
Abstract. Neurons in sensory cortices are often assumed
to be ‘‘feature detectors’’, computing simple and then
successively more complex features out of the incoming
sensory stream. These features are somehow integrated
into percepts. Despite many years of research, a
convincing candidate for such a feature in primary
auditory cortex has not been found. We argue that
feature detection is actually a secondary issue in under-
standing the role of primary auditory cortex. Instead,
the major contribution of primary auditory cortex to
auditory perception is in processing previously derived
features on a number of different timescales. We
hypothesize that, as a result, neurons in primary
auditory cortex represent sounds in terms of auditory
objects rather than in terms of feature maps. According
to this hypothesis, primary auditory cortex has a pivotal
role in the auditory system in that it generates the
representation of auditory objects to which higher
auditory centers assign properties such as spatial loca-
tion, source identity, and meaning.

Abbreviations A1, primary auditory cortex; MGB,
medial geniculate body; IC, inferior colliculus; STRF,
spectrotemporal receptive field

1 Feature detection in auditory cortex

Despite a research history going as far back as that of
any other sensory cortex (Woolsey and Walzl 1942),
auditory cortex still poses a much greater mystery than
visual or somatosensory cortices. To understand the
problems currently facing research in auditory cortex, it
is useful to first delineate the reasons underlying the
success in understanding the visual cortex. Four impor-
tant findings shape our understanding of primary visual
cortex (Wurtz and Kandel 2000). First, many single

neurons are selective for computationally derived fea-
tures, e.g., orientation, a selectivity that is absent in the
visual thalamus. Second, orientation selectivity is
roughly uniform within a cortical column. Third,
orientation selectivity varies in a continuous way over
the cortical surface, except for a discrete set of discon-
tinuities that have electrophysiological, imaging, and
anatomical correlates. Fourth, other visual features,
such as direction selectivity, binocular disparity, color,
and so on, are also distributed over columns, although
not necessarily in as tight an order as orientation
selectivity. These findings gave rise to the idea of the
cortical hypercolumn, in which all possible features in a
small patch of the visual scene are represented (e.g.,
Bartfeld and Grinvald 1992).

The subcortical auditory system is organized very
differently from the subcortical visual system. In the
retina, two synapses separate the photoreceptors from
the ganglion cells. Similarly, in the auditory system, two
synapses separate the hair cells and the neurons of the
cochlear nucleus. The analogy between the ganglion cells
of the retina and the neurons of the cochlear nucleus is
not as farfetched as may initially seem. For example, in
both structures, multiple parallel pathways are gener-
ated by neurons of different functional classes. In the
retina, there are separate functional and anatomical
streams arising from X, Y, and W cells (Tessier-Lavigne
2000), whereas in the cochlear nucleus such streams arise
from, e.g., primary-like neurons, choppers, and the type
IV neurons of the dorsal cochlear nucleus (Rhode and
Greenberg 1992). However, from this point on the
analogies between the two sensory systems become at
best tenuous. Whereas the ganglion cells of the retina
project directly to the visual thalamus, in the auditory
system many of the parallel processing streams have
further stations in which additional acoustic features are
extracted (e.g., aural disparities, which are analyzed in
the superior olive, Yin 2002). All the parallel processing
streams of the auditory system converge at the level of
the inferior colliculus (IC), an obligatory nucleus of the
auditory system with no analogs in other sensory system
(Casseday et al. 2002). The neurons of the IC project to
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the auditory thalamus, which serves in turn as the input
to auditory cortex. In terms of synaptic distance, the IC
is as far from the hair cells as the visual thalamus, or
even the visual cortex, is far from the photoreceptors.
There is, therefore, at least one additional synapse, and
possibly even two or three synapses, in the auditory
system between the periphery and the cortex. The high
level of integration in the IC, combined with the
exquisite sensitivity of its neurons to various physical
features of sounds, makes the IC a compelling analog to
visual cortex. On the other hand, the auditory infor-
mation arriving at the auditory cortex is much more
highly processed than the visual information arriving at
the visual cortex.

Despite these differences, research on auditory cor-
tex was influenced very strongly by the successful elu-
cidation of the organization of the visual cortex. In
particular, it is often assumed that the main contri-
bution of primary auditory cortex (A1) to auditory
perception is the computation of some nontrivial
parameter from the incoming sounds and its repre-
sentation in terms of topographical location on the
cortical surface (Middlebrooks et al. 1980; Mendelson
et al. 1993; Shamma et al. 1993; Versnel et al. 1995).
Since A1 has a prominent gradient of frequency sen-
sitivity, the main interest in such studies is in mapping
neuronal feature sensitivity along the orthogonal, iso-
frequency direction. A number of response properties,
in addition to frequency selectivity, have been shown
to be roughly topographically mapped across A1
(Read et al. 2002). However, none of these properties
really fits the bill of an interesting, computationally
derived parameter with the same standing as, e.g.,
orientation selectivity in visual cortex. The search for
such a parameter therefore failed to a large extent. We
would like to argue that this failure is not accidental
and that the issue of feature extraction in A1 is actu-
ally secondary to understanding its role in sound
processing.

As specific examples for these statements, we will
discuss here the coding of frequency-modulated tones
(FM tones), where directional selectivity has been
hypothesized to be an important computationally de-
rived property of cortical neurons (Mendelson and
Cynader 1985) and the use of spectrotemporal receptive
fields (STRFs) as a nonparametric approach to the dis-
covery of features analyzed by cortical neurons (Aertsen
and Johannesma 1981a).

1.1 The case of the frequency-modulated tones

Studies of FM tones in A1 usually use unidirectional
frequency trajectories spanning a very wide frequency
band. Figure 1 shows the main characteristics of this
type of FM tones and the responses they elicit in A1
neurons. Neurons respond to FM tones with a short
burst of action potentials when the instantaneous
frequency approaches the best frequency of the neuron
and the ‘‘trigger frequency’’ at which the neuron fires
occurs before the instantaneous frequency reaches the

best frequency (Heil et al. 1992b, c; Nelken and Versnel
2000). The timing of the burst is very stereotypical and
can be precise up to a few milliseconds (Fig. 1). The
number of spikes elicited may be different for upward
and for downward sweeps, resulting in a preference of
one direction of frequency change relative to the other
one (although the neuron in Fig. 1 responded approx-
imately equally well to both FM directions). This
parameter has often been compared with the directional
preference of neurons in visual cortices (Mendelson and
Cynader 1985; Tian and Rauschecker 1994, 1998).

Mapping studies of directional selectivity in A1 gave
variable results. Some studies (Mendelson et al. 1993;
Shamma et al. 1993) reported a consistent map of
directional selectivity orthogonal to the frequency gra-
dient. Other studies (Heil et al. 1992a), using objective
criteria for clustering, reported no special clustering of

Fig. 1a–d. Responses of AI multiunit cluster to FM tones. Data from
Nelken and Versnel (2000). a The response of the cluster to a
downward FM tone with a velocity of 60 Oct/s. b The response of the
cluster to a downward FM tone with a velocity of 240 Oct/s. In a and
b, the stimulus is represented below the response. This spectrotem-
poral representation is the neural activity pattern predicted from a
model of the auditory periphery (Auditory Image Model, Bleeck and
Patterson, http://www.mrc-cbu.cam.ac.uk/cnbh/aimmanual), in
which the basilar membrane motion was modeled by a gamma-tone
filter bank, followed by half-wave rectification, compression, and
lowpass filtering. The continuous line drawn on the neural activity
pattern represents the best frequency of the neuron (8.5 kHz), and the
dashed lines are the trigger frequencies for upward and downward FM
tones. The arrows indicate the moment in time at which the
instantaneous frequency crossed the trigger frequency, corrected by
a constant delay. Clearly, the spike burst was evoked at that moment
for both velocities. The gray line indicates the duration of the burst,
13 ms. c Responses to multiple velocities, upward FM tones.
d Responses to multiple velocities, downward FM tones. In c and d,
the line represents the predictions of fixed trigger frequency model
fitted to the first spike latencies at each velocity. The actual trigger
frequencies are drawn on the spectrotemporal display in a and b in
dashed lines. The arrows in d mark the responses drawn as line graphs
in a and b
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directional sensitivity along an isofrequency contour.
Nelken and Versnel (2000) reported mixed results, with
some maps showing significant clustering of directional
selectivity and others not.

More recently, a number of studies have suggested
that the whole issue of maps of directional sensitivity
along the isofrequency gradient is not well defined. In
order for the directional sensitivity to be a reasonable
computationally derived property of a neuron, it must
be invariant to ‘‘nuisance parameters’’, such as the exact
details of the frequency trajectory or the species that is
studied. For example, one possible difference between
the studies that reported clustering of directional selec-
tivity along isofrequency contours (Mendelson et al.
1993; Shamma et al. 1993) and the one that did not (Heil
et al. 1992b) was the fact that in the first group, expo-
nential frequency trajectories (covering equal frequency
ratios in equal times, with velocity measured in octaves/
second) were used, whereas in the study of Heil et al.,
linear frequency trajectories (covering equal frequency
differences in equal times, with velocity measured in
kHz/second) were used. Nelken and Versnel (2000) tried
to resolve this issue by comparing, in the same animals, a
large number of different frequency trajectories. They
have shown that varying such nuisance parameters may
dramatically change the directional preference of neu-
ronal clusters. To further murk the issue, Tian and
Rauschecker (1994) found that in cats, directional
selectivity is much more pronounced for slow than for
fast FM tones, whereas Zhang et al. (2003) showed the
reverse in rats: directional preference is much stronger
for fast than for slow chirps in the rat. Even more
worrying, Heil et al. (1992c) showed that in the chick
directional preference is mapped, not along an isofre-
quency contour, but along the frequency gradient, with
a strong correlation between best frequency and direc-
tional selectivity. Zhang et al. (2003) have demonstrated
a similar organization in the auditory cortex of a
mammal, the rat.

In addition to the inconclusive results reviewed
above, the functional significance of such maps for the
processing of other sounds, in particular the much more
acoustically complex natural sounds, is undecided. The
stimuli used in the majority of the studies reviewed
above are FM tones with a large frequency extent. These
stimuli are very different from the much shorter chirp
components in animal vocalizations. For example, Bar-
Yosef et al. (2002) have shown that in a large sample of
natural vocalizations dominated by FM tones, the typ-
ical velocity is less than 80 kHz/s and the typical fre-
quency extent is less than 3 kHz. In cats, however, most
neurons prefer FM tones with velocities exceeding
1024 kHz/s (Heil et al. 1992b), more than an order of
magnitude faster than the typical natural FM compo-
nent. In the ferret, the situation is less unbalanced
(Nelken and Versnel 2000), but there are still a large
number of clusters preferring very high velocities.

The complexity of the picture regarding the coding of
a rather simple feature, directional selectivity to a fre-
quency-modulated chirp, suggests that this is not ‘‘the’’
computationally derived parameter that is the analog of

orientation selectivity or even directional selectivity in
primary visual cortex. In fact, the results presented
above suggest that directional selectivity is not really a
feature that is processed by the cortex explicitly, but
rather a by-product of a computation that is doing
something else.

Indeed, fairly good models are available for
describing these responses. For example, Fishbach
et al. (2001) presented a model whose basic operation is
taking the derivative of the envelope of the sound,
where the derivative is computed using time constants
of 1–10 ms. They showed that their model can account
for essentially all the data in the literature regarding
electrophysiological and psychophysical effects of
manipulations of the onset of sounds. The model sug-
gested by Fishbach et al. (2001) is a single-channel
model and therefore could not account for the
responses to FM tones. An elaboration of the same
model (Fishbach et al. 2003), operating on multiple
frequency channels, is capable of accounting for the
responses to FM tones and two-tone complexes.
Surprisingly, the parameters of the spectrotemporal
model of Fishbach et al. (2003), estimated from re-
sponses collected in mapping studies of ferret A1
(Nelken and Versnel 2000), are in fact more topo-
graphically clustered on the cortical surface than the
feature selectivity indices derived directly from the
experimental data, such as the directional selectivity to
FM tones. Thus, directional selectivity might be a side
product of a basic differentiation operation carried in
each frequency band separately with relatively short
time constants and then summed up across frequency.

1.2 The spectrotemporal receptive field

An almost diametrically opposite approach for studying
feature detection in auditory cortex is to assume nothing
about the nature of the preferred feature. Instead, the
experiment consists of recording responses to a rich set of
sounds and then asking what the parameters in the sound
were that elicited responses. This approach has been
codified in the reverse-correlation (or revcor) methodol-
ogy (Eggermont et al. 1983). In this approach, the set of
sounds that precedes spikes is extracted from the full set
of sounds used for characterizing the neuron. The revcor
function is the average of this set (averaging the sound
waveform or, more commonly, a time-frequency repre-
sentation). For general sound ensembles, the revcor
function is contaminated by the correlation structure of
the set of sounds used for testing the neuron. Decon-
volving the revcor function by the correlation function of
the set of sounds results in the kernel function, often
named the spectrotemporal receptive field (STRF), of the
neuron. Efficient and statistically sound methods have
been developed recently for this last step, making it
practicable to use very general sets of sounds (Theunissen
et al. 2001; Linden et al. 2003).

The revcor approach has had its ups and downs in the
history of auditory research. Initially proposed by deB-
oer for auditory nerve studies, it was used extensively for
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studying other parts of the auditory system in the early
1980s (Aertsen and Johannesma 1980; Johannesma and
Aertsen 1982; Eggermont et al. 1983). However, except
for scattered studies in the auditory nerve and the
cochlear nucleus (Carney and Yin 1988; Clopton and
Backoff 1991; Kim and Young 1994; Nelken et al. 1997),
the method was to a large extent abandoned for over
10 years, resurfacing again in the late 1990s as a major
tool for characterizing neurons in higher auditory cen-
ters (deCharms et al. 1998; Klein et al. 2000; Schnupp
et al. 2001; Theunissen et al. 2001; Miller et al. 2002;
Linden et al. 2003). The idea of characterizing a neuron
by finding regularities in the sets of sounds that precede
spikes is a very strong one. The pioneers of this method
defined these preevent sound ensembles as the basic
statistical structure that emerges from this type of
analysis (Johannesma and Aertsen 1982). From their
point of view, the revcor function was only one way of
characterizing these sound ensembles. Recent develop-
ments support this view, showing that other ways of
characterizing the preevent sound ensembles may be
more powerful than simply computing the revcor func-
tion or the STRF (Brenner et al. 2000; Paninski 2003).

Initial reports in the most recent wave of publications
based on STRFs emphasized neurons with complex
STRF shapes (deCharms et al. 1998), but later reports of
a number of extensive databases of STRFs demonstrate
that their structure is most commonly rather simple
(Depireux et al. 2001; Miller et al. 2002; Linden et al.
2003). Most STRFs are separable in time and frequency
in the sense that they are well approximated by a
product of a function of frequency alone and a function
of time alone. When they are not separable, they are still
quadrant separable, in the sense that their 2-d Fourier
transforms are separable in each quadrant. Thus, com-
plex STRF shapes are rare.

The typical STRF in mammalian cortex has therefore
a simple structure – it is usually composed of an excit-
atory patch around the best frequency of the neuron,
with possibly inhibitory subfields surrounding the
excitatory patch in all directions. For example, the
STRF in Fig. 2a is composed of an excitatory patch at
8.5 kHz, the best frequency of the neuron as determined
by tones, followed by a long suppressory region, but
with very little if any inhibitory sidebands. This STRF is
clearly separable in time and frequency. Furthermore,
the time scales related to the STRF are relatively slow.
In the cat, the typical best modulation frequency (de-
fined by the peak of the Fourier transform of the tem-
poral component) is about 16 Hz (Miller et al. 2002). In
the mouse, the peak latency of the STRF is typically
30 ms, and the typical duration of the STRF (including
both the excitatory peak and the typical late suppres-
sory phase) is over 100 ms (Linden et al. 2003), sug-
gesting similar slow time constants. In Fig. 2a, the
Fourier transform of the temporal component of the
STRF has a lowpass-filter shape, and the corner fre-
quency (�10 dB) is 48 Hz – a rather high value for
cortical neurons.

Even such relatively fast STRFs cannot explain many
aspects of the responses of A1 neurons to other sounds.

In particular, it cannot explain the sensitivity of A1
neurons to fast FM tones (Fig. 2; see also Fishbach et al.
2003). Whereas the neuron in Fig. 1 preferred fast FM
tones (the response in Fig. 1a, to a velocity of 60 Oct/s,
is smaller than the response in Fig. 1b, to a velocity of
240 Oct/s), the responses in Figs. 2b and 2c show the
reverse preference. The preference of STRF predictions
to slow FM tones is a direct consequence of their rather
slow time course. In addition, the duration of the pre-
dicted responses is much longer than the observed
responses (the gray lines below the responses in Figs. 2b
and 2c mark the duration of the response bursts in
Fig. 1, 13 ms). Even for the fastest FM tones, the pre-
dicted responses are longer and have a much slower rise
time than the typical measured responses, illustrating the
mismatch between the fast, measured and the sluggish

Fig. 2. a Prediction of the responses to FM tones using STRF. The
left panel is an STRF measured for a neuron recorded in ferret A1
(data courtesy of J. Schnupp, University Laboratory of Physiology,
Oxford University). The middle panel is a neural activity pattern,
computed as in Fig. 1. Convolving the two at each frequency channel
results in the data shown in the right panel. The predicted response is
the sum of the activities in each channel as a function of time and is
superimposed as a thick black line. b Predicted response for a
downward FM tone with a velocity of 60 Oct/s. c Predicted response
for a downward FM tone with a velocity of 240 Oct/s. The display
follows the same conventions as in Fig. 1a and b. The responses were
shifted so that the time at which the instantaneous frequency crossed
the trigger frequency in c corresponds to the onset of the predicted
response to that FM tone. d, e Predictions of the responses to upward
and downward FM tones at multiple velocities. The lines are the same
lines as in Fig. 1c and D, except for a constant shift to fit the latency
of the fastest response
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predicted responses. Finally, the timing of the responses
is not predicted well (compare the fit of the lines of fixed
trigger frequency in Fig. 1c and d to the responses with
the fit of the same lines in Fig. 2d and e). Although all of
these problems could in principle be fixed by a post-
processing stage that would, e.g., compress and differ-
entiate the STRF predictions, to some extent the whole
point of the STRF calculation is lost. For example,
differentiating the STRF predictions is identical to pre-
dicting the responses using the differentiated STRF. But
the temporal properties of the STRF, and of its differ-
entiated version, are very different from each other,
raising again the question of why the ‘‘correct’’ kernel
did not emerge from the estimation procedure to start
with.

Furthermore, STRFs probably cannot capture well
the responses of cortical neurons to natural sounds, as
has been argued in Bar-Yosef et al. (2002), although
without quantitative analysis. The reason for this is the
high sensitivity of cortical neurons to small perturba-
tions of natural sounds such as removal of background
noise. Such sensitivity cannot be accounted for by
STRFs of the published types since for such linear filters
small perturbations of this kind necessarily result in
small changes in their responses.

1.3 Complex features, simple features, or no features?

Clearly, all the characterizations described above in
terms of feature detection are seriously lacking in
generalizability. For example, as Nelken and Versnel
(2000) have shown in the context of artificial FM tones,
and as Bar-Yosef et al. (2002) have shown in the context
of natural bird chirps, the nuisance parameters may
influence the responses of neurons more strongly than
the parameter being studied. In other words, neurons in
A1 are extremely sensitive to small changes in their
stimuli, changes that the experimenters may consider as
irrelevant. It seems that the main problem with A1
neurons is that they are ‘‘promiscuous’’: they respond to
too many different sounds that are too different from
each other to usefully extract a single feature that is
responsible for all these responses. Thus, the features
that neurons seem to encode change with the set of
sounds used. This conclusion had already been reached
many years ago, during the first ‘‘wave’’ of STRF studies
(Aertsen and Johannesma 1981b; Eggermont et al. 1983)
and has been reproduced a number of times since, even
in subcortical stations (Nelken et al. 1997; Theunissen
et al. 2000).

In more concrete terms, responses to transient tonal
sounds such as FM tones suggest that neurons have fast
time constants. On the other hand, responses to the
continuous sounds such as those used to estimate
STRFs suggest that neurons have slow time constants.
Remarkably, in both cases the operation that is per-
formed is a derivative in the spectrotemporal plane. The
difference is not in the operation but in the time con-
stants over which it is computed. Computing a deriva-
tive is not a complex operation per se – derivatives at

various time constants are computed all over the ner-
vous system, from the periphery of all sensory systems
on up. The complexity of the A1 neurons is to some
extent due to the fact that the same neuron can pre-
sumably act both fast and sluggish.

The fact that both descriptions of cortical neurons,
one based on responses to FM tones and one based on
the STRF, end up with rather simple operations raises
the question of where these computations take place.
The subcortical auditory pathway is extremely rich,
much richer than that of any other sensory system.
Already in the brainstem, rather complex computations
take place, both in spectrum (e.g., Nelken and Young
1996) and in time (e.g., Joris and Smith 1998). Sensitivity
to transients is further enhanced in the IC (Frisina 2001;
Sinex et al. 2002). In fact, the excitatory component of
the subthreshold responses to FM tones in A1 is already
directional selective (Zhang et al. 2003), suggesting that
direction selectivity to FM tones is already computed
subcortically. Thus, much of the feature extraction dis-
cussed above could already be accomplished subcortic-
ally.

This description suggests that the issue of time con-
stants is crucial for understanding processing in A1.
This is because no single physical feature of sounds
was shown to be specifically extracted in the cortex –
subcortical centers can do all of this kind of work. The
special properties of cortical neurons have to do with the
multiple interacting time constants expressed in their
responses.

2 Time constants: neurons in primary auditory
cortex are both sluggish and fast

We therefore claim that the major new feature of the
neuronal activity in A1 is not so much the computation
of complex features, but rather the introduction of
multiple time constants into auditory processing. There is
nothing new in the claim that long time constants appear
in A1: auditory cortex is known to be more sluggish
than subcortical stations on a number of parameters.
Thus, the ability of neurons in A1 to follow repetitive
sounds is reduced relative to subcortical stations (e.g.,
Eggermont 1991). In the context of natural sounds,
cortical neurons follow the energy pattern of vocaliza-
tions with less fidelity than MGB neurons (Creutzfeldt
et al. 1980). Such findings abound in the literature. These
findings suggest that, whereas effective time constants in
the IC are around 10 ms or less, in A1 the effective
processing time constants are on the order of 100 ms.

These longer time constants are annoying – they
cause degradation in the ability of cortical neurons to
code effectively the physical structure of sounds. We
would like, however, to argue that there are other time
constants in play, both much faster than the 100-ms time
constant (on the order of 10 ms or less) and much longer
than the 100-ms time constant (on the order of 1 s or
more). All of these time constants coexist in cortical
neurons and are responsible to a large extent for their
complex behavior.
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2.1 Coexistence of fast and slow time constants

In the naı̈ve view of the slow time constants in A1,
successive stages of lowpass filtering cause membrane
potential fluctuations to slow down considerably in A1
relative to lower auditory stations. The sluggishness of
the spikes is a consequence of the slowing down of the
membrane potential fluctuations. This view is implicit in
the use of the STRF as a characterization of A1 neurons
since the lowpass filtering operation is inherent in the
sluggish modulation transfer functions derived from the
STRF in A1 (Fig. 2). However, this view is inconsistent
with a large corpus of data showing an exquisite
sensitivity of A1 neurons to fast transients.

In fact, the short latency (10–14 ms) and the very
low jitter of the first spike latency (often less than 1 ms)
of cortical neurons (Phillips and Hall 1990) strongly
argue for a fast rise time of the membrane potential at
the onset of sounds. Such fast rise time of the mem-
brane potential is to a large extent inconsistent with a
model in which the membrane potential is the result of
a severe lowpass filtering operation on the envelope of
the stimulus. In fact, Heil and Neubauer (2003) showed
that behavioral thresholds, first-spike latencies in the
auditory nerve, and first-spike latencies in auditory
cortex of cats follow the same rules. They interpret
these rules as the result of a perfect integrator of peak
pressure (rather than acoustic intensity, the square of
the pressure) followed by a spike when the integrator
output reaches a constant level and suggest that this
integrator resides in the first synapse of the auditory
system, between the hair cells and the auditory nerve
fibers. These findings suggest the presence in the cortex
of a faithful copy of the activity evoked by sound
onsets in the auditory nerve. The presence of such a
copy is essentially impossible if the membrane potential
of the cortical neurons is highly smoothed by lowpass
filtering.

Other recent data strengthen the case for fast mem-
brane potential rise time in A1. For example, the data
that led Heil and his collaborators to their integrator
model (Heil 1997a, b; as modeled by Heil and Neubauer
2003) show that some parameters of the first spike, such
as its latency and its probability, are strongly modulated
by the shape of the onset ramp of a sound. Response
properties of cortical neurons show large changes when
the duration of the onset ramp changes between 1 ms
and 10 ms. However, a lowpass filter with a corner fre-
quency of 10 Hz cannot distinguish between ramps of
these durations – both are too fast (Fig. 2). In fact, the
models of Fishbach et al. (2001, 2003), which account
for a large number of physiological and psychoacousti-
cal phenomena related to sound onsets and FM chirps,
required time constants of 1–10 ms to account for those,
even for data from A1.

The most direct evidence for fast dynamics of sub-
threshold events in A1 comes from intracellular
recordings. A number of recent studies (Ojima and
Murakami 2002; Zhang et al. 2003) published such data
for simple stimuli (pure tones and FM chirps). The rise
time of the membrane potential in the study of Ojima

and Murakami (2002), for example, is at least as fast as
the rise time of their stimuli (10 ms).

The fast onset dynamics could, however, be followed
by sluggish sustained dynamics. For many years most
reports of neuronal responses in A1 concentrated on the
onset response, which is usually the only response
component under deep barbiturate anesthesia. However,
late response components are now widely reported, even
under anesthesia. Neurons in A1 respond continuously
to random chord stimuli (deCharms et al. 1998; Schnupp
et al. 2001) to and ripple stimuli (Klein et al. 2000;
Depireux et al. 2001). Late response components are
widely present in response to natural bird chirps (Bar-
Yosef et al. 2002) and even in response to pure tones
(Ulanovsky et al. 2003). These postonset responses,
which dominate, for example, the estimation of the
STRF, could in principle be much more sluggish than
the onset responses.

That this is often not the case is also widely known.
The late sluggishness of cortical neurons is often mea-
sured by the loss of synchrony to repetitive stimuli.
When neurons lock to the envelope of repetitive stimuli,
a rise in repetition rate would often result in a decrease
in the probability of spikes evoked at later periods, but
not in a much greater variability in their generation time
when they do occur (Phillips 1989). Elhilali et al. (2003)
presented direct evidence for the high level of temporal
precision of cortical spikes, both in anesthetized and in
awake animals, during sustained stimulation (by tem-
porally orthogonal ripple combinations, TORCs). In
their data, responses to the same stimulus may contain
spikes that are precise up to 1 ms or so, within the rather
sluggish responses locked to the slow envelope modu-
lations of the TORCs. In the same vein, intracellular
recordings of neurons in A1 in response to repetitive
wideband bursts show that the slope of the membrane
potential trajectory often remains as fast for the later
bursts as it is for the first burst (Las et al. unpublished
results). Cortical sluggishness has often been attributed
to anesthesia effects. Recent reports, however, suggest
that neurons in A1 of awake animals are not much less
sluggish than those under antesthesia (Lu et al. 2001;
Elhilali et al. 2003). Thus, fast and slow time constants
coexist beyond the onset response.

2.2 Very long time constants in auditory cortex

The presence of time constants in auditory cortex that
are much longer than the 10–100 ms range discussed
above was also known for a long time. Neurons in
auditory cortex are often termed ‘‘labile’’ because they
tend to adapt very rapidly to consecutive presentations
of the same stimulus. This lability requires long time
constants in order for previous stimulus presentations to
influence the response of a neuron to the next presen-
tation. These time constants must be on the order of at
least 1 s to account for adaptation occurring for
interstimulus intervals of that duration.

Lability was considered as a serious liability, but re-
cent data suggest that it has useful properties. Malone
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et al. (2002), extending previous results in subcortical sta-
tions (Spitzer and Semple 1993, 1998) have shown that
stimulus-specific adaptation, which exists under some
conditions already in the IC, acts very strongly in A1.

Ulanovsky et al. (2003) extended the scope of such
adaptation studies by using an oddball paradigm to test
the responses of A1 neurons to rare sounds. They used
pairs of frequencies, where one frequency appeared of-
ten (‘‘standard’’) and the other one was rare (‘‘deviant’’).
Responses to the same frequency generally were
dependent on whether that frequency was playing the
role of the standard or of the deviant. For most neurons,
the responses to the same frequency, when deviant, were
stronger than when it was standard. This was true even
when the frequency difference between standard and
deviant was 4%, at least an order of magnitude below
the width of the tuning curves of these neurons at the
sound level used. Ulanovsky et al. further showed that
the relevant time constant is about 1–2 s; when the
interstimulus interval was longer, the adaptation was no
longer apparent. Most significantly for the argument of
this section, this phenomenon was not observed in
recordings of thalamic neurons under the same stimu-
lation conditions.

2.3 Summary: an interplay between at least
three time constants in auditory cortex

We documented at least three time constants that are
relevant for sound processing in A1. The shortest, about
10 ms or less, is manifested in the well-locked onset
responses and in the very low jitter of response
components to specific ongoing acoustic events. The
middle time constant, of about 100 ms, is manifested in
the decrease of firing probability to late periods of
repetitive sounds at rates higher than 20–30 Hz and in
the general sluggish timing of STRFs in the mammalian
cortex. Finally, very slow time constants, of 1 s and
longer, are manifested in the lability of neurons in A1
and may be highly stimulus dependent. These are not the
only time constants operating in A1; for example,
forward masking (Calford and Semple 1995; Brosch
and Schreiner 1997) seems to operate according to yet
another time constant, probably between 100 ms and
1 s.

As discussed above, all three time constants may be
expressed in the responses to the same stimulus. For
example, Nelken and Versnel (2000) recorded responses
to FM tones with a ‘‘trapezoid’’ contour in which the
tone first sweeps up from low to high frequency, stays at
the high frequency for about 300–400 ms, and then
sweeps back to the low frequency. The lowest and
highest frequencies of these contours were well outside
the tuning curves of the neurons. They also used reverse
trapezoids in which the frequency started at the high
frequency, swept down to the low frequency, stayed for
a while at the low frequency, and then swept up again.
The responses were well timed for both upward and
downward sweeps and for both the trapezoid and
reverse trapezoid trajectories. However, the responses to

the upward sweep when it appeared first (in the trape-
zoid trajectory) were stronger than the responses to it
when it appeared second (in the reverse trapezoid tra-
jectory). This finding was attributed to adaptation due
either to the close temporal proximity of the upward and
downward sweeps or to the presence of a continuous
tone (although it was outside the tuning curve of the
neuron). Thus, the neurons manifested both fast and
slow time constants.

We believe that the complexity of cortical processing
is related in an essential way to the multiplicity of time
constants in auditory neurons. Neurons in A1 are both
fast and sluggish. Under some conditions, an extremely
well-timed spike may occur; under other, roughly similar
conditions, this spike will not occur. For example, we
have shown (Nelken et al. 1999, 2001) that adding a low-
level tone to a strong fluctuating noise masker causes a
suppression of the envelope locking. This may occur
under conditions in which the tone by itself does not give
rise to any response. The signal-to-noise ratios at which
this suppression may occur are �30, �40, or even �50
dB. The tone presents, under these circumstances, an
extremely small perturbation, but nevertheless it deter-
mines whether or not the neuron will fire spikes. Similar
findings have been shown in Bar-Yosef et al. (2002),
where the removal of the background noise from
recordings of bird songs could shift or delete well-timed
spikes. We believe, therefore, that the fast time constants
are somehow under the control of the slower time con-
stants. This is most clearly seen in the case of the longest
time constants, which express themselves in a multipli-
cative gain factor that is extremely sensitive to the
parameters of the stimuli (Ulanovsky et al. 2003).

3 Long time constants are crucial for solving
the ‘‘hard problems’’ of auditory perception

What are the longer time constants good for? We would
like to argue that some of the features of the ‘‘hard
problems’’ of auditory perception require the presence
of long time constants. The nontrivial character of the
longer time constants in A1 could supply the required
substrate for solving these problems.

There are many examples of hard problems in audi-
tory perception. For example, speech perception is
hard – speech is highly redundant and is perceptually
resistant to noise, suggesting that it should be easy to
recognize. Furthermore, the activity of neurons in the
auditory nerve and the cochlear nucleus can be shown to
contain enough information for supporting speech per-
ception (Sachs 1984; Shamma 1985; Palmer et al. 1986).
However, physiological accounts of speech perception
are very weak – for example, there are no good candi-
dates for physiological correlates of categorical percep-
tion, with one exception (Steinschneider et al. 1994;
Eggermont 1995).

Two other, less obvious, examples are pitch and
space. Pitch is based on the extraction of regularities in
spectrum and in time that are strongly manifested in the
firing patterns of neurons in the auditory nerve and
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cochlear nucleus (Cariani and Delgutte 1996a, b; Winter
et al. 2001). While it is clear that pitch processing is
performed centrally, it is unclear how pitch is repre-
sented above the cochlear nucleus. Finally, space
perception is based on the processing of binaural cues,
which are first extracted in the brainstem. However,
space perception is more than just binaural cues,
involving integration of cues across time and frequency
(Clifton 1987; Trahiotis and Stern 1989, 1994; Hafter
and Buell 1990; Freyman et al. 1991). The integration of
these cues in complex spatial scenes is very poorly
understood.

These three problems share some common features.
They all require integration across a wide frequency
band, and they all generalize highly across the physical
structure of sounds in the sense that many different
sounds, with very different peripheral representations,
give rise to the same percept. More importantly for the
argument presented here, all three depend on context.
For example, it is possible to change the identity of a
vowel or the pitch of a sound by capturing some of its
components into a separate auditory stream (Darwin
et al. 1989, 1995), and it is possible to manipulate the
detection threshold of a sound by adapting the prece-
dence effect (Freyman et al. 1991).

We believe that the properties of neurons in A1 are
insufficient for fully solving speech, pitch, and space
perception, at least in the sense that there are no neurons
in A1 that will respond to all sounds of the same pitch
independent of their spectral content or that there are no
neurons in A1 that will respond to all /a/ sounds, inde-
pendent of their physical structure. However, the longer
time constants expressed in A1 can serve for building the
auditory objects to which later processes can assign
speech sound identity, pitch value, or spatial location.
Building auditory objects requires long time constants
because of the contextual effects described above. The
coexistence of short and long time constants in A1 may
enable cortical neurons to both extract the auditory
objects and code for their features at the same time.

Based on these considerations, we suggest the fol-
lowing model for auditory processing. Feature extrac-
tion is actually done below the level of the cortex, and
we hypothesize that the most detailed physical repre-
sentation of sounds in terms of their spectrotemporal
structure is actually complete by the level of the IC.
Thalamic and cortical processing operate on this repre-
sentation to generate auditory objects. As suggested by
de Cheveigne (2001), we hypothesize that the most
important operation performed by cortical neurons is
that of splitting sound in one frequency channel into
multiple objects when necessary. It is this operation that
is subserved by the multiple time constants in A1 pro-
cessing. These auditory objects are then operated upon
by higher auditory centers, producing the perception of
phonemic quality, pitch value, spatial location, and all
other auditory qualities.

In this model, A1 has a pivotal role, not in terms of
sophisticated feature extraction, but rather in terms of
the integration processes that occur in it. We believe
that studying the interplay between the different time

constants will lead us to a better understanding of the
operations performed by A1 and therefore to a more
precise formulation of its role in the auditory pathway.
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