1). Likewise, the percentage of

significantly phase coding neurons in bat CA1 (38% of place

cells) was lower than reported in rodents (�27%–88%; see

Table 1). This may indicate that the absence of oscillations re-
occurring in early positions (red) versus late positions (green); plotted as mean ±

green curves).

(H) Population analysis of all the significantly phase coding neurons in bats, using 1

filtering (insets: n = 14/42, or 33% significant cells; see the STAR Methods). Le

positions (magenta) and early-versus-early and late-versus-late positions (cyan).

25th and 75th percentiles; whiskers, 5th and 95th percentiles). Note the higher co

versus-late) than when comparing different positions (magenta, early-versus-lat

1–6 Hz and 1–10 Hz filtering), indicating that the timing of the spikes relative to t

See also Figure S5.
duces the propensity of hippocampal neurons to exhibit phase

locking and phase coding. It remains to be seen in future exper-

iments whether the percentage of phase-locked and phase cod-

ing neurons may increase during prolonged fast flight or in other

subregions of the bat hippocampal formation. Nevertheless, we

note that the percentages reported here in the bat are rather high

and are very significant (binomial tests: p < 10�10 for both phase

locking and phase coding), demonstrating a decoupling be-

tween hippocampal theta oscillations, phase locking, and phase

coding.

Why does the rodent hippocampus exhibit continuous theta

oscillations, while the bat hippocampus does not? This remains

an open question, and we can only speculate here. One possibil-

ity is that the medial septum—the brain region that is believed to

serve as the primary pacemaker for hippocampal theta in ro-

dents (Buzsáki, 2002)—lacks oscillatory neurons in bats. This

should be tested in the future by recording from the bat medial

septum. Another possibility is that the medial septum is oscil-

lating in bats similarly to rodents, but it is unable to drive

hippocampal or entorhinal oscillations because hippocampal

formation neurons in the bat are not responsive at the theta fre-

quency—as supported by the finding of lack of theta resonance

in medial entorhinal neurons of bats (Heys et al., 2013). Impor-

tantly, however, our present study demonstrates a surprising

inter-species similarity in terms of phase locking and phase cod-

ing. Notably, hippocampal LFP in monkeys (Stewart and Fox,

1991) and humans (Jacobs et al., 2007; Aghajan et al., 2017)

tends to exhibit very little periodicity in the 1–20 Hz range, with

the exception of possible oscillatory ‘‘bouts’’ that in humans

last on average 3 cycles (Aghajan et al., 2017). It would be inter-

esting to test whether hippocampal neurons in monkeys and

humans exhibit nonoscillatory phase coding—similar to our find-

ings in bats.
SEM; note the phase shift between early and late positions (compare red and

–6 Hz filtering (main plots: n = 16/42, or 38% significant cells), or using 1–10 Hz

ft: distribution of spike-triggered LFP correlations between early versus late

Right: boxplot of these distributions (horizontal line; median correlation; box,

rrelations when comparing similar positions (cyan, early-versus-early or late-

e; Wilcoxon rank sum test between the two distributions: p < 10�30 for both

he (irregular) LFP carried significant spatial information.
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Figure 5. Models of Phase Precession

(A) Illustration of the asymmetric depolarization

model (Mehta et al., 2002) using rhythmic oscilla-

tions (top: rat-like) versus non-rhythmic fluctua-

tions (bottom: bat-like). The spikes in this model

(green dots) occur when the down-swing of the

fluctuating inhibitory current crosses the excitatory

ramping current. Phase precession is obtained in

both versions of this model, in both rats and bats:

note that the spikes are advancing to earlier pha-

ses as the animal moves rightward through the

place field.

(B) Illustration of the oscillatory interference model

(O’Keefe and Recce, 1993; Burgess et al., 2007;

Giocomo et al., 2007; Orchard, 2015) using

rhythmic oscillations (top: rat-like) versus non-

rhythmic fluctuations (bottom: bat-like). In both

cases, the difference between the dendritic and

somatic frequencies is proportional to the running

speed of the animal, which allows integrating the

animal’s movements.
Our results are consistent with the asymmetric depolarization

model of phase precession (Mehta et al., 2002), which does not

require oscillatory activity and can operate with nonoscillatory

fluctuations (Figure 5A, bottom). These data are also compatible

with a non-classical oscillatory interference model that utilizes a

non-rhythmic process (Orchard, 2015); however, the latter

model requires some non-trivial assumptions—such as a mech-

anism to maintain two highly variable signals at a frequency

difference precisely proportional to the movement speed (Fig-

ure 5B, bottom). Therefore, the asymmetric depolarizationmodel

seems a more likely possibility.

In summary, we found that bat hippocampal neurons did not

exhibit behavior-related oscillations in the 1–20 Hz frequency

band, but at the same time these neurons exhibited phase cod-

ing of position relative to the non-rhythmic fluctuations of the

LFP. This finding provides a positive demonstration of nonoscil-

latory phase coding of a behavioral variable. We note that the

nonoscillatory phase precession found here in bats may enable

synaptic plasticity based on the firing order of neurons, thus

supporting sequence learning—a key function proposed for

phase precession in rodents (Skaggs et al., 1996; Mehta

et al., 2002; Foster and Wilson, 2007). Taken together, these

data suggest that, strikingly, a similar kind of temporal coding

(phase coding) may be common to hippocampal function in

both bats and rodents—and possibly also in primates. Further,

our results dissociate between theta oscillations, cell assembly

synchronicity, and phase coding of position—three phenomena

that in rodents are tightly coupled together—whereas here we

show that only the latter two phenomena generalize across

species. This shift of focus from rhythmicity to synchronicity

and temporal coding may reconcile some of the ongoing

debates about the roles of oscillations in different species

(Barry et al., 2012; Climer et al., 2015; Heys et al., 2013,

2016; Ulanovsky and Moss, 2007; Yartsev et al., 2011): Our re-

sults argue that, in terms of neural coding, there is, in fact, deep

similarity across species.
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state dependence of pyramidal cell-interneuron synapses in the hippocam-

pus: an ensemble approach in the behaving rat. Neuron 21, 179–189.

Deshmukh, S.S., Yoganarasimha, D., Voicu, H., and Knierim, J.J. (2010). Theta

modulation in the medial and the lateral entorhinal cortices. J. Neurophysiol.

104, 994–1006.
Finkelstein, A., Derdikman, D., Rubin, A., Foerster, J.N., Las, L., and Ulanov-

sky, N. (2015). Three-dimensional head-direction coding in the bat brain.

Nature 517, 159–164.

Foster, D.J., and Wilson, M.A. (2007). Hippocampal theta sequences. Hippo-

campus 17, 1093–1099.

Fries, P., Roelfsema, P.R., Engel, A.K., König, P., and Singer, W. (1997). Syn-

chronization of oscillatory responses in visual cortex correlates with percep-

tion in interocular rivalry. Proc. Natl. Acad. Sci. USA 94, 12699–12704.
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Egyptian fruit bats (Rousettus aegyptiacus) Wild-born bats caught

in Israel

N/A

Software and Algorithms

MATLAB R2012b MathWorks https://www.mathworks.com/products/matlab.html

SpikeSort3D Neuralynx https://neuralynx.com/software/spikesort-3d

MATLAB Chronux Toolbox Chronux http://chronux.org/

Other

Small animal stereotax David Kopf Instruments http://kopfinstruments.com/product/model-942-

small-animal-stereotaxic-instrument-with-digital-

display-console

Tetrode wire Platinum 90% Iridium 10% HML-insulated California Fine Wire http://www.calfinewire.com/index.html

Harlan 4 Drive Neuralynx https://neuralynx.com/hardware/harlan-4-drive

Digital Lynx 4SX Neuralynx https://www.neuralynx.com/hardware/digital-

lynx-4sx

Small Animal Telemetry (SAT) system for electrophysiology Neuralynx SAT
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nachum

Ulanovsky (nachum.ulanovsky@weizmann.ac.il).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We collected data from adult male Egyptian fruit bats (Rousettus aegyptiacus), weighing 152 – 174 gr. Details of behavioral tasks and

electrophysiological recordings are provided below. Neural recordings were conducted in the bat’s dorsal hippocampus area CA1,

and in the medial entorhinal cortex (MEC). We also analyzed publicly available data recorded by other laboratories from CA1 and

MEC of rats: see details of these rat datasets below.

All experiments in Egyptian fruit bats were approved by the Institutional Animal Care and Use Committee of theWeizmann Institute

of Science.

No randomization of animals was implemented, and experimenters were not blinded to animal group or behavioral task. Sample

sizes for all experiments were determined based on previously published work, and statistical significance was determined post hoc.

METHOD DETAILS

Recording of hippocampal interneurons
Details of recordings methods are described in Geva-Sagiv et al. (2016). In brief: Adult male Egyptian fruit bats (n = 3) were trained

either to fly back-and-forth in a linear flight setup (1.5-m length) or to crawl on an elevated platform (403 40 cm). After reaching good

performance, animals were anesthetized with isoflurane (1 to 3%), placed in a stereotax (Kopf), and a four-tetrode microdrive

(Neuralynx) was implanted above right dorsal hippocampal area CA1. The tetrodes (platinum-iridium 17.8-mm diameter wires,

gold-plated to reduce the impedance to �500 kU) were then lowered toward the CA1 pyramidal cell layer. One tetrode was left in

an electrically quiet zone and served as a reference. Recordings were conducted using either wired or wireless electrophysiology

recording systems (Neuralynx DigitalLynx or Neuralynx SAT). Data were spike-sorted manually (Neuralynx SpikeSort3D). Although
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in the past we found it difficult to record CA1 interneurons in-flight (Yartsev and Ulanovsky, 2013), in these 3 bats we succeeded to

record a substantial number of interneurons. Recorded data consisted of a mixture of putative pyramidal cells and fast-spiking in-

terneurons; we report here on the interneurons, which are the critical new cell type for analyzing neuronal rhythms in bats (n = 38

interneurons recorded in-flight, and n = 6 interneurons during crawling on the 2D platform). Putative interneurons were separated

from putative pyramidal cells based on spike-width < 0.27 ms and mean firing-rate > 5 Hz; we did not apply a spatial-specificity cri-

terion for separating the interneurons.

Published datasets included in the analysis
In addition to the new data from interneurons (some of which were recently published in Geva-Sagiv et al. [2016]), we also included in

the analysis some previously published datasets that we recorded from Egyptian fruit bats: (1) Hippocampal CA1 place cells re-

corded during 2D-crawling in either a 1173 117 cm square arena or a 623 62 cm square arena (n = 42 cells from 3 bats; data pub-

lished in Yartsev et al. [2011] and Rubin et al. [2014]). (2) Hippocampal CA1 place cells recorded during 3D-flight in a large 5.83 4.63

2.7 m flight-room (n = 55 cells from 5 bats; data published in Yartsev and Ulanovsky [2013]). (3) MEC grid cells recorded during

2D-crawling in a 117 3 117 cm square arena (n = 25 cells from 3 bats; data published in Yartsev et al. [2011]).

Additionally, we analyzed data from MEC and CA1 of rats. The rat MEC data were taken from: https://www.ntnu.edu/kavli/

research/grid-cell-data, courtesy of M.-B. Moser and E.I. Moser. The rat CA1 data were taken from: http://crcns.org/data-sets/

hc/hc-3, courtesy of G. Buzsáki (Mizuseki et al., 2009, 2013).

Spike-train autocorrelations, and fitting a decaying-sinewave function
All analyses were done using MATLAB (Mathworks). For all types of neurons, in both bats and rats, we computed the spike-train

autocorrelation over a ± 2,000-ms time window, using 10-ms bins; the long time-window of ± 2,000 ms was chosen to allow

detecting slow oscillations, if they exist. The value of the autocorrelation at zero-lag was set to the maximal value across all other

time-lags.

We fitted each spike-train autocorrelation with the following function:

fðtÞ= ae
�jt j
t1 ðcosð2pftÞ+ 1Þ+be

�jt j
t2 + ce

�t2

t2
3 +d (1)

Fitted parameter values were restricted to the following ranges (Royer et al., 2010): a = [0, m], b = [0, m], c = [–m, m], d = [0, m],

f = [1.5, 20] Hz, t1 = [0.1, 100] s, t2 = [0.1, 100] s, t3 = [0, 0.05] s; where m is the maximal value of the autocorrelation. To find the

best fit, we performed the fitting 500 times with different random initial values for all the parameters; and for each of those

500 fits we computed the R2 value between the original autocorrelation and the fit, and retained for further analysis the fit with the

highest R2 value. Only cells with R2 > 0:7 (Brandon et al., 2013) and a maximal autocorrelation value > 10 were taken for population

analysis (Figures 2B and 2E). This decaying-oscillation fit is an extension of a similar fit used previously to assess theta rhythmicity of

spiking activity in rats (Royer et al., 2010). The main change in the form of the fit, as compared to the fit in Royer et al. (2010), was that

we separated the decay time-constant into two time-constant parameters, one (t1) capturing the decay of the oscillatory component,

and the other (t2) capturing the decay of the overall firing-rate component (see also examples in Figures S1B and S1C). The third

decay time-constant (t3) captures the fast burst component, if it exists. In addition, we included a baseline firing-rate component

(d), which allowed explicitly fitting a baseline: this was important due to the long time-window of ± 2,000 ms that we used for the

autocorrelation. We allowed the fitted frequency, f, to go up to 20 Hz (double the maximal theta-frequency in rodents), and down

to 1.5 Hz (the lower limit of expected frequencies based on in vitro membrane resonance measurements in Egyptian fruit bats

[Heys et al., 2013]).

Oscillation index (temporal-fit) and its significance
We defined an index to capture the depth of oscillatory modulation in our decaying-oscillation fits, as follows:

oscillation indexðtemporal fitÞ= a

maxðfitÞ
where a is the amplitude of the oscillatory component, as fitted in E
quation 1, andmax(fit) is themaximal value of the fitted function in

Equation 1.

To assess the significance of the oscillatory component a, we applied several criteria. First, we computed the 95% confidence in-

terval for the fit of a, and required that it should be significantly positive – namely, that the 95% confidence-interval of the fitted value

of a should be entirely above 0. Second, oscillation index (temporal-fit) had to beR 0.05, signifyingmodulation depth of at least 5%of

the total maximum firing-rate. Third, the decay of the oscillatory component to 5% of its maximal value should last for at least one

period of the oscillation (1/f); thus we treated as non-oscillatory those cells that exhibited very fast decay of the oscillatory component

(33 t1 < 1/f), and retained cells which exhibited slower decay (33 t1R 1/f). If all three criteria weremet, the cell was considered to be

oscillatory at frequency f; these were the frequencies plotted on the x axis in Figures 2C and 2F.
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Spectral analysis, and oscillation index (spectral) and its significance
We computed the spike-train autocorrelation for each cell, as described above, and then computed the power spectrum of the auto-

correlation as the FFT-squared; the spectrum was normalized by its total power. We binned the spectrum using 1-Hz bins, running

from 1.5 to 20.5 Hz, and computed the power in each spectral bin; this is the same frequency-range as in the temporal-fit analysis. To

assess the significance at each bin, we repeated the same procedure for 2,000 shuffled spike-trains (see below for details on shuf-

fling). We then found the frequency-bins that had significantly higher power in the real data than in the shuffled data (p < 0.05, Bon-

ferroni-corrected for multiple bin comparisons, n = 19 bins). For all cells we used the distribution of shuffling spectra to compute the

z-score of the spectral power at each frequency-bin, and chose the bin with the highest z-score to be the frequency-bin representing

this cell (‘peak-frequency’; see examples in Figures S1E, S1F, S1H, and S1I). Cells that had no significant frequency-bins, at any fre-

quency, were regarded as non-oscillatory cells. The spectral-based oscillation index (x axis in Figures 2H and 2K) was taken as the

ratio of the spectrum at the peak-frequency divided by the shuffle-mean at that frequency.

Generating shuffled spike trains: To create a null distribution for the spectral analysis (Figures 2G–2L), we modeled each cell’s

firing-rate based on its spatial firing properties (firing-rate map), as follows. Using the firing-rate map and the animal’s movement

trajectory, we computed the values of the expected firing-rate at each location (as derived from the firing-rate map), and then for

each 10-ms time-bin on the trajectory we randomly generated spikes from a Poisson distribution, with the appropriate mean rate.

For bursty-cell categories (place cells), or for interneurons which exhibited some burstiness (cells where the first moment of the auto-

correlation [computed up to 50 ms] was < 25 ms; see Csicsvari et al. [1998]), we also modeled the bursty properties of the neuron by

randomly choosing single spikes and turning them into bursts, to match the observed ratio of bursty/non-bursty spikes; the modeled

bursts were drawn from the empirical distributions of the number-of-spikes per burst and of the inter-spike-interval, taken from the

same neuron, while maintaining the mean empirical number of spikes for that neuron. Note that this method for generating shuffled

spike-trains differs from using a fixed numerical threshold for the theta-index (Boccara et al., 2010), or from the random-shuffling

method used previously in similar analyses (Barry et al., 2012; Yartsev et al., 2011; Yartsev and Ulanovsky, 2013). We used this

method because uniform random shuffling creates a flat autocorrelation, and may therefore fail to capture the true shape of the

experimental autocorrelations, which are often non-flat due to burstiness or due to behavior-induced temporal structure of the neural

activity; our shuffling method, in contrast, gives more accurate estimates (see Figures S1D–S1I).

LFP spectrum
LFP spectra (Figure 3A, right) were computed using Welch’s method (pwelch function in MATLAB) with Hamming windows (50%

overlap). We used a window length of 4,096 samples, which equals 2.164 s.

LFP phase-locking
Analysis of phase-locking of spikes to the LFP (Figure 3) was conducted for all the bat neurons in which spikes were recorded simul-

taneously with high-quality LFP. This included all the 2D-crawling data from CA1 and MEC published in Yartsev et al. (2011) [CA1,

n = 43 cells; MEC, n = 70 cells; both spatial and nonspatial cells; all the other datasets were excluded from this analysis because either

they did not include LFP data at all, or the LFP quality was poor – specifically: (i) 3D place-cells and crawling-data from interneurons

were recorded using telemetry equipment that high-passed all frequencies below 70 Hz, and thus did not permit low-frequency LFP

recordings (Yartsev and Ulanovsky, 2013); (ii) flight-data from interneurons contained flight-related movement artifacts that corrup-

ted the LFP signal]. For CA1 cells, the LFP was recorded from tetrodes located in the CA1 pyramidal cell layer; we only used LFP data

from days when place-cells were recorded at the same time; the reference tetrode was located in an electrically quiet area in the

corpus callosum above CA1. For MEC cells, the LFP was recorded from tetrodes located in all layers of MEC (Yartsev et al.,

2011); we only used LFP data from days when grid-cells were recorded at the same time; the reference tetrode was located in an

electrically quiet area. To measure the LFP phase, we filtered between 1–10 Hz the LFP traces that were recorded during behavior

(with positivity pointing up); then the troughs were detected using a test for zero-derivative (as in Figure 3C, inverted gray triangles);

and then we computed the cycle-by-cycle phase of the non-rhythmic LFP by linearly-interpolating between 0–360� the times of

consecutive LFP troughs. To reduce noise in the phase estimation, we included only those LFP cycles (and spikes occurring within

these cycles) that exceeded the 25% percentile of LFP power; this threshold excluded 25% of the LFP cycles where the power was

too low to allow reliable detection of the LFP-troughs. We calculated the power of the LFP cycles as follows:We computed the power

as the square of the absolute Hilbert transform of the filtered LFP signal, and then for each cycle of the LFP we assigned the mean

power during the cycle. Applying this same LFP power-thresholding on the spike data did not affect our results on the non-rhythmicity

of spike-trains (Figures S2C and S2D: here we extracted spikes only during LFP cycles that exceeded the 25% percentile of LFP

power; note that in Figure S2D, the same number of neurons [dots] was above versus below the diagonal – indicating no systematic

effect of the thresholding).

To test for phase-locking, we computed the histogram of spike phases, using a bin-size of 30�. Then, we fitted this histogram with

the following cosine function: a cosðx� bÞ+ c (see examples in Figures 3D and 3F, red lines). The preferred-phase of the neuron was

taken as the fitted value of the parameter b (which is the phase where the cosine-fit reaches its maximum). Significance of phase-

locking was defined as the significance of the Pearson correlation between the cosine-fit and the data.

To further examine the phase-relations between spikes and LFP across frequencies, we used the spike-field coherence measure

(Fries et al., 1997), as follows (see Figure 3I; we used here the mtspectrumc function from the Chronux MATLAB toolbox,
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http://chronux.org/ (Mitra and Bokil, 2007)). We extracted the LFP in a time-window of ± 2,000 ms around each spike, and calculated

the spike-triggered average (STA) of the LFP in that window. The spike-field coherence was then computed as the ratio between the

power spectrum of the STA, divided by the average of the power spectra of all the individual spike-triggered LFP traces (Fries

et al., 1997).

To examine the cycle-to-cycle variability in LFP frequency (Figure 3J), we first identified putative ‘bouts’ in the LFP, as follows:

Cycles with mean power higher than the median power were detected (with the median computed within the appropriate frequency

bin), and then every two cycles which were separated in time by no more than their average duration were concatenated together to

the same bout. We considered only bouts with overall duration R 3 cycles. Next, we computed the cycle-to-cycle variability in the

frequencies of consecutive cycles within those identified putative bouts (Figure 3J, black line and dark-blue line) – where the fre-

quency of each cycle was taken as 1 divided by the cycle-duration. We then compared the cycle-to-cycle variability of the data

to that of a shuffled version, by permuting the order of cycles 1,000 times, and taking the 95% confidence intervals of the shuffles

(Figure 3J, gray area and light-blue area). We also repeated the analysis in Figure 3J separately for specific frequency bands, running

from 1 to 20 Hz (Figures S4C and S4D). The separation into bands was done by the frequency of the first cycle in each pair of cycles:

e.g., the 5–8 Hz band in Figure S4Dmeans that the first cycle was in the 5–8 Hz range – but the subsequent cycle in the bout could be

at any frequency.

Phase-precession and phase-coding
To examine whether there is phase-precession of spikes relative to the (irregular) LFP, we first applied a method introduced previ-

ously for rat data (Mizuseki et al., 2009): this method is particularly well suited for data collected in 2D open-field arenas, and for

non-stationary LFP. We assigned to each spike its LFP cumulative phase (unwrapped phase), by accumulating the cycle-by-cycle

phase from the beginning of the recording. Then we computed the autocorrelation of these cumulative-phases of the spike-train,

using 60�-binswith window-length of 4 cycles. This type of autocorrelation analysis is termed here ‘phase autocorrelation’. If a neuron

is exhibiting phase-precession, its phase autocorrelation will have peaks at a higher rate than the LFP cycles (i.e., the autocorrelation

peaks [red arrowheads in Figure 4D-middle] will occur before the LFP cycles [green dashed vertical lines in Figure 4D-middle]). For

CA1 data, we used here the same 25% threshold for LFP power as for the previous analyses; for MEC data, where the LFP had lower

amplitude, we used a higher threshold for LFP power (75% power), because this phase-precession analysis is sensitive to phase-

estimation errors (since in order to assess phase-precession, several consecutive cycles need to have reliable phase estimates).

For the same reason, in the phase-precession analyses we used a narrower band to filter the LFP signal of the bat data (1–6 Hz) –

in order to further remove small rapid fluctuations that may corrupt the phase-estimation. To test for the significance of phase-pre-

cession, we computed the power spectrum of the phase-autocorrelation within a 4-cycles window, and then shuffled the spike

phases 1,000 times, as follows. Within each LFP cycle separately (on a cycle-by-cycle basis), we rigidly shifted the phases of all

the spikes occurring within that cycle by a random value (uniform random circular shift between 0–360�), and then calculated the

power-spectrum for each shuffle. This cycle-by-cycle shuffling procedure disrupted any possible relation between spikes and

LFP-phase, while maintaining most of the neuron’s slow temporal dynamics (behavior-related) and rapid spike dynamics (bursts).

The cell was regarded as significantly phase-precessing if the highest significant spectral peak in the power-spectrum of the

phase-autocorrelation (i.e., the highest of the spectral peaks that exceeded the 95% confidence interval of the shuffles) occurred

at a frequency > 1 (namely spike-fluctuation rate was higher than LFP-fluctuation rate). We only included in this analysis those

neurons whose maximal value of the autocorrelation was R 5 spikes.

To test for phase-coding of position (Figure 4G, two left panels), we used bat LFP recordings taken in 2D crawling arenas (where we

had good LFP data), and transformed the 2D behavior of the bat into 1D behavior, as follows. For each place-cell we considered the

position of the spatial bin with the highest firing-rate as the place-field center. Then, for each individual 2D trajectory that passed

within a 25-cm radius from the place-field center, we defined the 1D position of the animal as the Euclidean distance from the animal

to the point on the bat’s trajectory that was closest to the field center (the ‘trajectory center-point’) – assigning negative and positive

signs to positions before and after passing the trajectory center-point, respectively. This 1D position was plotted on the x axis of the

phase-by-position plot (Figure 4G, left). We then used a standard method to quantify phase-precession (Foster and Wilson, 2007;

Hafting et al., 2008; Brun et al., 2008; Mizuseki et al., 2009): We found the regression line that maximizes the explained variance

(R2) of the phase-by-position plot, for different rigid circular shifts of the spike-phases. To test for significance of this correlation,

we shuffled 1,000 times the spikes by randomly permuting their identity, and calculated for each shuffle the regression line as before.

A cell was defined as significantly phase-coding if the explained variance (R2) of the phase-by-position plot in the real data was larger

than in 95% of the shuffles.

The binned ‘firing-rate map’ for phase-by-position (Figure 4G, middle) was computed by binning the data into phase 3 position

bins (with bin-size of 20� phase 3 1.5 cm); we counted the number of spikes emitted by the cell in each bin, as well as the total

time spent by the bat in that bin. These two maps (spike-count and time-spent) were then individually smoothed using a Gaussian

kernel with standard deviation of s = 1.5 bins (taking care of the circularity of the phase variable). The firing-rate map was computed

by dividing bin-by-bin the two smoothed maps of spike-count and time-spent.

Lastly, we applied a second type of analysis to detect phase-coding – an analysis that does not necessarily require a linear cor-

relation between phase and position, but rather checks for significant phase-shift between two distinct spatial positions. For each

cell, we divided its spikes into two equal sets, based on the median 1D spatial position of the spikes – and then calculated the
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spike-triggered average LFP for each spike-set: i.e., we compared LFP for early positions versus late positions (red versus green

curves, respectively, in Figure 4G-right; see population summary in Figure 4H; the LFP was filtered here either between 1–6 Hz (Fig-

ure 4H, main plots) or between 1–10 Hz (Figure 4H, insets)). To test for significant LFP phase-shift between the two spatial positions,

we computed the root-mean-square (r.m.s.) of the differences between the two spike-triggered averages (red and green) within

a ± 200 ms window – and compared it to the r.m.s. calculated for 1,000 shuffles (spike-identity permutation); a neuron was defined

as exhibiting significant phase-coding of the animal’s position if the r.m.s. for the real data was larger than the r.m.s. in 95% of the

shuffles. We also conducted population analysis (Figure 4H), whereby we computed the Pearson correlation of LFP traces that

occurred around pairs of spikes emitted at either different positions (early versus late positions), or for pairs of spikes emitted at

similar positions (early versus early positions or late versus late positions). Pooling these correlations across all significant cells

showed that the correlations are positive for similar positions (Figure 4H, cyan) and negative for different position (Figure 4H,

magenta).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were parametric, except where indicated; t tests were two-sided. We did not perform tests for Gaussianity of the

data. Bootstrap shuffling of spikes-trains was used to assess the presence or absence of oscillations. Statistical testing was per-

formed in MATLAB (Mathworks).

We analyzed here the following datasets that we collected from bats: (i) CA1 interneurons recorded from bats flying back-and-forth

in a 1.5-m linear flight setup (n = 38 cells from 3bats), or from a bat crawling on an elevated 403 40 cmplatform (n = 6 cells from 1bat).

(ii) Hippocampal CA1 place cells recorded during 2D-crawling in either a 1173 117 cm square arena or a 62 3 62 cm square arena

(n = 42 cells from 3 bats). (iii) Hippocampal CA1 place cells recorded during 3D-flight in a large 5.8 3 4.6 3 2.7 m flight-room

(n = 55 cells from 5 bats). (iv) MEC grid cells recorded during 2D-crawling in a 117 3 117 cm square arena (n = 25 cells from

3 bats). In addition, we analyzed two publicly available neuronal datasets from rats (see details above).

DATA AND SOFTWARE AVAILABILITY

All computer code and all data are archived on theWeizmann Institute of Science servers, and will be made available upon a reason-

able request to the Lead Contact (nachum.ulanovsky@weizmann.ac.il).
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Supplemental Figures

Figure S1. Temporal Fit and Spectral Analyses Methods, Related to Figure 2

(A–C) Temporal fit analysis.

(A) Fit equation: each component of the fit is marked by a different color, corresponding to the colors of the line-plots in B, which graphically depict these

components.

(B) Autocorrelation of a rat MEC neuron (gray bars), with an overlaid decaying-sinewave fit (red line). The fit was decomposed here to its components from A,

denoted by the different colors.

(legend continued on next page)



(C) Autocorrelation of a rat MEC neuron that exhibited a low-frequency oscillation, demonstrating that the fit can also detect low frequencies, if they exist.

(D–I) spectral analysis.

(D and G) Autocorrelations of two example neurons from rat MEC (blue), together with the spike-train autocorrelations of shuffled data (dashed red line – mean,

red area – SD). These are different neurons than those shown in B and C. The shuffled autocorrelation eliminated the rapid theta oscillations, but it otherwise

retained the general shape of the autocorrelations – including the slow modulation exhibited by these neurons, which is likely due to the repetitive passage of the

animal through the neuron’s grid-fields. (Note that the period of thismodulation, which is 700ms for the neuron in Figure S1D, is almost exactly equal to the ratio of

the grid spacing [90 cm for this cell] divided by the rat’s median running-speed in the central part of the linear track [137 cm/s for this day]; the distribution of the

running-speeds had a coefficient of dispersion of 0.29, indicating a relatively constant running speed – and therefore the repetitive passages of the animal through

the grid-fields could create the observed temporally repetitive firing).

(E and H) Power spectrum of the autocorrelations from D and G, showing the strong theta-rhythmicity of these two rat neurons, indicated by the peak at �10 Hz

(blue) being significantly higher than the shuffled data (dashed red line – mean, red area – SD) – suggesting the existence of genuine neural oscillations at�10 Hz.

(F and I) Plot of the z-scores for each frequency-bin of the power spectrum; the highest value in this plot indicates the most significant frequency-bin. For these

two neurons from rat MEC, it identified the most prominent oscillation at �10 Hz for the left neuron (with z-score = 42) and at 10 Hz for the right neuron (with

z-score = 13). By contrast, note that the low-frequency spectral peak in E was not significant; this suggests that this low-frequency peak resulted most likely from

the repetitive passage of the animal through the neuron’s grid-fields – and does not represent a real neural oscillation.
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Figure S2. Analysis of Phase Locking in Short Cycles versus LongCycles, andComparison of AutocorrelationsWhenUsing All Spikes versus

When Using Spikes Emitted during High-Amplitude LFP, Related to Figures 2 and 3

(A and B) Analysis showing that the spikes during long cycles occur later than spikes during short cycles – suggesting that the spike-locking in short cycles is not a

truncated version of the spike-locking in long cycles; this indicates that bat neurons exhibit phase-locking, rather than time-locking.

(A) Eight examples of cells from bat CA1 andMEC, plotting the cycle duration versus spike-time-lag within the cycle (dots = spikes). Clear correlations are seen in

the scatters in all the eight examples: Note especially the lack of early spikes in long cycles (almost no dots in the upper-left corners of the scatters), demonstrating

that the spikes during long cycles occur later than spikes during short cycles. Superimposed blue and red curves: kernel density function distributions of spike

lags for cycles shorter than 0.2 s (blue) and for cycles longer than 0.2 s (red). The kernel density functions were normalized to their peak. Example cells #3, 5, 8 are

from CA1, and example cells #1, 2, 4, 6, 7 are from MEC.

(B) Population analysis showing the peak time lag in long cycles (red dots) versus short cycles (blue dots) in bat CA1 (top) and bat MEC (bottom). Plotted for all the

significantly phase-locked neurons. In all cases, the peak density of spikes occurred later in long cycles than in short cycles.

(C and D)We tested here an alternative hypothesis – namely, that the observed phase-locking in bat CA1 neurons (Figures 3D and 3F) might result from a transient

true rhythmic process (oscillatory bouts) that was revealed by the LFP power-thresholding which we applied in the phase-locking analysis (whereby we took only

LFP cycles with a power > 25th percentile of the LFP power in the entire recording: see the STARMethods). To test this alternative hypothesis, we used here a fit-

analysis for the autocorrelations, similar to Figure 2: we used for this either all the spikes, as in Figure 2 (without power-thresholding) – or used only the spikes that

were based on a power-thresholded LFP (which were included in the phase-locking analysis in Figures 3D–3G).

(C) Example cell from bat CA1, showing spike-train autocorrelations (black) with fitted decaying sinewave (red), computed for all spikes (top) and after applying

power-thresholding for the same neuron (bottom). Both autocorrelations exhibited a similar low value of the oscillation index: there was no increase in oscillation-

index in the bottom panel as compared to the top panel. This lack of change argues against this alternative hypothesis.

(D) Population comparison (dots = neurons). Plotted is the oscillation index when using power-thresholding (y axis) versus the oscillation indexwithout any power-

thresholding (x axis); plotted for all the bat CA1 place-cells that passed the inclusion criteria for the fit analysis in both conditions (n = 22 cells; see the STAR

Methods). Note the exact same number of neurons above versus below the diagonal (numbers indicated on the graph) – suggesting that the oscillation index does

not systematically increase or decrease after applying power-thresholding (paired t test: p = 0.94; sign test: p = 1). This argues against the hypothesis that power-

thresholding reveals transient rhythmicity in the bat data.



(legend on next page)



Figure S3. Population Average Spike-Triggered LFP and Its Spectrogram, Related to Figure 3

(A) Top: Spike-triggered LFP average for the bat CA1 neurons that exhibited significant phase-locking (n = 19, left), and for the bat MEC neurons that exhibited

significant phase-locking (n = 18, right); gray area, mean ± SEM; the LFP was filtered between 1–100 Hz prior to averaging. The time of the spikes is indicated by

the red line (time lag: t = 0). Middle: spectrogram of the spike-triggered LFP average plotted above, computed using a 1 s Hamming window. Bottom: averaged

spectrogram across neurons, where we first computed the spectrogram for each neuron separately – and then computed the average of all these spectrograms

(this was done to avoid possible phase-cancellations between neurons with different preferred-phases). The marginal of each spectrogram is plotted to the right

of the spectrogram.

(B) Top: Spike-triggered LFP average for the rat CA1 neurons that exhibited significant phase-locking (n = 61, left), and for the rat MEC neurons that exhibited

significant phase-locking (n = 251, right); the LFP was filtered between 1–100 Hz – as in the bat; same graphical conventions as in A. Middle: Spectrograms of the

spike-triggered LFP average, computed as in A. Bottom: averaged spectrograms across neurons, computed as in A. Note the clear theta-oscillations in the rat

spike-triggered LFP (B, top) before and after each spike, with oscillations lasting many theta-cycles – in stark contrast to the lack of such oscillations in bats

(A, top). The oscillations in the rat were apparent also in the spectrograms of spike-triggered LFP (B, bottom); no such oscillations were apparent in the bat

spectrograms (A, bottom). Rat CA1 data courtesy of G. Buzsáki. Rat MEC data courtesy of M.-B. Moser and E.I. Moser. We examined here all the rat CA1 and rat

MEC neurons that had LFP recordings, and included in the analysis all the neurons that exhibited significant phase-locking.

(C) Spike-triggered LFP average for the bat CA1 neurons that exhibited significant phase-locking (n = 19), plotted as in (A) – with the only difference from (A) being

that here the LFP was filtered between 1–10 Hz prior to averaging (top) or filtered between 10–20 Hz prior to averaging (bottom). Note the different time-scales at

the top versus the bottom.

(D) Spike-triggered LFP average during sleep sessions, computed for the bat CA1 neurons that exhibited significant phase-locking (n = 19) – same neurons as in

panels A andC. The LFPwas filtered between 1–100Hz prior to averaging.We excluded from this analysis sharpwave-ripple epochs (±10 s epochswere removed

around each sharpwave-ripple), in order to exclude any possible ripple-related locking. Gray area, mean ± SEM.
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Figure S4. Spectrogram of LFP Recorded from Bat MEC, Analysis of LFP Fluctuations in Different Frequency Bands, and LFP Recorded

Simultaneously on Pairs of Tetrodes, Related to Figure 3

(A and B) spectrogram of LFP recorded from bat MEC.

(A) Top, LFP trace from MEC of a crawling bat. Bottom, spectrogram (frequency versus time) of the LFP trace.

(B) Zoom-in on the data in A, showing a theta-bout at t �12 s: a momentary passage of the LFP signal through the theta band (4–8 Hz; dashed horizontal

blue lines).

(legend continued on next page)



(C and D) Analysis of LFP fluctuations: Same analysis as in Figure 3J, but performed separately for specific frequency bands (3-Hz wide bands). Data were

included only for cycles that occurred during putative bouts. The separation into bands was done by the frequency of the first cycle in each pair of cycles: e.g., the

4–7 Hz band signifies that the first cycle was in the 4–7 Hz range – but the subsequent cycle in the bout could be at any frequency.

(C) Examples of cumulative distributions of the changes in the frequencies of consecutive LFP cycles, computed only for cycles that occurred during putative

bouts; in the left pair of plots we included only pairs of cycles in which the first cycle was in the 2–5 Hz frequency band (see arrow to [D]) – while the subsequent

cycle could be at any frequency; middle pair of plots, likewise for the 6–9 Hz frequency band; right pair of plots, 10–13 Hz frequency band. Dark-blue line, rat data;

black line, bat data; light-blue area and gray area, 95% confidence intervals of the shuffled data for rat and bat, respectively.

(D) Population analysis, showing the percentage of significant sessions, in which the cycle-to-cycle frequency differences in the real data were smaller then in

shuffled cycles. Rat data showed highly significant results in the theta frequency range, but not outside of this range (blue bars) – signifying that in the theta

frequency range, the cycle-to-cycle frequency variability in rat CA1 is lower than expected by chance. By contrast, in the bat CA1 data, in each of the analyzed

frequency bands, from 1 Hz to 20 Hz, the LFP frequencies varied from cycle-to-cycle as much as a random shuffle (black bars) (the black bar in the 6–9 Hz

frequency range represents 2/23 recording sessions that were significant at the 5%significance level – but we note that this bar is in fact not significant, because it

can easily be obtained by chance: the probability of obtaining 2/23 significant sessions at the 5%per-session significance level is: p = 0.32, Binomial test). Dashed

line, chance level for bat data (binomial test).

(E and F) LFP fluctuations are correlated between different tetrodes.

(E) Example from CA1. Left, LFP traces from bat CA1, filtered between 1–10 Hz, from two tetrodes (red and blue) – during a session in which place-cells were

recorded simultaneously on both tetrodes. Note the LFPs on the two tetrodes were highly correlated. Tetrodes’ spatial separation: 250 mm. Scale bars: 1 s,

100 mV. Right, cross-correlation of the LFP signals from these two tetrodes, computed over the entire recording session. The peak at time-lag 0 indicates that the

LFPs recorded on both tetrodes were correlated. The cross-correlation is biphasic, and not oscillatory – as expected from non-rhythmic signals.

(F) Example from MEC. Left, LFP traces from two tetrodes in bat MEC, showing high correlation between the LFPs. During this session grid-cells were recorded

simultaneously on both tetrodes. Tetrodes’ spatial separation: 550 mm. Scale bars: same as in (E). Right, cross-correlations of the LFP signals from these two

tetrodes, computed over the entire session.
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Figure S5. Phase Autocorrelation Analysis of Rat MEC Cells and Plots of All the Significantly Phase Locking and Phase Coding Cells in the

Bat, Related to Figures 3 and 4

(A and B) Rat data. Shown are examples of two rat neurons (rows): a phase-precessing neuron (top) and a phase-locked neuron (bottom), recorded during 1D

linear-track locomotion in rat MEC. Data courtesy of M.-B. Moser and E.I. Moser.

(A) Phase autocorrelation analysis. Top example – a phase-precessing cell: note the peaks of the autocorrelation (red arrowheads) are occurring faster than the

LFP cycles (green dashed vertical lines), indicating phase-precession. Bottom example – a phase-locked cell: the peaks of the autocorrelation are occurring

precisely at integer multiples of the LFP cycle (green dashed vertical lines) – indicating phase-locking without phase-precession.

(B) Phase-versus-position plots for the two example neurons from (A). Two cycles are shown on the y axis, for clarity. Top neuron: spike phase is negatively

correlated with the rat’s location on the 1D linear track, along the running direction (arrows) – indicating phase-precession. Bottom neuron: spikes are strongly

locked to the LFP phase, but are independent of position – indicating phase-locking without phase-precession. These two examples illustrate our ‘phase-

autocorrelation’ analysis approach: in the top neuron, where the position-phase plot (B) shows phase-precession, this phase-precession is captured also in our

phase-autocorrelation analysis (A). Conversely, in the bottom neuron, which shows no phase-precession in (B), also no phase-precession is captured in our

analysis in A.

(C–E) All the bat neurons that exhibited significant phase-locking (C), significant phase-precession (D) and significant phase-coding (E).

(C) Phase-locking histograms for all the bat neurons that exhibited significant phase-locking (n = 14 place cells in CA1 [first three rows] and n = 5 grid cells in MEC

[fourth row]). Plotted as in Figures 3D and 3F.

(D) Spectra of the phase-autocorrelations for all the seven CA1 neurons that showed significant phase-precession (7 first panels) and 1MEC neuron that showed

significant phase-precession (bottom-right panel). Black line, spectrumof the phase-autocorrelation of the real spike-train; red area, 95%confidence intervals for

the spectra of the shuffled spikes. Red arrowheads denote the highest significant spectral peaks for which the frequency-ratio (Freq spikes / Freq LFP) was larger

than 1 – indicating phase-precession. The top-right and bottom-right panels correspond to the two example neurons shown in Figures 4D and 4E, respectively.

(E) Plots of spike-triggered LFP averages, calculated separately for spikes occurring in early positions (red) versus late positions (green) – for all the bat neurons

that exhibited significant phase-coding in CA1 (n = 16 place cells). Plotted as in Figure 4G, right. Red and green areas, mean ± SEM.
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