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The hippocampus is important for declarative and spatial memories1,2  
and has been suggested to hold a ‘cognitive map’ of the environment1. 
This notion is supported by the existence of place cells, pyramidal 
neurons exhibiting place-specific activity, which are reported in 
rodents1,3–5, primates6,7 and bats8–11. Importantly, place cells in 
rodents remap when the animal is transferred between different 
rooms4, suggesting different hippocampal maps for different envi-
ronments. However, it is unknown whether the same environment is 
represented by one abstract map when two different sensory systems 
are used, or whether the brain creates different spatial representations 
for different sensory situations. Indeed, because animals may perceive 
and use different constellations of landmarks for navigating in daylight 
versus nighttime, these differences in the perceived sensory world 
could potentially translate to differences in hippocampal maps.

To test whether different senses lead to different spatial maps, it 
is important to cleanly dissociate these senses. The few studies that 
explored this question in rodents yielded conflicting results12–14, pos-
sibly because perfect sensory dissociation is difficult to achieve in 
freely running rats because of their predominant proximal senses: 
olfaction and somatosensation via whisking. These proximal senses are 
active regardless of the light level and are difficult to control for. Here  
we conducted experiments in an animal that possesses two high-
resolution sensory systems that are easier to control, the Egyptian 
fruit bat15–18. These bats have excellent long-range senses, vision and 
echolocation, and these senses can be turned on or off by changing 
the light level19. This enabled us to design an experimental setup that 
allows clean dissociation between these two sensory systems.

Bats flew within the same space and performed the same behavioral  
task, using either one sense or the other. We recorded neurons in 
hippocampal areas CA1 and subiculum; the subiculum is the major 

output station of the hippocampus, for which previous studies in rats 
provide conflicting accounts of hippocampal remapping20,21. Spatial 
representations in the bat hippocampus were very different under the 
two sensory conditions, exhibiting a strong instance of global remap-
ping. This remapping was observed not only in pyramidal cells but 
also in interneurons. Remapping differed dramatically between the 
two hippocampal subregions: in the subiculum, most neurons were 
active in only one of the sensory conditions (‘on/off global remap-
ping’), while in CA1, neurons shifted their place fields (‘shift-based 
global remapping’). These results suggest that the hippocampus does 
not contain a single abstract spatial map for a given environment, but 
rather contains multiple maps for different sensory modalities, for 
which we propose a notion of a hippocampal ‘cognitive atlas’.

RESULTS
We trained seven Egyptian fruit bats to fly back and forth along a 
1.5-m linear flyway embedded in a three-dimensional (3D) room 
(2.5 × 1.7 × 2.5 m) and obtain food from a landing ball placed in 
one of nine possible positions at each end of the flyway (Fig. 1a; 
Online Methods). We used a tetrode-based microdrive and a tethered 
headstage to record neurons in hippocampal areas CA1 and subicu-
lum (Fig. 1a,b). Pyramidal cells were separated from fast-spiking 
interneurons on the basis of spike width and firing rate22 (Fig. 1c). 
We collected a total of 53 place cells in CA1 and 41 place cells in the 
subiculum, as well as 34 interneurons (Online Methods). In CA1, 63% 
of the pyramidal neurons were place cells; and in the subiculum, 38% 
of the neurons were place cells. These percentages are similar to the 
percentages of place cells reported in rat CA1 and subiculum3,20,21,23 
(Online Methods). The firing rates of place cells were higher during 
flight than the rates found in previous studies on crawling bats10,24, 
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Hippocampal global remapping for different sensory 
modalities in flying bats
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Hippocampal place cells encode the animal’s spatial position. However, it is unknown how different long-range sensory  
systems affect spatial representations. Here we alternated usage of vision and echolocation in Egyptian fruit bats while 
recording from single neurons in hippocampal areas CA1 and subiculum. Bats flew back and forth along a linear flight track, 
employing echolocation in darkness or vision in light. Hippocampal representations remapped between vision and echolocation 
via two kinds of remapping: subiculum neurons turned on or off, while CA1 neurons shifted their place fields. Interneurons 
also exhibited strong remapping. Finally, hippocampal place fields were sharper under vision than echolocation, matching the 
superior sensory resolution of vision over echolocation. Simulating several theoretical models of place-cells suggested that 
combining sensory information and path integration best explains the experimental sharpening data. In summary, here we show  
sensory-based global remapping in a mammal, suggesting that the hippocampus does not contain an abstract spatial map but 
rather a ‘cognitive atlas’, with multiple maps for different sensory modalities.
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under 2 lux illumination, a level at which Egyptian fruit bats are 
known to dramatically reduce the rate and amplitude of their echo-
location clicks19,28. To ensure complete masking of echolocation, we 
also broadcasted loud broadband noise during the Light sessions. 
The Dark session (echolocation-based) was conducted in complete 
darkness (illuminance 10−6 lux). In all sessions, we used ventilators to 
eliminate mid-air odor trails. We conducted behavioral tests to verify 
the double dissociation between vision and echolocation in the two 
conditions (Supplementary Fig. 5a), and we also verified that flight 
velocity and spatial coverage were similar under the two conditions 
(Supplementary Figs. 5b,c and 6d,e).

We analyzed 56 neurons from CA1 and 27 neurons from subiculum, 
separated into the two flight directions. These neurons were included 
on the basis of spike-sorting stability (stable clusters between all rest ses-
sions) and tuning stability between Light sessions (two-dimensional (2D) 
firing-rate map correlation between Light and Light′ sessions: r > 0.5);  
89% of these cells were significant place cells (based on a 95% shuf-
fling criterion for the spatial information; see Online Methods). The 
percentage of cells in CA1 that passed both the spike-sorting stability 
criterion and the tuning-stability criterion was almost two-fold higher 
than in the subiculum (63% of cells were stable in CA1 versus 33% in 
the subiculum) — in line with results of previous studies on rats, which 
found that subiculum cells tend to be less functionally stable20.

Many of the place cells exhibited clear remapping between vision-
based and echolocation-based conditions. Some cells were active in only 
one of the sensory conditions (Fig. 2b,c). Some cells shifted their firing 
field between the two sensory modalities (Fig. 2d–f). Other cells kept a 
relatively stable firing field under both sensory modalities (Fig. 2g).

Notably, a very large fraction of subicular cells were active in only one 
sensory modality: 59% of the subiculum cells (16 of 27) consistently  
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with many place cells having peak firing rates above 5 Hz. The spatial 
tuning of place cells was highly stable across time, with mean cor-
relation of r = 0.80 between firing-rate maps for the odd versus even 
minutes of a session (Supplementary Fig. 1).

As in rats running on linear tracks21,23,25, we found that the major-
ity of 3D place cells in bats flying along a linear flyway were direction-
ally tuned (CA1: 58%, subiculum: 75%; Fig. 1d,e and Supplementary 
Fig. 2). Again as in rats21,23, the directionality was expressed either 
by shifts of place-field position or by shutdown of firing in one of the 
flight directions (Fig. 1e and Supplementary Fig. 2). The positions of 
place fields over-represented the reward sites (landing balls) as com-
pared to the center of the flyway (Supplementary Fig. 3a), similarly 
to the over-representation of reward location by hippocampal place 
fields in rats26. We did not find any systematic relation between place-
field positions in the two flight directions; and, in particular, we found 
no evidence for distance coding27 (Supplementary Fig. 4).

Switching sensory modalities elicits place-cell remapping
To examine whether a switch of sensory modality could elicit remap-
ping in place cells, we compared neural activity under vision versus 
under echolocation while verifying clean sensory dissociation. We 
conducted daily recordings from hippocampal neurons in a Light–
Dark–Light′ design, where the Light′ condition was a repetition of the 
first Light (vision) condition (Fig. 2a). Multiple objects in the room 
served both as visual cues and as sonar cues (e.g., cabinet, cable com-
mutator box, cameras, speakers and printed paper images hanging on 
the acoustic foam; see Fig. 2a). The bat was not disconnected from the 
recording cable between sessions and remained continuously inside 
the room across all the sessions. Between behavioral sessions, the bat 
was placed in a cage positioned in the middle of the behavioral arena; 
during these periods, the bats were awake and often moved around 
(Supplementary Fig. 5e), and had a full view of the room (Online 
Methods). The two Light sessions (vision-based) were conducted  

Figure 1  Neural recordings from CA1 and  
subiculum of bats flying along a linear  
flyway. (a) Behavioral setup. Egyptian fruit  
bats flew back and forth along a linear  
flyway, landing on a ball placed in one of  
nine possible locations at each end; the  
landing ball was moved randomly after every  
flight lap. (b) Coronal sections through dorsal  
hippocampal areas CA1 (left) and subiculum  
(right). Arrowheads, tetrode tracks; red lines,  
borders of CA1, subiculum (SUB) and  
presubiculum (PrS). (c) Separation of putative  
pyramidal cells (mean firing rate < 5 Hz) and  
interneurons (firing rate > 5 Hz and spike  
width < 0.2 ms). Example waveforms are  
shown for the four channels of a tetrode  
(mean ± s.d.), for a CA1 pyramidal cell (top)  
and CA1 interneuron (bottom); these two  
cells are also marked by black circles on the  
scatterplot. (d) Example cell from CA1  
exhibiting different place fields for the two  
flight directions. Columns depict left-to- 
right flights or right-to-left flights (see arrows)  
for a single behavioral session. Top row: raw data (gray dotted lines, trajectories; red dots, 
spikes). Middle row: 2D firing-rate maps, xz projection; peak firing rate in Hz indicated to the 
right of each map. Bottom row: raster showing position of spikes along the x axis for all flights 
(y axis); green, spikes during right-to-left flights; black, left-to-right flights; we excluded 10 
cm of the x axis near the balls at each end. (e) Percentages of different kinds of place-field 
directionality (see Online Methods). Most place cells in the CA1 and subiculum of bats (60% 
and 75%, respectively) were directionally tuned: a similar prevalence of directionality to place 
cells in rats running along a linear track21,23,25.
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shut down in one of the modalities (Fig. 2b,c and red bars in Fig. 2h).  
Of these cells, 69% were active only under vision and 31% only under 
echolocation. In contrast, CA1 cells tended to be active in both modal-
ities: only 16% (9 of 56) of the cells fired exclusively in one modality 
(Fig. 2h, blue bars). Most of the CA1 cells exhibited tuning-shape 
changes, i.e., shifts of place fields, that were greater than the tun-
ing-shape changes in the subicular cells (Fig. 2i; t-test with unequal 
variances: P < 0.01). These differences between on/off remapping in 
the subiculum and place-field shift remapping in CA1 could not be 
explained by differences in firing rates, which were identical between 
the two areas (t-test comparing the peak firing rates between CA1 and 
subiculum cells: P = 0.09). Additionally, we found that the propensity 
of subicular neurons to undergo on/off remapping did not depend on 
their firing rate (t-test comparing the peak firing rates between the 
59% of subicular neurons that underwent on/off remapping versus 
the 41% that did not: P = 0.33).

Next we compared place-field properties for those cells that were 
active in both conditions. We focused on 2D projections of the full 
3D firing-rate maps because the 2D projections have much denser 
spatial coverage, allowing more robust comparisons. In particular, 
we compared the xy and xz projections between the vision-based and 
echolocation-based sessions (Fig. 2d–g). We defined a remapping 
index that quantified changes in tuning shape by computing 1 minus 
the Pearson correlation between 2D firing-rate maps for Light versus 
Dark (1 − r2D); this index is high for strong remapping (Fig. 2i, Online 

Methods). The index was computed only for cells that were active in 
both sensory modalities (for example, those in Fig. 2d–g).

To test whether the hippocampal maps under vision and echoloca-
tion are truly orthogonal (independent), we employed the standard 
analysis used in rats to determine map orthogonality29. The empiri-
cal distribution of remapping indices was compared (separately for 
each anatomical region) to a cell-shuffling distribution (Fig. 2j and 
Supplementary Fig. 6a,b); for the cell shuffling, we computed remap-
ping indices between all pairs of different cells (unrelated cells), which 
represents the distribution expected for global remapping29 (Online 
Methods). We found that the distribution of actual remapping indices 
in CA1 was not significantly different from that expected from ran-
dom global remapping4 (Fig. 2j: t-test: P = 0.16; Kolmogorov-Smirnov 
test: P = 0.39; see also Supplementary Fig. 6b for similar analysis 
for subiculum). Note that even for totally random global remapping  
(Fig. 2j, right; black histogram), some place fields would move very 
little and would thus be expected to exhibit a low remapping index, 
as we indeed observed (Fig. 2g).

Finally, we examined two possible alternative interpretations of 
the remapping results. First, we tested whether spatial distributions 
of flight velocity (‘velocity maps’) differed between Light and Dark, 
which could potentially lead to shifts in place fields. However, we 
found that velocity maps were in fact very similar between Light and 
Dark (Supplementary Fig. 6d,e). We defined a velocity-change index 
that quantified changes in velocity maps by computing 1 minus the 
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Figure 2  Switching sensory modalities  
elicits strong place-cell remapping.  
(a) Schematic of experimental design:  
vision-based sessions (‘Light’, left) and 
echolocation-based session (‘Dark’, right).  
Two speakers broadcasted loud broadband  
noise in the light sessions (but not in the  
dark session), in order to mask echolocation. 
Salient landmarks in the room served as both 
visual and echo-reflecting landmarks: cabinet, 
cable commutator box and paper drawings  
hung on the foam walls. (b–g) Six example  
cells from CA1 and subiculum. For each  
cell, columns depict xz and xy projections 
and rows depict behavioral sessions (vision–
echolocation–vision′). 2D rate-maps plotted  
as in Figure 1d. (h) Percentage of cells active 
only in one modality, in CA1 (blue) and 
subiculum (red). Filled bars, data based on  
our standard spike-count threshold to define  
an active neuron (Online Methods); empty  
bars, using a lower threshold of 15 spikes  
per session. Most subiculum cells were active  
in only one modality, while CA1 cells were  
active in both. (i) Distribution of remapping 
index (1 − r2D, where r2D is the 2D Pearson 
correlation; see Online Methods for details)  
for cells in CA1 (blue) and subiculum (red).  
We included here 56 CA1 cells and 27 
subiculum cells that were stable between 
the two Light sessions; for neurons that were 
significantly directional, the two flight directions 
were analyzed separately (Online Methods).  
(j) Left: box-plot of remapping indices for 
CA1 cells (blue) and for the cell-shuffling 
distribution (black, representing the expected 
distribution for global remapping; see Online 
Methods); the difference was not significant 
(n.s.): t-test, P = 0.16. Central horizontal lines denote the medians, boxes shows the 25th and 75th percentiles and the whiskers extend to the 1st and 
99th percentiles of the data. Right: full distributions for the experimental data (blue) and cell shuffling (black).
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Pearson correlation between 2D velocity maps for Light versus Dark; 
this index was close to zero for all bats (Supplementary Fig. 6e). 
Additionally, the Light–Dark velocity-change index was not corre-
lated to the Light–Dark remapping index (Supplementary Fig. 6e: 
Pearson correlation for CA1 pyramidal cells: r = 0.20, P = 0.17). This 
argues against the possibility that subtle differences in velocity dis-
tributions could underlie the observed remapping. Second, we tested 
whether the remapping could be due not to switching from vision to 
sonar, but instead to the presence of the masking noise in the Light 
session and the absence of the noise in the Dark session, i.e., a con-
text effect of noise per se, regardless of the sensory condition. To test 
this possibility, we trained an additional animal to perform the same 
behavioral task under a modified set of conditions: session A, light 
without noise; session B, light with noise; session A′, repeat of ses-
sion A (Fig. 3a). We recorded 35 cells from CA1; 13 of these neurons 
were place cells. Individual place fields were stable between condi-
tions A and B and did not undergo remapping (Fig. 3b). Across the 
population, no remapping was induced by the noise (Fig. 3c, green 
histogram), in striking contrast to the CA1 remapping that we found 
in our original experiments between Light and Dark (Fig. 3c, blue 
histogram; Kolmogorov-Smirnov test: P < 0.0005). We therefore con-
clude that the presence or absence of the noise per se could not explain 
the observed hippocampal remapping, which supports the notion 
that the remapping shown in Figure 2 is purely due to the sensory 
differences between vision and echolocation.

In summary, the hippocampal neuronal populations that we 
recorded responded to the sensory switch by globally remapping. 
This global remapping differed systematically between CA1 and 
subiculum: in CA1, the cells tended to stay active under both sen-
sory modalities, but shifted their firing fields (Fig. 2i,j). By contrast, 
cells in the subiculum tended to exhibit on/off remapping and were 
primarily active in one modality (Fig. 2h, red bars).

Spatial representation sharpens under vision versus echolocation
Egyptian fruit bat vision has an angular resolution (0.3°, ref. 15) 
approximately seven times sharper than the bat’s echolocation-based 
sensory resolution (~2°, ref. 16). This difference in sensory resolu-
tions led us to hypothesize that neuronal spatial resolution in the hip-
pocampus may depend on the resolution of the sensory modality and 
to predict that place fields under vision might be smaller than place 
fields under echolocation18. To test this prediction, we compared the 
spatial information for hippocampal cells that were active in both 
vision- and echolocation-based sessions (Fig. 4a; Online Methods). 
We defined a sharpening index as the difference between spatial 
information in the vision session (Light) and echolocation session 

(Dark) divided by their sum. The distribution of sharpening indices 
for CA1 neurons was strongly shifted toward positive values (Fig. 4b),  
indicating that the spatial information is significantly higher (i.e., 
has better spatial resolution) when using vision than when using 
echolocation (Fig. 4b; t-test comparing to zero: main histogram, 
P < 10−8; inset, P < 10−8; sign-test: main histogram, P < 10−7; 
inset, P < 10−4). We achieved similar results using other measures 
to compare the compactness of CA1 place fields between vision 
and echolocation, such as the coherence and sparsity of firing-
rate maps (Supplementary Fig. 7a; t-test, P < 10−5 for all indices 
based on either spatial information, sparsity or coherence; see 
Online Methods). The sharpening of CA1 place fields in the Light 
versus the Dark could not be explained by differences in place-
field stability, because the stability was not significantly differ-
ent between the two sensory conditions (Supplementary Fig. 7c; 
paired t-test, P = 0.12). Some subiculum cells also showed substantial  
place-field sharpening (Fig. 4a, cell 102), but across the subicular 
population the sharpening effect was much weaker than in CA1, 
although it was marginally significant (Fig. 4c; paired t-test: main 
histogram, P = 0.0476; inset, P = 0.0481; Supplementary Fig. 7b,  
when using coherence: P = 0.029; Fig. 4c: sign-test for both main 
and inset: P = 0.45; note however that the number of subicular neu-
rons active in both sessions was rather small). We did not find any 
significant correlation between the remapping index and the sharp-
ening index (CA1: r = 0.21, P = 0.20; subiculum: r = 0.03, P = 0.93),  
which suggests that remapping and sharpening are two largely inde-
pendent phenomena. Overall, these results support the hypothesis18 
that vision-based place fields are indeed sharper and more compact 
than echolocation-based place fields.
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We also tested the theoretical effect of sensory resolution on spa-
tial resolution in several commonly used models of place cells: the  
continuous-attractor model, boundary vector-cell model and view-
based model30–35. We simulated these models and degraded the 
sensory resolution of the input in each model, and computationally 
tested the effect of this sensory degradation on the spatial tuning of 
simulated place cells. These simulations suggested that the spatial 
sharpening effect is best explained by combining sensory-based and 
path-integration mechanisms (Supplementary Figs. 8 and 9).

Interneurons exhibit remapping and sharpening phenomena 
similar to those of pyramidal cells
To examine possible remapping in hippocampal interneurons, we 
recorded 34 interneurons from CA1 (Fig. 1c; Online Methods) and 
conducted similar analyses to those described above for the pyramidal 
cells. First, we found that although the spatial tuning of interneu-
rons was very broad (Fig. 5a), almost all interneurons nevertheless 
carried significant spatial information (31 of 34 interneurons, based 
on a 95% shuffling criterion for the spatial information; see Online 
Methods), like interneurons in rat CA1 (ref. 36). Additionally, almost 
all of the bat interneurons exhibited directional tuning (29 of 34 cells; 
see Supplementary Fig. 10).

Second, in the Light–Dark–Light′ experiment, we found that many 
interneurons responded to the sensory modality change (Fig. 5a).  
We analyzed 43 interneurons, which were included here on the 
basis of stability criteria and separated into the two flight directions 
(Online Methods). All interneurons were active in both conditions, 
but many of them changed their spatial tuning in the echolocation-
based condition, reverting to the original tuning in the second vision-
based session (Fig. 5a). We repeated the same remapping analyses 
as we used for pyramidal cells, revealing that the remapping-index 
distribution for interneurons was not significantly different from  
that expected from global remapping (Fig. 5b and Supplementary 
Fig. 6c; t-test: P = 0.43; Kolmogorov-Smirnov test of experimental 
data versus cell-shuffling distribution: P = 0.32). To our knowledge,  
this is the first demonstration that remapping in hippocampal 
interneurons can involve changes in the shape of the (broad) spatial 
tuning of the interneurons.

Finally, the spatial resolution of interneurons changed between vision 
and echolocation conditions, like that of the CA1 pyramidal population 
(Fig. 5c; compare to Fig. 4b): the distribution of sharpening indices was 
significantly shifted to positive values, indicating that for most interneu-
rons, vision-based spatial information was greater than echolocation-
based spatial information (Fig. 5c; t-test versus 0: main histogram, P <  
10−10; inset, P < 10−9). This surprising finding further corroborates 
our results from pyramidal cells and demonstrates that vision-based 
hippocampal maps for both place cells and interneurons are sharper 
and more compact than echolocation-based maps. More generally, this 
supports the hypothesis that the resolution of the sensory input strongly 
influences the spatial resolution of the hippocampal map18.

DISCUSSION
Here we demonstrate that sensory differences can drive global rema-
pping in the mammalian hippocampus, i.e., a switch between com-
pletely different spatial maps. Specifically, we found that switching 
between sensory modalities elicited strong remapping in the bat hip-
pocampus, although both modalities, vision and echolocation, were 
tested in the same identical physical environment and in the same 
behavioral task (ball-to-ball flights). Thus, the same space was rep-
resented differently under the two sensory conditions. Furthermore, 
CA1 and subiculum cells differed dramatically in their remap-
ping properties: CA1 cells tended to shift their firing fields, while 
subiculum cells tended to shut off in one of the sensory modalities. 
Interestingly, the spatial maps for the two modalities differed in their 
spatial-coding resolution, suggesting that sensory resolution deter-
mines spatial resolution18. This latter result was used to test the pre-
dictions of different theoretical models of place cells. Results of this 
analysis indicated that a hybrid model combining sensory inputs and 
path-integration may best describe the sharpening data. Finally, we 
found that, like pyramidal cells, hippocampal interneurons exhibited 
sharpening of their (broad) spatial tuning when tested under vision 
versus echolocation and also exhibited strong global remapping 
between the two sensory conditions.

Our results seem to be in contrast to those of some rodent studies, 
which reported similar spatial maps under light and dark conditions12. 
This could be explained in several ways. First, there could be species 

CA1
cell 202a

b c

Light
(vision)

Light′
(vision)

Dark
(echolocation)

1.7

1.5

5.5

Firing rate (Hz)

0 Max

25
5 43

9 39

0
–0.6 0

Sharpening index
0.6

C
el

ls

25
6 10

6 10

0
–0.6 0

Sharpening index
0.6

C
el

ls

0.5

3.3

1.5

CA1
cell 262

4.7 1.0

0.6

1.9

30 cm
x

y

4.3

0.9

CA1
cell 254

Subiculum 
cell 102

1.6

S
pa

tia
l i

nf
o 

(b
its

 p
er

 s
pi

ke
)

0

202

Visi
on

Ech
o-

loc
at

ion

262
254

102
Cell No.:Figure 4  Spatial representation sharpens  

under vision versus echolocation.  
(a) Four example cells (columns)  
demonstrating a sharper representation  
in vision-based sessions as compared to  
the echolocation-based session; shown  
are 2D firing-rate maps (xy projection)  
for the three behavioral sessions (vision–
echolocation–vision′). Right plot: spatial 
information under vision (averaged over  
both Light sessions) versus echolocation,  
for the four example cells on the left.  
(b) Distribution of sharpening index, calculated 
as (lvision − lecholocation)/(lvision + lecholocation)  
(see Online Methods) for the CA1 place  
cells, showing spatial information  
computed over all pixels available for  
each session; numbers indicate numbers of 
cells with sharpening indexes above or below 0 
(marked by red line). Inset: spatial information 
using only the region that overlapped 
behaviorally between the sessions (Online 
Methods). Axes are identical in main graph and 
inset. (c) Distribution of sharpening index for subiculum place cells. As in b, axes are identical in main graph and inset. Note the rightward shift of the 
histograms, indicating a strong sharpening effect in CA1 (b) and weak sharpening in subiculum (c).

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
np

g
©

 2
01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature NEUROSCIENCE  VOLUME 19 | NUMBER 7 | JULY 2016	 957

a r t ic  l e s

differences in remapping dynamics between bats and rats. Second, most 
previous studies in rats had a restricted ability to control for proximal 
olfactory and somatosensory (whisking-based) cues. These proximal 
cues may be highly informative for rodents and thus might generate a 
similar spatial map for both conditions. In our experiments, we used 
ventilators to blow away odor trails from mid-air, and this cleaner sen-
sory dissociation could underlie the strong global remapping (orthogo-
nalization) that we found in the bat, as compared to previous rodent 
studies that showed either no remapping or very mild remapping12,13.

We observed in CA1 interneurons the same basic phenomena that 
we found in pyramidal cells: strong remapping and sharpening of 
spatial representations. Changes of interneuron firing rates have been 
previously reported during exploration of novel environments3,36,37, 
and a few studies have linked the changes in interneuron firing 
rates to the formation of a new pyramidal cell spatial maps follow-
ing learning3,38. To our knowledge, our results are the first to show 
that interneurons maintain multiple spatial representations that can 
switch in a context-dependent manner, akin to the global remapping 
phenomenon in pyramidal cells.

The striking difference in the remapping properties between the 
bat’s subiculum and its CA1, whereby the subicular network exhibited 
a dramatic on/off type of global remapping, similar to that in CA3 
(ref. 4), raises the question of what the subiculum is good for. The 
function of the subiculum within the hippocampal circuit is unclear. 
Considering that the subiculum is almost as strongly recurrent as CA3 
(refs. 39,40) and that the subiculum sends massive projections outside 
of the hippocampus40, we suggest that the subiculum is in fact a key 
region conferring strong nonlinear dynamical processing capabilities, 
which contribute to making the hippocampus the powerful memory 
and navigation system that it is (see further details and explanations 
in Supplementary Fig. 11a).

Finally, the remapping results we report in this study may suggest the 
existence of separate maps for every different condition under which 
the environment is experienced41,42. Imagine the following analogy: 
when a human navigates through a landscape during nighttime, the 
most salient landmarks would be the lights of towns and factories, 
while the same landscape during daytime will yield other landmarks, 
such as mountain ranges and agricultural fields. This could result in 
different maps of the same space for day versus night18 (see discussion 
in Supplementary Fig. 11b). This does not necessarily mean that there 
are an infinite number of maps for each environment, because the 
number of such distinct conditions is in fact rather limited. Instead, 
we propose a ‘cognitive atlas’ hypothesis: we posit that the same envi-
ronment is represented by a small set of different maps for different 
conditions, akin to a world atlas that contains multiple maps for the 

same space, such as a physical map, political map, road map, land use 
map, etc. We differentiate the notion of the cognitive atlas from similar 
notions such as the ‘multiple charts’43 and ‘multiple maps’ hypoth-
eses41, both of which refer primarily to remapping between different 
environments, different reference frames, or different behaviors. By 
contrast, in our experiments, echolocation and vision sessions were 
performed in the same environment, with the same behavioral task, 
and animals exhibited the same flight trajectories, but the hippocam-
pus exhibited global remapping. Therefore, to emphasize the exist-
ence of completely different (orthogonal) maps for the same space 
and same behavioral task, we termed this set of maps a cognitive atlas. 
It is unclear where the binding or the alignment (co-registration) of 
the maps in this cognitive atlas could take place. One possibility is 
that it occurs outside of the hippocampus—for example, in the medial 
entorhinal cortex. Another option is that there might be a population 
of ‘abstract map’ cells in the hippocampus itself, which encodes space 
irrespective of the sensory condition (see Supplementary Fig. 11b and 
Fig. 2g). However, the orthogonal nature of the remapping (Fig. 2h–j) 
speaks strongly against the existence of such truly stable cells and sug-
gests that, in fact, all the cells in the hippocampus remap between the 
two sensory conditions. Taken together, our results are not consistent 
with the notion that the hippocampus contains an abstract map of 
space; instead, the data are consistent with the notion of multiple use-
dependent maps representing the same space: a cognitive atlas.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Subjects. We implanted 7 adult male Egyptian fruit bats (Rousettus aegyptiacus, 
weight 163–174 g at implantation) with tetrodes aimed at the dorsal CA1 area of 
the hippocampus (n = 4) or subiculum (n = 3). Six of these animals (3 with CA1 
implants and 3 with subiculum implants) were tested with a full set of behav-
ioral sessions, as described below, and their data were used for all the analyses 
in this study; the seventh animal was tested daily in a single flight-session and 
its data were used only for directionality analyses (Fig. 1e and Supplementary 
Fig. 2; see below). An additional, eighth animal with a CA1 implant was tested 
under a different set of conditions (see Fig. 3). All experimental procedures were 
approved by the Institutional Animal Care and Use Committee of the Weizmann 
Institute of Science.

Behavioral task, training and recording environment. Bats were trained to fly 
back and forth along a 1.5-m linear flyway embedded in a three-dimensional 
(3D) room (2.5 × 1.7 × 2.5 m), in order to obtain food that was placed on a 
large polystyrene target ball (10 cm in diameter) mounted on a vertical pole.  
A target ball was positioned at both ends of the flyway. After every flight lap  
(flight with successful landing), the target was randomly repositioned between 
one of 9 possible options: 3 horizontal positions in the y axis × 3 vertical posi-
tions in the z axis (Fig. 1a); this ensured a variety of goal-directed 3D trajectories 
across different flights.

Vision-based sessions. The bats learned to perform this task in a lit room  
(illuminance: 2 lux), which included many visual landmarks, such as multiple 
objects within the room and visual cues on the walls (Fig. 2a, left). To ensure that 
bats were using purely vision in this condition, we undertook several measures. 
(i) To prevent the use of echolocation, broadband noise (5–120 kHz; intensity  
85 dB SPL) was played from two speakers (ultrasonic dynamic speaker ScanSpeak; 
Avisoft Bioacoustics; frequency range 1–120 kHz) located at both ends of  
the room, facing the bat’s flight direction (Fig. 2a, left). (ii) To blow away  
odor cues from mid-air, two ventilators were placed on the two sides of the flyway. 
(iii) Randomization of target location after each lap ensured that bats could not 
rely on procedural motor memory.

Echolocation-based sessions. The walls and ceiling of the room were covered 
with acoustic foam and the pole was covered with felt, to minimize reverbera-
tions; in contrast, the target sphere was made of an acoustically highly reflective 
material (polystyrene), in order to make it the most salient acoustically reflec-
tive object in the flight room. Additionally, the room contained multiple salient 
objects that served as both visual and echo-reflecting landmarks (for example, 
the cabinet, speakers, cameras, microphones and cable commutator box hanging 
from the ceiling: see Figs. 1a and 2a). The room also contained paper-printed 
visual landmarks that were hung on the foam that covered the walls (for example, 
the smiley plotted in Fig. 2a); note that such paper sheets could also serve as 
acoustic landmarks in darkness, because paper is much more acoustically reflec-
tive at ultrasonic frequencies than the surrounding sound-absorbing foam. We 
took several measures to ensure that the bats were relying solely on echolocation 
to perform the task in the dark. (i) To exclude use of visual cues, the target was 
painted black and the room was in complete darkness (illuminance: 10−6 lux; bats 
were tracked via infrared LEDs; the experimenter, who was inside the room, used 
night-vision goggles with infrared illumination). (ii) As in the light session, we 
installed ventilators to remove possible mid-air odor trials. (iii) Target position 
was randomized, as in the light session.

Pretraining and training. Stage 1: in the first 5–10 d, the bats were pretrained 
and learned to fly between the balls in a lit environment in the absence of a 
broadcasted noise. This was done in the same experimental room where neural 
recordings later took place, which ensured that the bats had 5–10 d to perceive 
this space using both vision and echolocation and thus to understand the lay-
out of this space using either sensory system. Stage 2: After learning the basic 
paradigm, the training was split to two flight rooms for additional 5–10 d: in the 
smaller room (where recording eventually took place), the bats performed the 
task in the light with broadcast noise; and in the larger room, they performed it in 
complete darkness. Subsequently, bats were implanted with a tetrode microdrive 
(see below). Stage 3: Neural recordings started after the bats recovered from 
surgery and were able to fly >100 laps per session, and once tetrodes reached the 
hippocampal pyramidal cell layer. At that time, the bats were introduced for the 
first time to the experimental room (small flight room) in complete darkness. 
Subsequently, we recorded the neural activity during three behavioral sessions 

per day (A–B–A′ design): (i) vision (light condition); (ii) echolocation (dark 
condition); (iii) a repetition of the vision (light) condition. The duration of each 
behavioral session was typically 30–45 min. Each behavioral session was flanked 
by rest sessions, which lasted ~20 min per session. During these sessions, the 
bat was placed in a small cage positioned inside the experimental room (in the 
middle of the behavioral region), where it could hang and rest. The cage allowed 
the bat to watch the room’s interior. In some rest sessions we tracked the bat’s 
movements within the cage: these data demonstrated that the animals were wide 
awake during these rest sessions and often exhibited substantial movements in 
the cage, including around the time of the sensory switch (see Supplementary 
Fig. 5e). Throughout the duration of the daily experiment (3 behavioral sessions 
+ 4 rest sessions), the bats were not taken outside the recording room, and the 
neural recordings were done continuously without disconnecting the recording 
cable (see below more information on recording methods).

Behavioral controls between vision- and echolocation-based sessions. The spatial 
coverage of the flights was very similar between the vision- and echolocation-
based sessions (Supplementary Fig. 5b,c; paired t-test comparing spatial cover-
age in light versus dark for implanted bats which had more than 4 recording 
days: P > 0.1 for all bats; see below section “Analysis of behavioral coverage” 
for further details). The velocity differences between the light and dark con-
ditions were very small: 2%, 3% and 6% mean velocity difference for bats No. 
9343, 6255 and 9673, respectively; see Supplementary Fig. 5b (although these 
small differences were significant for 2 of the 3 bats: paired t-test for the 3 bats:  
P = 0.02, P = 0.003 and P = 0.23, respectively). These small but significant velocity 
differences did not cause any significant differences between light and dark mean 
firing rates (t-test for mean firing rates: CA1 pyramidal cells, P = 0.29; subiculum 
pyramidal cells, P = 0.39; CA1 interneurons, P = 0.23). Finally, we conducted a 
separate behavioral experiment where we checked whether bats (n = 3) could 
find their way to the target ball in the dark while we played the broadband noise. 
This ‘dark + noise’ manipulation caused a dramatic drop in behavioral perform-
ance compared to the standard sessions (Supplementary Fig. 5a; paired t-test 
comparing performance in control versus dark + noise sessions: P < 10−7), which 
confirmed the effectiveness of the broadband noise and emphasized the clean 
double dissociation between using vision in the light sessions and using echoloca-
tion in the dark session.

Two steps were taken in order to ensure that the bats recognized the fixed 
identity of the experimental room. First, all the bats in this study were initially 
pre-trained without any echolocation-masking noise for 5–10 d in the same room 
in which the recording later took place; during this initial pre-training both visual 
and echolocation cues were available simultaneously and thus they learned this 
space using both senses. Second, during each recording day the bats were con-
nected continuously to the recording cable and were never taken out of the room 
between the behavioral sessions.

In one of the subiculum bats, the vision sessions were conducted without 
broadcasting broadband noise. Because Egyptian fruit bats dramatically lower 
their echolocation click rate at the light levels that we used19, we pooled the 
neurons of this single bat with the other subiculum bats.

Video recordings. The bat’s positions were recorded using two video trackers, 
connected to two infrared cameras placed at two of the upper corners of the flight-
room. These cameras tracked the position of two infrared light-emitting diodes 
(LEDs) connected to the head-stage on the bat’s head in both light and dark 
conditions; the same infrared-LEDs were used for video tracking during both the 
light and the dark sessions. Positional data were collected and stored at a 25-Hz 
sampling rate. The bat’s 3D position in the flight room was reconstructed using 
the direct linear transform algorithm, applied to the data from the two cameras, 
similar to the method described previously11,16. We included in the analysis only 
valid video frames for which video data were available from both cameras (i.e., the 
bat was within the field of view of both cameras, with no occlusions from either 
camera). If segments of video data were missing, we interpolated the video data 
using cubic spline; interpolation was done only up to 160 ms from the last valid 
video frame. We verified that cubic spline interpolation faithfully followed the 
bat’s trajectory over such short time periods (160 ms). 3D locations within the 
flight room were calibrated using 81 calibration points that spanned the volume 
of the room; this large number of calibration points allowed achieving a mean 
positional reconstruction accuracy of 8 mm across the room. Reconstruction 
accuracy was estimated using a leave-one-out algorithm, in which every point was 
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reconstructed based on the remaining 80 calibration points. Additional calibra-
tions were conducted at least once a week to validate the stability of the cameras 
and ensure that the reconstruction accuracy of 3D positions was maintained 
throughout the recordings.

Surgery and electrophysiological recording. All surgical procedures were 
as described previously8,10,11. Briefly, after completion of training, bats were 
implanted with a four-tetrode microdrive (weight 2.1 g; Neuralynx), loaded with 
tetrodes constructed from four strands of insulated 17.8-µm platinum–iridium 
wire. Tetrodes were gold-plated to reduce wire impedance to 0.3–0.7 M (at 1 kHz).  
The microdrive was implanted above the right dorsal CA1 (3.75 mm lateral  
to the midline and 5.8 mm anterior to the transverse sinus that runs between  
the posterior part of the cortex and the cerebellum), or above the right subiculum 
(3.1 mm lateral to midline and 4.9 mm anterior to the transverse sinus). Following 
surgery, the tetrodes were slowly lowered toward the CA1 or subiculum pyrami-
dal layer; positioning of tetrodes in the layer was provisionally determined by the 
presence of high-frequency field oscillations (‘ripples’) and associated neuronal 
firing and was later verified histologically10,11. For each bat, one tetrode was left 
in an electrically quiet zone and served as a reference, and the remaining three 
tetrodes served as recording probes. During recordings, a unity-gain preamplifier 
(HS-18; Neuralynx) was attached to a connector on the microdrive through a 
thin and flexible tether cable (Litz cable, 2.5 m long; Neuralynx), which allowed 
bats to fly freely along the designated linear flyway. This lightweight cable did 
not restrict the bats’ flight, and they easily performed >100 flight laps in each 
behavioral session (>300 laps daily). Signals were amplified (1,400–5,000×) and 
bandpass filtered (600–6,000 Hz; Digital Lynx, Neuralynx), and a voltage thresh-
old was used for collecting 1-ms spike waveforms sampled at 32 kHz. In one of the 
animals, data were collected using a wireless electrophysiology recording system 
(a modified version of the wireless device used in ref. 11). To reduce the likelihood 
of duplicate recordings of the same cell in more than one session, tetrodes were 
moved after each recording day.

Spike sorting. All spike-sorting procedures were identical to those described 
previously8,10. Briefly, spike waveforms were sorted on the basis of their rela-
tive energies and amplitudes on different channels of each tetrode (SpikeSort3D; 
Neuralynx). Well-isolated clusters of spikes were manually encircled (‘cluster 
cutting’), and a refractory period ( 2 ms) in the interspike interval histogram 
was verified. We used a standard measure of cluster isolation quality which is 
commonly used in rats, the isolation distance index11,44. This index calculates 
the distances between spike clusters of different cells in Mahalanobis space using 
principal components and spike-energy features44. There was no significant dif-
ference between the isolation indices of CA1 cells and subiculum cells (the mean 
isolation distances were 95.5 and 92.1 for CA1 and subiculum cells respectively; 
t-test: P = 0.72).

Putative pyramidal cells were identified based on the following: (1) spike 
waveform followed by long after-hyperpolarization; (2) mean firing rate < 5 Hz; 
(3) interspike interval histograms indicating complex-spike bursts; and (4) the 
simultaneous recording of other complex-spike cells8,10. Putative interneurons 
were identified as follows22: (1) narrow spike waveform ( 0.2 ms); (2) mean firing 
rate > 5 Hz (see Fig. 1c, bottom-right quadrant). This yielded a total of 84 and 107 
pyramidal cells in CA1 and subiculum, respectively; of these, 59 and 48 pyramidal 
cells, respectively, were behaviorally active (more than 25 spikes per session in 
at least one session, with spikes distributed over at least 5 flights and peak firing 
rate > 0.5 Hz; note that many neurons had much higher peak rates of >5 Hz: see 
Supplementary Fig. 5d). Additionally, we recorded 34 interneurons in CA1 (and 
1 in subiculum; this one subicular interneuron was not used for analysis).

Neurons were classified as place cells based on a shuffling procedure on the 
spatial information10, if the neuron passed the 95th shuffling percentile in at least 
one of the two flight directions (Online Methods): 90% (53/59) of the behaviorally 
active pyramidal cells in CA1 were classified as place cells, and 85% (41/48) of the 
behaviorally active pyramidal cells in the subiculum were classified as place cells. 
These percentages were rather similar to those reported in CA1 and subiculum 
of rats running on long linear tracks21,23 and in two-dimensional arenas3,20. We 
assessed the stability of the place fields by partitioning each session into even 
and odd minutes and calculating the Pearson correlation coefficient between 
the 2D xy-projection firing-rate maps computed for odd versus even minutes 
(Supplementary Figs. 1 and 7c,d).

Computing firing-rate maps. Firing-rate maps were constructed for flight peri-
ods only. Individual flights were identified as time epochs during which the bat’s 
3D velocity was higher than 20 cm/s. To improve the accuracy in estimating flight 
velocity, the bat’s position was smoothed using a smoothing spline (csaps.m in 
Matlab), based on which the instantaneous velocity was extracted. Further, to 
ensure that takeoff and landing data did not contaminate the pure flight epochs, 
we removed from analysis the vicinity of the landing balls (approximately 10 cm 
at each end). Flight epochs were classified automatically as described above, and 
subsequently all flights were manually inspected in order to ensure that only valid 
unidirectional trajectories were included in the data set.

All the analyses and statistical tests in this study were performed strictly on the 
basis of 2D firing-rate maps with fixed pixels. To compute 2D projections of the 
firing fields, we used fixed-sized pixels (10 × 10 cm2) and collapsed the time-spent 
(occupancy) data and the spike counts onto the relevant 2D dimension (xy, xz or 
yz). We smoothed both the spike-count and time-spent 2D maps with a Gaussian 
kernel (σ = 1.5 bins), and then divided, bin by bin, the smoothed 2D spike-count 
by the smoothed 2D time spent. Bins (2D pixels) in which the bat spent <150 ms 
during the session were excluded from the 2D firing-rate map and were colored 
white. We did not apply any adaptive smoothing to the 2D firing-rate maps.

We computed also 3D firing-rate maps for display purposes only; these were 
used only for plotting Supplementary Figure 2a,b (row 2). For these 3D firing-
rate maps, the 3D volume of the room was partitioned into 10 × 10 × 10 cm3 
voxels, and we calculated the number of spikes in each bin divided by the time 
spent in it, using an adaptive smoothing algorithm (see ref. 11 for details). These  
3D firing-rate maps were used here for visualization only; all the analyses  
and statistics were done on the projected 2D maps with fixed bin sizes (without 
adaptive smoothing).

Analysis of behavioral coverage. For each behavioral session, we computed the 
radius of space that was covered by the back-and-forth flights: this radius was com-
puted in the middle of the flyway. We found no significant difference between 3D 
light versus dark coverage for the bats that we analyzed (Supplementary Fig. 5b,c).  
A different analysis, comparing the number of 2D pixels covered in 2D projec-
tions (xy, xz, yz), found no significant differences between light sessions and dark 
sessions in the xz and yz projections, but in the xy projection there was a slight 
enlargement of the number of voxels covered in the dark session. We addressed 
this issue by conducting additional analysis of firing-rate maps based only on 
the voxels that overlapped in their coverage between light and dark (see below; 
and c.f. Figure 4b,c insets).

Definition of place cells. We used a shuffling procedure on the spatial information 
(see below) to determine if a recorded neuron was a place cell, by comparing the 
empirical value of the spatial information for each cell to the confidence interval of 
a spike-shuffled distribution. The shuffled distribution was generated by randomly 
shifting in a rigid manner the timestamps of the cell’s spike train, while making 
sure that shuffled spikes would occur only during valid flight periods. This shuf-
fling procedure was repeated 1,000 times for each neuron. For each repetition, the 
2D firing-rate maps were generated anew in the same manner as described above, 
and the spatial information was recomputed. Active neurons for which the empiri-
cal values of spatial information exceeded the upper 95% confidence interval of 
their shuffled distribution were defined as significant place cells.

Additionally, we examined the within-session stability of place fields, by com-
puting the Pearson correlation between odd and even minutes of each session 
(Supplementary Fig. 1). The stability of place cells was found to be extremely 
high, with mean r = 0.80 (see Supplementary Fig. 1b).

Directionality of firing. We used two different measures to determine whether 
the activity of a cell differed between flight directions. (i) Place-field shape change: 
2D firing-rate maps were constructed for the neural activity separately for each 
flight direction, and we computed the Pearson correlations between 2D projec-
tions for the two directions, using only those 2D pixels that were sampled in 
both flight directions. (ii) Firing-rate change: for each session, a contrast index 
was calculated as the absolute difference of the average firing rates in both flight 
directions, divided by their sum. We then applied a shuffle-based significance test 
to determine which cells were directionally tuned. For every recording session we 
randomly assigned a flight direction for each flight, keeping the original percentage  
of the two flight directions; the 2D firing-rate maps were then recomputed as 
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described above. This shuffling procedure was repeated 1,000 times for each 
neuron per session. Cells in which the 2D correlation of one of the projections 
exceeded the 95% confidence interval, i.e. the correlation was lower than would 
be expected by chance, were classified as ‘shape-change’ neurons; similarly, cells 
in which the firing-rate change index exceeded the 95% confidence interval were 
classified as ‘rate-change’ neurons (see Fig. 1e and Supplementary Fig. 10b). 
For cells recorded over multiple sessions, we chose the directional classification 
of the session with the highest number of spikes. For cells that were classified as 
significantly directional, the two directions were further regarded as two separate 
cells in the remapping analysis (as is customary in the rodent literature23,37).

This analysis was conducted for both pyramidal cells and interneurons. 
Previous studies in rodents reported that CA1 interneurons exhibited directional 
selectivity mostly via rate changes between running directions45, but here we 
found that the shape of the (broad) spatial tuning of CA1 interneurons in the bat 
also changed significantly between flight directions, in 64% of the interneurons 
(see Supplementary Fig. 10b).

Spatial information, sparsity and coherence. The Skaggs spatial information is a 
measure of the degree to which the firing of an individual cell is spatially specific46. 
We used the spatial information as our main measure to determine whether a 
neuron was a place cell or not (see above); and additionally, we used it to compare 
the spatial resolution of a single cell between vision-based and echolocation-based 
conditions (see below). The spatial information, in bits per spike, was computed 
from the smoothed 2D firing-rate map of each cell, as described previously8,10: 

p r r r ri i i( / ) log ( / )∑ 2

where ri is the firing rate of the cell in the ith bin of the 2D firing-rate map, pi is the 
probability of the animal being in the ith bin (time spent in ith bin ÷ total session 
time), r  is the overall mean firing rate and i iterates over all visited 2D bins (pixels). 
The spatial information index is high for neurons with high spatial selectivity.

To assess the compactness of place fields, we used two additional measures, 
spatial coherence and sparsity. Spatial coherence8,47 is the correlation between 
the firing rates in the original firing map and the firing rates averaged across the 
eight neighbors of each bin. The coherence was computed from non-smoothed 
maps and was Fisher z-transformed to facilitate comparisons with previous  
studies47. Sparsity48 is equal to 

p r p ri i i i∑ ∑( )2 2/

Sparsity values are bound between 0 and 1. Note that, by definition, a place field 
with good spatial selectivity is indicated by high values of spatial information and 
coherence but low values of sparsity.

Remapping index. To analyze remapping, we separated the directional cells 
into the two flight directions and treated each direction separately. The remap-
ping index was defined as 1 − r2D, where the 2D Pearson correlations, r2D, were 
computed between vision and echolocation sessions and were averaged across 
the two vision sessions and averaged across the xy and xz projections. Only 2D 
pixels that were well sampled in both the Light and the Dark sessions (time spent 
> 150 ms) were included in this correlation calculation. The remapping index 
was computed only for cells that had both >25 spikes in one of the vision-based 
sessions, exhibited a stable spatial representation between the two vision (Light) 
sessions (correlation of 2D firing-rate maps for [Light, Light′] sessions: r > 0.5 
in at least one of the projections), and had > 20 spikes in the echolocation-based 
session. This same inclusion criterion was applied to both CA1 neurons and 
subiculum neurons. Of the cells that had stable spike-sorted clusters (stable 
from the first to the last session), 63% of the pyramidal cells in CA1 and 38% in 
subiculum passed the tuning stability criterion; this result is in line with studies 
in rats that reported that subicular cells tend to be less functionally stable than 
CA1 cells20. The distribution of remapping indices of the entire cell sample was 
compared with the distribution of remapping indices expected by chance, by 
shuffling the cells that were active in both conditions (vision and echolocation) 
and calculating the remapping index for all nonidentical pairs of cells in vision 
versus echolocation29,49 (‘cell shuffling’). We calculated the shuffled distribu-
tion separately for CA1 pyramidal cells, subiculum pyramidal cells and CA1 
interneurons (Supplementary Fig. 6). These shuffled distributions represent the 

expected similarities between firing-rate maps of unrelated neurons in our cell 
sample, and therefore they represent the distributions expected for completely 
random global remapping29,49.

These remapping results were robust to the choice of the threshold for cor-
relation value between the [Light, Light′] sessions: using a threshold of r > 0.3 
(instead of r > 0.5), added only eight neurons to the data set, and the results of 
the statistical tests remained unchanged (Kolmogorov-Smirnov test comparing 
the probability distributions as in Fig. 2j: P = 0.45).

Sharpening index. For those cells that were active (>25 spikes per session) in 
the echolocation-based session and in at least one of the vision-based sessions, 
we calculated a sharpening index as follows: 

vision based spatial information echolocation based spatial info− rrmation
vision based spatial information + echolocation based spattial information

The spatial information was computed for the 2D firing-rate map in the xy 
projection. If both of the vision sessions had >25 spikes, we used the average 
spatial information from both sessions as the vision-based value. In the insets in 
Figures 4b,c and 5c, we recalculated the spatial information in each session by 
taking only those 3D voxels that behaviorally overlapped between the Light and 
Dark sessions (i.e., voxels that had sufficient time spent during both Light and 
Dark sessions); the spatial information was then computed over the 2D firing-rate 
maps (xy projection), as before.

For Supplementary Figure 7a,b, we computed similar sharpening indexes using 
the sparsity and coherence as additional measures of place field compactness.

Simulations of place cell models. We simulated three different models of  
place cells.

BVC model simulation. These simulations used parameters as in ref. 30, but 
varied the values of σd (distance resolution) and σang (angular resolution).  
In Supplementary Figure 8a, these values were as follows: top, σd = 10 cm,  
σang = 11°; bottom, σd = 12 cm, σang = 17°. We used a 61 × 61 cm arena size  
in the BVC simulations.

View-based model simulation. These simulations were based on ref. 31. The 
view-based model was simulated using input images blurred to various levels 
(Supplementary Figure 8c). The baseline image used had a resolution of 500 ×  
180 pixels (Supplementary Fig. 8c, top), whereas the blurred image was smoothed 
with a 10-pixel Gaussian filter (Supplementary Fig. 8c, bottom).

Attractor network model simulation. We considered a network encoding a 1D 
circular track, to avoid boundary effects. A unit in the network represents a popu-
lation of neurons with highly overlapping place fields. A unit with a place-field 
at angle θ ∈ [0, 2π) on the circular track is described by its firing rate at time t, 
m(θ, t), which follows the dynamics 

t q q q qm t m t f I t I tR E( , ) ( , ) ( ( , ) ( , ))= − + +

f(I) = g[I]+ is a threshold-linear f–I curve. The input current to a unit is the  
sum of a recurrent contribution, IR(θ, t), and an external contribution, IE(θ, t). 
The recurrent contribution is 

I t
N

W m tR( , ) ( , ) ( , )q q q q
q

= ′ ′
′

∑1

where the sum extends over the N units equally spaced on the circle. The synaptic 
strength depends on the distance between the locations assigned to the units: 

W J J( , ) cos( )q q q q′ = − ′ −1 0

where J1 measures the strength of the location-specific (spatial) interaction and 
J0 corresponds to a uniform feedback inhibition.
The external current contains three terms: 

I t I I f t t tE L ext( , ) [ cos( )]cos( ( )) ( )q p q q h= + + − +1 2 Θ

The first term, I, is a spatially uniform and stationary current. The second term is 
a place-specific input with a temporal modulation at frequency fΘ (mimicking the 
sampling rate of the sensory input); IL denotes half of the maximum amplitude of 

(1)(1)

(2)(2)

(3)(3)
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this input, at the location of the simulated animal θext (t). The third term represents 
an Ornstein-Uhlenbeck process with a time constant τn = 20 ms driven by white 
noise with a s.d. of σn = 5 Hz. The simulated animal position evolves according to 

q xext t vt t( ) ( )= +

v is the speed of the simulated animal, and ξ(t) is a delta-correlated Gaussian 
process with average 〈ξ(t)〉 = 0 and variance Var(ξ(t)) = σ2. The s.d. of this process 
is assumed to represent the resolution of the sensory input.

The parameters used were τ = 10 ms, J1 = 15, J0 = 15, g = 1.5 Hz, I = 2 Hz,  
IL = 1 Hz, v = 1 rad s−1 and N = 200.

The model equations were numerically solved using the Euler-Maruyama 
method (time step: dt = 1 ms). In order to obtain an estimate of the place field 
size, for a given set of parameters we simulated the dynamics for 1,000 trials. 
In each trial the virtual animal ran at a constant speed for 3 laps in the circular 
environment. The place field size of each unit in the network was estimated using 
Gaussian fitting.

We repeated this numerical analysis of the continuous attractor model for a 
wide range of input-noise values, which showed that degradation of the sensory 
inputs does degrade the place tuning, but this effect was very small over the tested 
range of parameters (Supplementary Fig. 9a).

To establish the robustness of our simulation results, we tested the effect on 
place tuning of a number of manipulations of cellular and network properties 
and of external input properties. (i) We compared different sensory sampling 
rates, corresponding to echolocation versus vision: we used an 8-Hz rate, which is 
typical for echolocation16,17, and compared it to a 40-Hz rate, which is typical for 
vision (the flicker fusion limit50; see Supplementary Fig. 9b). (ii) We varied the 
time constant of integration of the single units (τ) at equally spaced values ranging 
from 5 ms to 200 ms (Supplementary Fig. 9c) and (iii) varied the temporal cor-
relation of the noise (τn) from 5 ms to 200 ms (Supplementary Fig. 9d). (iv) The 
noise term in equation (3) was replaced by a spatially and temporally correlated 
term η(θ, t) (ref. 51; see Supplementary Fig. 9f). The scale of the exponen-
tially decaying spatial correlation was λ = 0.2 rad; the time scale of the temporal 
correlation was the same as was used to produce the results in Supplementary 
Figure 9a (τn = 20 ms). (v) Quenched noise was added to the synaptic coupling in  
equation (2), W(θ, θ′) = J1[cos(θ − θ′) + z(θ, θ′)] − J0 (ref. 52; see Supplementary 
Fig. 9g). The noise z(θ, θ′) was spatially uncorrelated, with average 〈z(θ, θ′)〉 = 0  
and variance Var(z(θ, θ′)) = 1. (vi) We endowed synapses in the network with 
short-term synaptic depression32 (see Supplementary Fig. 9e). The recurrent 
contribution to the current (equation (1)) in this case was 

I t
N

W m t x tR( , ) ( , ) ( , ) ( , )q q q q q
q

= ′ ′ ′
′

∑1

where x(θ, t) denotes the available fraction of synaptic resources at the synapses 
where the presynaptic unit has a preferred angle θ (i.e., a place field at angle θ on 
the circular track). This synaptic variable follows the dynamics 

x t
x t

Ux t m t
R

( , )
( , )

( , ) ( , )q
q

t
q q=

−
−

1

τR is the time constant of recovery from depression and U is the release probability 
at the synapse. The parameters used in this case were τ = 10 ms, J1 = 30, J0 = 15,  
g = 1 Hz, I = 5 Hz, IL = 5 Hz, v = 1 rad s−1, τR = 800 ms, U = 0.8, N = 200.

Statistical methods. All data analysis, simulations and statistical analysis  
were performed in MATLAB (MathWorks), using custom MATLAB  
code. Computer code will be available upon request from the correponding 
author.

Population means were compared by using two-tailed t-tests, except a few cases 
where the normality of the data was uncertain, and then we used non-parametric 
tests, as stated in the appropriate locations. Distributions were compared using 
the Kolmogorov-Smirnov test. For determining significance of spatial informa-
tion for place fields and significance of place-field directionality, we employed 
a shuffling analysis, as described above. Data collection and analysis were not 
performed blind to the experimental conditions. No statistical methods were 
used to predetermine sample sizes, but we note that our sample sizes are similar 
to those reported in previous studies in rats4,29,49.

Histology. Histology was done as described previously8,10. In brief, at the end 
of recordings, the bats were anesthetized, and in some cases electrolytic lesions 
(DC positive current of 30 µA, 15-s duration) were made to assist in the pre-
cise reconstruction of tetrode positions. The bat was then given an overdose of 
sodium pentobarbital and, with tetrodes left in situ, was perfused transcardially 
using 4% paraformaldehyde. The brain was removed and thin coronal sections 
were cut at 30 µm intervals. The sections were Nissl-stained with cresyl violet 
and were photographed to determine the locations of tetrode tracks in the CA1 
or subiculum.

A Supplementary Methods Checklist is available.
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Supplementary Figure 1 

Stable hippocampal place-fields in bats shuttling along a linear flyway 

(a) Examples of 3 cells, showing the 2D projections of the firing-rate map, calculated for the even minutes of the session (top) and for 
the odd minutes (bottom). Peak firing rate is indicated for each rate-map. Note the place-field location is very stable.   (b) Distribution of 
correlation coefficients between odd-minute and even-minute firing rate maps, for all the place cells. Mean correlation: r = 0.80, 
indicating high stability of the place fields. 
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Supplementary Figure 2 

Directionality of place-cell firing in CA1 and subiculum in bats shuttling along a linear flyway    

In tasks involving goal-directed, stereotyped trajectories, the activity of rodent hippocampal place-cells differs depending on the 
animal’s movement direction

25
. In our experimental paradigm, many bat place-cells showed clear directional tuning – despite the fact 

that trajectories were not strictly repeating, because bats were flying between 9 possible positions at each end of the flyway (81 
combinations; Fig. 1a).  Directional tuning properties had one of the following characteristics: (i) a different place-field location for each 
flight direction (e.g., panel a); (ii) a different firing-rate in each direction, including some cells that shut-down completely in one of the 
directions (e.g., panel b); (iii) or combinations of tuning-shape- and rate-changes (e.g., panel c, cell #31).  These directional differences 
were seen in both CA1 and subiculum cells (see population summary in Fig. 1e).   (a) Example cell in CA1, exhibiting different place-
fields for both flight directions.   (b) Example cell in subiculum, exhibiting shut-off in one of the flight directions. Columns in (a-b) depict 
left-to-right flights or right-to-left flights (see arrows), for a single behavioral session.  Rows: (1) Raw data (gray lines, trajectories; red 
dots, spikes); (2) 3D firing-rate maps. (3) 2D firing-rate maps: xz projection; (4) 2D firing-rate maps: xy projection; (5) Raster showing x-
position of spikes (x-axis) for all flights (y-axis); green, spikes during right-to-left flights; black, left-to-right flights.  Firing-rate maps are 
color-coded, with blue corresponding to zero and red to peak firing-rate (indicated on the right; except panel b-right, where colors are 
according to the color-scale of the active direction on the left).    (c) Additional 4 examples of directional cells (2 from CA1 and 2 from 
subiculum); plotted as in panels a-b. 
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Supplementary Figure 3 

Distribution of place-field locations along the linear flyway 

(a) Histograms of the normalized locations of the peak-firing rate along the flyway.  Left, CA1 (n = 168 cells × sessions); Right, 
subiculum (n = 88). We included those cells and behavioral sessions that had > 25 spikes and exhibited significant spatial information 
based on shuffling criteria (i.e., place cells; see Online Methods).     (b-c) To verify that the non-uniform distribution of CA1 place-field 
locations in panel a did not affect the statistical test for orthogonality of CA1 hippocampal remapping (Fig. 2j, Kolmogorov-Smirnov test), 
we conducted the following control analysis: We drew 1,000 subsets of uniformly-distributed place-field locations from the real data, by 
randomly assigning one cell to each spatial bin, with the bins being uniformly-distributed (25 bins uniformly-distributed between the left 
and the right ball).     (b) An example of the histogram of place-field locations for one of these uniformly-drawn subsets of cells.          (c) 
P-value distribution for all the 1,000 shuffled uniform subsets: for each of the 1,000 subsets we used a Kolmogorov-Smirnov test to 
compare the true distribution of remapping indices for this subset of neurons, versus the distribution of remapping indices computed for 
all the non-identical cells (which is the expected distribution for global remapping).  This is the same type of calculation that we did for 
the full dataset (Fig. 2j). Note that all the 1,000 subsets of neurons with uniformly-distributed place fields yielded P-values higher than 
the 0.05 threshold (panel c, the entire green distribution is above the red line).  Thus, we conclude that the non-uniform distribution of 
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place-field locations does not affect the basic result of Fig. 2j – i.e., there is place-field orthogonalization between the vision-based and 
echolocation-based sessions, with place field positions shifting completely randomly – namely, a global remapping.  Inverted arrowhead 
denotes the P-value for the original full dataset in Fig. 2j (P = 0.39). 
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Supplementary Figure 4 

No systematic relation between place-field positions in the left-right flight direction versus the right-left flight direction 

A previous study in rats running along a linear track (in virtual reality, VR) found that hippocampal CA1 cells in VR represent distance 
along the track rather than absolute allocentric location – a phenomenon termed distance coding, or “disto-code”

27
. Here we examined 

whether a similar phenomenon might exist in flying bats – but we found no evidence for such ‘disto-coding’ in our data, neither in CA1 
nor in subiculum.  (a) Examples of firing-rate maps for 3 cells which fired in both flight directions (‘bi-directional cells’), and whose place-
fields occurred at different distances from the start-location of the flight when comparing left-right flights versus right-left flights (rows). 
Note that the place field in cell #310 was tuned to different locations on the y-axis in the two flight-directions, and that cell #254 had 
clear spatial tuning only during right-to-left flights.    (b) Distribution of correlation coefficients computed between the 2D firing-rate maps 
(xy projection) for right-to-left flights versus the inverted map for the opposite, left-to-right flight direction (inverted along the x-axis). If 
there was disto-coding in our data, these correlations should be strongly shifted toward positive values

27
; however, our data showed an 

opposite, slightly negative bias (median r2D = –0.28) – arguing against disto-coding in our data.   (c) Scatter plot of normalized place-
field locations for the two flight directions – for all CA1 cells (blue) and subiculum cells (red). x-axis: place-field location for right-to-left 
flights; y-axis: place-field location for left-to-right flights. Circles, bi-directional cells; triangles, cells firing only in one flight-direction.  Dots 
were slightly jittered for visualization only, to prevent overlay of dots.  Note the absence of a negatively-correlated diagonal band in this 
scatter-plot – a band that would be predicted for disto-coding

27
 – which argues against a disto-code in our bat data. 
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Supplementary Figure 5 

Behavioral and neural controls for remapping experiments 
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(a) Degradation of behavioral performance when a broadband noise was broadcasted to mask echolocation calls in complete darkness. 
These measurements were done in a separate behavioral experiment, in which we tested whether bats (n = 3) could find their way to 
the target ball in the dark while we broadcasted the broadband noise. Ventilators were used to eliminate odor cues in all sessions. This 
‘dark+noise’ manipulation caused a dramatic drop in behavioral performance compared to the standard sessions (compare the middle 
bar [dark+noise] to the flanking controls [two repeats of a control session]). Performance was quantified as the percentage of direct 
flights-to-balls. For the control condition, we pooled sessions where the control was dark-without-noise and sessions in which the 
control was light-with-noise.   The drop in performance in the ‘dark+noise’ condition was very significant – the bats were basically 
repeatedly crashing and flying astray in the ‘dark+noise’ condition (paired t-test comparing performance in ‘dark+noise’ sessions [n = 
14] versus control sessions: P < 10

–7
).    (b) Left − space coverage is very similar between same-day light and dark sessions (paired t-

test comparing spatial spread in vision [average of two sessions] versus echolocation conditions: P > 0.1 for all bats; see Online 
Methods).  Right − average maximal velocity across flights is compared between same-day sessions. The velocity differences between 
light and dark were very small − 2%, 3% and 6% velocity differences for bats # 9343, 6255 and 9673, respectively −  although these 
small differences were significant for 2 of the 3 bats (paired t-test for the 3 bats: P = 0.02, P =  0.003 and P = 0.23, respectively). Error 
bars, mean ± s.e.m. Data shown for implanted bats which had at least 4 recording days.    (c) Raw behavioral data of flight trajectories 
(gray lines) for the 3 sessions (rows); shown are example days for all the bats participating in vision-versus-echolocation analysis. 
These raw data illustrate the similar flight patterns in light and dark sessions.    (d) Distribution of peak firing-rates for all the pyramidal 
cells that were included in the remapping analysis – using 2D firing-rate maps (xy projection), taking for each cell the session with the 
highest firing-rate (pooling n = 56 cells in CA1 and n = 27 cells in subiculum).  Note that for almost all cells, the peak firing-rate was > 1 
Hz, and for many cells it was > 5 Hz.    (e) Bats were awake and moving around the time of the light-switch, just before the flight-
session began. Shown are examples of behavioral data depicting bat movement velocity around the time of the light-switch (2 bats, 2 
different days): the top example shows switch from light to dark; the bottom example shows a switch from dark to light. Time 0, light-
switch; gray rectangle denotes the dark condition. 
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Supplementary Figure 6 

Distribution of remapping indices for the experimental data is not significantly different from that expected from completely 
random global remapping    

To test if the hippocampal maps under vision and echolocation are truly orthogonal (independent) for cells active in both conditions, we 
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compared the empirical distribution of remapping indices for these cells, versus a ‘cell-shuffling’ distribution.  For the cell-shuffling, we 
computed remapping-indices between all pairs of different cells: this shuffled distribution represents the expected differences between 
firing-rate maps of unrelated neurons in our cell-sample – and therefore represents the expected distribution for completely random 
‘global remapping’ 

29
 (see Online Methods).    (a) CA1 pyramidal cells (n = 47).    (b) Subicular pyramidal cells (n = 11).    (c) CA1 

interneurons (n = 43).    In all cases: Left column – Comparing the mean remapping indices between experimental data (green) and the 
cell-shuffling distribution (black). Right column – The full experimental distribution of remapping-indices (green) versus the cell-shuffling 
distribution (black).    Kolmogorov-Smirnov tests comparing the probability distributions: P = 0.39, P = 0.42 and P = 0.17 for a, b and c, 
respectively – signifying that the distribution of actual remapping indices was not significantly different from that expected from 
completely random global remapping.    (d) Example of the spatial velocity profiles (‘velocity maps’) for one recording day, calculated 
with the same spatial bins as the firing-rate maps; each bin here depicts the mean velocity at that spatial location. Color scale goes 
from zero velocity (blue) to peak velocity (red, value indicated). Note the similarity in velocity maps between vision and echolocation 
sessions.    (e) Plots of the remapping index (which was computed as in Fig. 2) versus the velocity-change index (which was computed 
in an analogous manner, over the velocity maps) – for CA1 pyramidal cells (left), subiculum pyramidal cells (middle) and CA1 
interneurons (right). Note that the velocity-change indices were concentrated near zero – i.e. there were essentially no differences in 
velocity-maps between the vision and echolocation sessions. Moreover, note the remapping index was not correlated with the velocity-
change index, for any of the three neuronal populations – arguing against the notion that velocity differences could explain the observed 
neural remapping. 
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Supplementary Figure 7 

Spatial representation sharpens under vision versus echolocation 

(a-b) Population summary of the sharpening index, which compares place-field compactness under vision versus echolocation (see 
Online Methods), plotted separately for place-cells in CA1 (panel a: n = 48 cells) and in the subiculum (panel b: n = 16 cells). This 
analysis showed that the spatial resolution of CA1 cells is higher under vision than under echolocation (and a similar though weaker 
effect is observed also in the subiculum). Sharpening indices were computed here based on the spatial information index (left bars: 
same index as in Fig. 4b-c), as well as based on sparsity and coherence indices (middle and right bars; see Online Methods). Note that 
the sparsity index is expected to behave the opposite from the spatial-information and coherence indices (by definition, lower sparsity 
corresponds to higher spatial information and higher coherence).  ‘*’, P < 0.05 ; ‘***’, P < 10

–5
 (t-test).    (c-d)  Firing-rate map stability 

(correlation between maps computed for odd-minutes versus even-minutes), in light and dark sessions, for CA1 (c) and subiculum (d). 
There was no significant difference between map stability in light versus dark sessions, in either c or d (t-test, P > 0.12 for both c and 
d). 
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Supplementary Figure 8 

Simulations of 3 models of place cells support a combination of sensory-based and attractor network models   

Theoretical models of place cells can be classified (among other ways) according to the relative importance they assign to external 
sensory inputs versus self-motion cues (‘path integration’). We can test the importance of the external sensory input in a selection of 
commonly-used models by degrading the sensory resolution of the input in each model, and computationally test the effect of this 
sensory degradation on simulated place-cell tuning. We can then compare these predictions to the experimentally-observed differences 
in place tuning under the different sensory resolutions for echolocation versus vision (2° versus 0.3°). These simulations suggest that 
the spatial-sharpening effect is best explained by combining sensory-based and path-integration mechanisms.    (a-b) A widely-used 
sensory-based model – the ‘boundary vector cell’ (BVC) model

30, 33
. In this model, each ‘boundary cell’ is tuned to a specific distance 

and direction from geometric boundaries, forming a band of activity. The intersection between the activity bands of several boundary-
cells forms a place-field.    (a) Left: schematic of boundary-vectors. Right: simulated place-fields (columns: cells #1 and 2) for different 
sensory resolutions (rows). These simulations used parameters as in ref. 30, but varied the values of σd (distance resolution) and σang 
(angular resolution): Top, σd = 10 cm, σang = 11°; bottom, σd = 12 cm, σang = 17°. Arena size, 61×61 cm. Note the dramatic increase in 
place-field size (bottom versus top) when degrading the BVC input resolution.    (b) Distribution of sharpening index for the BVC model; 
plotted as in Fig. 4b. The distribution of sharpening-indices between the two sensory resolutions is strongly shifted to the right, 
predicting that spatial information should be reduced for the degraded sensory condition.    (c-d) We repeated the same analysis as in 
(a-b) for a very different model – the ‘view-based’ model

31, 34
, which uses as an input a realistic full retinal image combined with self-

motion cues. We compared the sizes of simulated place fields for high-resolution visual input (top left) versus visual input with degraded 
angular resolution (simulation courtesy of Denis Sheynikhovich).    (c) Two pictures were used as ‘retinal image’ inputs to the model: 
top image, no blurring (high resolution); bottom image (lower resolution) was blurred with a 10-pixel Gaussian filter. Right: simulated 
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place-fields (columns) for the two visual resolutions (rows). Note the mild increase in place-field size (bottom versus top) when 
degrading sensory input resolution.    (d) Distribution of sharpening index for the view-based model. The simulations of the view-based 
model (c-d) showed the same qualitative direction of change as the BVC model simulations (a-b), and as observed in our experimental 
CA1 data (Fig. 4a-b) – although these two models differed substantially in the magnitude of the spatial-sharpening effect.    (e-f) Third, 
we tested whether a sharpening effect will be observed in a continuous attractor network model, which is oftentimes considered as a 
computational mechanism for path integration

35
.  For simplicity, we used a one-dimensional network, where the animal’s position was 

modeled as a continuous variable on a circular track with a 50-cm radius (Online Methods). A combination of recurrent connections 
between excitatory neurons in this network, together with global inhibition, leads to the spontaneous formation of a localized bump of 
activity which moves with the animal (path integration), and thus results in spatially-localized place fields

35
 (cells #1 and #2; Online 

Methods). To evaluate the effect of degraded sensory input in this model, we varied the standard-deviation (noise) of the input – 
according to the known biological sensory acuity of vision (0.3° noise: top) and echolocation (2° noise: bottom).  (e) Left: two example 
inputs, modeling sensory acuity of 0.3° (top) and 2° (bottom); these sensory resolutions in degrees were transformed to cm via the 50-
cm radius of the simulated circular track.  Right: Simulated place-cells (columns) for the two sensory resolutions (rows). Note there is 
very little change in place-tuning under the two different sensory resolutions (compare top to bottom).    (f) Distribution of sharpening 
index for the attractor model. The histogram is shifted very slightly but significantly to the right (t-test: P < 10

–9
).    (g) Comparing place-

field blurring (1 – sharpening index) of the experimental data (black line) to predictions of 3 theoretical models (colored lines). The 
experimental data best match the view-based model

31, 34
 (blue line), which is a hybrid model that uses a combination of sensory 

information (retinal image) and path-integration (self-motion).  The normalized angular resolution was taken here as the ratio between 
angular resolutions simulated in panels a-b (BVC model) or in panels e-f (continuous attractor model); or was taken as the relative size 
of the blurring-filter (10 pixels: view-based model, panels c-d). 
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Supplementary Figure 9 

Continuous attractor neural network model shows a very weak dependence of simulated place-field size on sensory-input 
resolution    
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Continuous attractor neural networks models were suggested as a computational mechanism for path integration
35. 

Here we compared 
them to sensory-based models for place cell generation - by examining how well can these different classes of models explain our 
experimental results on place-field sharpening in light versus dark (main Fig. 4). In Supplementary Fig. 8 we showed that, in contrast to 
the BVC-model

30, 33
 and the view-based model

31, 34
, the place-field size in the continuous attractor model exhibits a very weak 

dependence on the sensory input resolution (see detailed explanations and simulations results for all models in Online Methods and 
Supplementary Fig. 8). To establish the robustness of these results for the continuous attractor model, we further tested the effect on 
place tuning of a number of manipulations of cellular and network properties and of external input properties – but, as shown in this 
figure, none of these manipulations changed the results.    (a) Place field size slightly increased when the standard deviation (noise) of 
the input was increased. Each point represents the average of the place-field size measured for 200 neurons in the network, on 1,000 
simulation repeats (see Online Methods). Sampling rate was 25 Hz (same sampling-rate as used in all the simulations shown in 
Supplementary Fig. 8e-g).    (b)  Sensory sampling rate had little effect on the results shown in panel a – we compared here an 8-Hz 
sensory-rate, typical for echolocation

16, 17
, versus a 40-Hz rate, typical for vision (‘flicker-fusion limit’

50
).   Changing the single-cell 

integration time constant,  (c) or the temporal correlation of the noise, n (d), over a broad range of values of these time constants, did 

not have a substantial effect.  The dependence of place-field size on sensory-noise remained very weak also when we added short-
term synaptic plasticity

32
 (e), or used spatially-correlated noise at the input

51
 (f), or added quenched noise in the synaptic matrix

52
 (g).  

See Online Methods for details of simulations. 
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Supplementary Figure 10 

Directionality of CA1 interneurons on the linear flyway 

(a) Example interneurons (columns) exhibiting significantly different spatial tuning in the two flight directions: some cells exhibited a 
significant change in firing-rate between flight directions (left example), while other cells significantly changed their (broad) spatial 
tuning between flight directions (middle and right examples). Significance was based on a shuffling-test (see Online Methods).  Shown 

are the xy projections of the 2D firing-rate map. Bottom: spike waveforms for these cells; scale bars, 50 V.    (b) Percentages of 

different kinds of directional tuning for CA1 interneurons (Online Methods). 
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Supplementary Figure 11 

Hypotheses 

(a) An algorithmic perspective on hippocampal function posits that the subiculum acts as an alternate autoassociator (in addition to 
CA3), which could enable memory functions and non-linear dynamical processing when the information from entorhinal cortex (EC) 

bypasses the dentate gyrus (DG) and CA3 and is routed along the shortcut path: EC  CA1  Subiculum (see Colgin et al., Nature 

462, 353, 2009). This may explain the differences in remapping schemes between CA1 and subiculum that we found in our study.      
(b) Our ‘cognitive atlas’ hypothesis posits that the same space can be coded by several different maps. Two groups of neurons (which 
could be partially overlapping), depicted here as blue and green dots, may store separate cognitive maps for two different sensory 
conditions (see left map – green, and middle map – blue); a third group of neurons, depicted here as gray dots, may possibly code for 
an abstract map, independent of context (see right map – gray), although our data do not provide evidence for the existence of such an 
abstract map. 
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