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Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one
stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could
be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three
different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from
hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both
psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus
history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the
same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA
caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a
major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream
segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes
in cats and of speech and music in humans.
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Introduction
The activity of neurons in primary auditory cortex (A1) is influ-
enced by stimulus history. For example, when pairs of pure tones
with variable interstimulus intervals are presented, the response
of A1 neurons to the second tone often adapts in a frequency-
specific manner if the interval is shorter than �200 –300 msec
(Calford and Semple, 1995; Brosch and Schreiner, 1997). Most
studies of context-sensitivity in nonbehaving animals have re-
ported time scales of tens to hundreds of milliseconds. A few
studies have demonstrated longer time scales, on the order of
seconds (Malone et al., 2002; Ulanovsky et al., 2003), and perhaps
longer (Condon and Weinberger, 1991); however, none of these
studies has examined explicitly the time scales involved.

Sensitivity of A1 neurons to stimulus history could be used for
stream segregation or binding of auditory objects over time
(Bregman, 1990; Nelken et al., 2003), which is important for
processing of complex auditory scenes. This sensitivity can also
be used for optimizing the coding of sounds by matching the
neuronal firing to the stimulus statistics (Brenner et al., 2000;

Fairhall et al., 2001) and for forming a sensory memory trace that
may capture the complexity of past auditory stimulation (Nää-
tänen et al., 2001).

Human auditory sensory memory has been shown to have a
memory span of seconds, and perhaps even tens of seconds, in
both behavioral studies (Cowan, 1984) and evoked-potential
studies (Bottcher-Gandor and Ullsperger, 1992; Näätänen, 1992;
Cowan et al., 1993). Evoked-potential studies of sensory memory
are usually conducted using an oddball design, in which rare
tones (“deviants”) are embedded within a sequence of common
tones (“standards”), and the standard tones robustly elicit weaker
responses than the deviants (Näätänen, 1992; Cowan et al., 1993).
We have recently tested the sensitivity of single A1 neurons to
stimulus history using the oddball design and have shown that
the responses to the standard are adapted compared with the
deviant and that the magnitude of this effect is inversely propor-
tional to the long-term probability of the deviant (Ulanovsky et
al., 2003). We have also shown that this stimulus-specific adap-
tation (SSA) is absent in the auditory thalamus for stimulus
parameters for which it was strongly expressed in A1 and, fur-
thermore, that SSA affects mostly sustained rather than onset
responses, suggesting a substantial late contribution by intracor-
tical processing. Because previous studies of evoked potentials in
humans have implicated the auditory cortex in sensory memory
(Näätänen and Winkler, 1999), we have proposed that SSA in
single A1 neurons could contribute to auditory sensory memory
(Ulanovsky et al., 2003).

Here we studied the dynamics of adaptation in A1 neurons,
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focusing on the various time scales involved. We characterized
the effects of the detailed stimulus sequence structure on the
neuronal responses, showed that SSA has both local and global
aspects, and constructed a simple linear model that concisely
describes these results. Finally, we showed that SSA in A1 neurons
causes a bias in the neuronal responses to unbiased stimuli.

Materials and Methods
Surgery. Experiments were performed on adult cats under protocols au-
thorized by the committee for animal care and ethics of the Hebrew
University–Hadassah Medical School, as described in detail previously
(Bar-Yosef et al., 2002). Anesthesia was induced by xylazine (0.1 mg,
i.m.) followed by ketamine (30 mg/kg, i.m.) and maintained with halo-
thane (0.25–1.25% as needed) mixed with oxygen and nitrous oxide
(30% O2/70% N2O). Anesthesia level was monitored by measurement of
heart rate (�150/min) and blood pressure (kept at �100 mmHg) mea-
sured via a cannula in the femoral artery. Expiratory CO2 levels were kept
at 3–3.5%. During data acquisition, all of the animals except one were
sufficiently anesthetized so that they did not resist the respirator and were
not paralyzed. The one animal that did resist the respirator was paralyzed
by injection of vecuronium bromide (0.1 mg, i.v.) every 1–2 hr, as
necessary.

Electrophysiology. Extracellular recordings were performed in A1 (five
cats), in auditory thalamus [medial geniculate body (MGB), one cat],
and in A1 and MGB simultaneously (one cat). Thalamic recordings were
performed in all major subdivisions of the MGB. Recordings were done
using two to four glass-coated tungsten microelectrodes (lab made, im-
pedance of 0.2– 0.6 M� at 1 kHz, as measured in the brain tissue), which
were inserted perpendicularly to the cortical surface (when recording in
A1) or dorsoventrally (when recording in MGB). Each electrode was
manipulated independently using a four-electrode drive (EPS; Alpha-
Omega, Nazareth Illit, Israel). The electrical signals were amplified (MCP
Plus; Alpha-Omega) and filtered between 200 Hz and 6 kHz. Spike wave-
forms were sampled at 24 kHz and stored for off-line sorting (AlphaMap;
Alpha-Omega). Single units were spike sorted on-line using template-
based sorting, and in most cases they were also sorted off-line, to improve
unit isolation. The on-line sorters (MSD; Alpha-Omega) supply a histo-
gram of the squared error between the detected spike and the template,
and we required these histograms to have a peak followed by a clear
minimum, signifying the presence of a homogeneous class of spike
shapes similar to the template. For off-line spike, sorting we used an
in-house sorting program (courtesy of Prof. M. Abeles, Department of
Physiology, Hebrew University), using principal components analysis of
spike shapes: we computed the projections of the spike shapes onto the
first and second principal components and then plotted these projections
on a two-dimensional plane and manually encircled visually distinct
clusters. We also verified that there were no interspike intervals shorter
than the refractory period of a single unit. On average, this allowed us to
isolate one well separated unit from each electrode per recording loca-
tion. Well separated units were additionally selected for analysis if they
had significant auditory responses (t test; p � 0.05) and had stable spon-
taneous firing rates (�5% of the well separated units were discarded for
being either nonresponsive or nonstationary). The responses of 158 neu-
rons from A1 and 27 neurons from MGB conformed to these criteria and
are reported here. Part of the data presented here was also used for
different purposes in Ulanovsky et al. (2003).

Sound generation. Stimuli were pure tones generated digitally (AP2;
Tucker-Davis Technologies, Alachua, FL), converted to analog voltage
(DA3-4; Tucker-Davis Technologies), attenuated (PA4; Tucker-Davis
Technologies), and switched with onset and offset ramps of 10 msec
(SW2; Tucker-Davis Technologies). The sounds were presented to the
animal through sealed, calibrated earphones (designed by G. Sokolich,
Newport Beach, CA), with calibration performed in situ by probe micro-
phones (Knowles Electronics, Itasca, IL) precalibrated relative to a B&K
microphone.

Characterizing neurons. During the initial characterization of neurons,
all stimuli were 115 msec long and presented at a rate of one per second.
The microelectrodes were advanced while diotic broadband noise bursts

were presented. After a unit was isolated on each electrode, the preferred
aurality was determined using broadband noise rate-level functions to
the right (contralateral) ear alone, left ear alone, and both ears together;
the remainder of the experimental protocol was performed at the pre-
ferred aurality using pure tones only. The frequency response area (FRA)
was measured using a matrix of 45 frequencies logarithmically spaced
from 0.1 to 40 kHz and eight sound levels linearly spaced between 0 and
87 dB sound pressure level, and the best frequency (BF) and minimal
threshold of the neuron were determined. We then presented the main
auditory stimuli of our experiments.

Auditory oddball stimuli. For testing the adaptation properties of au-
ditory neurons, we used three stimulus designs, all using pure tones of
identical duration (230 msec), interstimulus interval (736 msec onset to
onset), and tone level (fixed at 40 dB above minimum threshold of one of
the simultaneously recorded neurons, usually the neuron that had the
best on-line separation), as follows. (1) An oddball design: the deviants
were embedded in a sequence of standards. We selected two frequencies,
f1 and f2 ( f1 � f2), with the central frequency ( f2 � f1) 1/2 having a fixed
value close to the BF of the neuron that was best separated on-line. The
relative probability of f1 and f2 was fixed within each stimulus block (see
Fig. 1 A). (2) A “switching-oddball” design: we repetitively swapped the
probabilities of the two tones within the block (see Fig. 1 B). (3) A
“response-curve” design: n frequencies were presented with equal prob-
ability (n � 20), as is typically done for measuring neuronal response
curves (see Fig. 1C), except that the frequency range was 0.97 octaves, a
narrow range that fit inside the FRA of most neurons at the tested level.

For the oddball design, the frequency difference �f � ( f2 � f1)/( f2 �
f1) 1/2 was set to one of three values: �f � 0.37, 0.10, or 0.04, correspond-
ing to frequency ratios of 0.526, 0.141, and 0.057 octaves, respectively.
The probability of appearance of standard/deviant was 90/10 or 70/30%,
in addition to a 50/50% control. The combination of �f and probability
of the standard/deviant defined a “stimulus condition,” and we used four
different stimulus conditions (see Fig. 1 A). Each condition was com-
posed of three blocks: in one block, frequency f1 was standard and f2 was
deviant; in another block, f2 was standard and f1 was deviant; the third
block served as a control (50/50%). Because of the large number of stim-
ulus blocks, not all neurons were tested with all of the four conditions. In
MGB we used only condition 3 ( p � 90/10%; �f � 0.10) (see Fig. 1 A). In
each block, the tone sequences were generated as a random permutation
of the total number of stimuli in the block, so for a given type of block, the
number of appearances of each frequency was the same for all neurons.
All blocks contained a total of 400 tones.

For the switching-oddball design, which we presented only in A1, we
used blocks of 800 trials, consisting of 20 identical repetitions of a basic
“frozen” sequence of 40 trials (see Fig. 1 B). In the first 20 trials of the
basic sequence, the frequencies f1/f2 had probabilities 80/20%, and in the
last 20 trials, the probabilities were swapped (see Figs. 1 B, 6 A).

For the response– curve design, we presented a 200 trial block consist-
ing of 20 frequencies (evenly spaced on a logarithmic scale) � 10 repeti-
tions each (see Fig. 1C). The stimuli were presented randomly and
spanned a narrow frequency extent, totaling 0.97 octaves, centered close
to the BF of the neuron. We used the same stimulus level as for the other
designs: 40 dB above minimum threshold. Because of the high stimulus
level, for most neurons all of the 20 frequencies evoked significant re-
sponses (we never observed nonmonotonic neurons that were com-
pletely suppressed at high levels, although we did observe some neurons
that were partially suppressed; all of the nonmonotonic neurons were
included in the analysis together with the monotonic ones, because no
clear differences were found in the adaptation dynamics between mono-
tonic and nonmonotonic neurons).

Data analysis. Poststimulus time histograms (PSTHs) (see Fig. 2) were
smoothed with a 10 msec Hamming window for display only, but anal-
yses were done without smoothing. Responses were quantified by spike
counts that were measured in a window of 330 msec, starting at stimulus
onset and ending 100 msec after stimulus offset. To quantify the magni-
tude of SSA, we defined a normalized SSA index (SI) as follows:

SI �
�d� f1	 � d� f2	 � �s� f1	 � s� f2		

�d� f1	 � d� f2	 � �s� f1	 � s� f2	
,
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where d( f1) and s( f1) are responses to frequency f1 when it was deviant
and standard, respectively, and similarly for f2.

To look for a possible dependence of SI on the shape of the FRA and
position of the tones with respect to the FRA, we computed the tuning
curves (see Fig. 2, white lines on FRAs), defined as the lowest level for
each frequency in which the response of the neuron was higher than its
spontaneous firing rate 
20% of the maximal overall response. We then
computed the following nine parameters: (1) minimal threshold, defined
as the lowest level reached by the tuning curve; (2) the difference between
the level of the oddball stimuli and the minimal threshold; (3) BF, de-
fined as the frequency at which the sum of the responses over all sound
levels was maximal; (4) absolute difference, in octaves, between the BF
and the central frequency ( f2 � f1) 1/2; (5) tuning curve compactness,
defined as the area of the frequency-level plane lying above the tuning
curve, divided by the squared length of the tuning curve (compactness is
high for compact V-shaped tuning curves and low for multipeaked tun-
ing curves such as unit 50 in Fig. 2); (6) sharpness of tuning of the FRA at
40 dB above threshold (Q40), defined as the BF divided by the FRA width
at that level (the total width, including all tuning curve peaks); (7) sharp-
ness of tuning of the FRA at 10 dB above threshold (Q10); (8) average
firing rate of the neuron, defined as the average of the responses to
frequencies f2 and f1 at the 50/50% probability condition; and (9) f2 � f1
response difference, defined as the absolute difference in responses to
frequencies f2 and f1 for the 50/50% probability condition, normalized by
the sum of the responses as follows:

�response� f2,50%	 � response� f1,50%	�
response� f2,50%	 � response� f1,50%	

.

We computed the correlations of SI with these nine parameters for con-
dition 2 ( p � 90/10%; �f � 0.37) (see Fig. 1 A) and condition 3 ( p �
90/10%; �f � 0.10), yielding a total of 18 correlations.

To characterize the spike-count distributions of neurons, which
tended to have prominent zero-count peaks (many “failed responses”),
we fit the spike count distributions with a mixture model of a Poisson
process with excess failure probability: p(n) � pf�0 
 (1 � pf)Poiss(n;�),
where p(n) denotes the probability of observing n spikes and pf is the
excess probability of failures (zero counts, denoted by �0) over that ex-
pected from a Poisson distribution. To fit the model, the rate � of the
Poisson distribution Poiss(n;�) was estimated as follows. First, for each
neuron, we computed the average spike count using those trials that had
non-zero counts only, denoting this average by �non-zero. Because
�non-zero was computed without taking failures into account and because
failures may happen even under the Poisson assumption, �non-zero is
larger than the parameter � of the Poisson component. To obtain the
correct �, we solved for � using the relationship �non-zero � �/(1 � e ��),
which is easily derived from the Poisson distribution. The Poisson distri-
butions that are plotted in Figure 4, A and B (solid line), are based on this
�. We then used the observed probability of zero counts, p(0), and com-
puted pf from the above formula for p(n), as follows:

pf �
p�0	 � Poiss�0;�	

1 � Poiss�0;�	
.

To characterize the time course of SSA in the oddball design, the
responses to the k standard trials and the (400 � k) deviant trials were
combined by their order of presentation in the sequence, averaged across
all neurons, and then plotted at their original 400-trial-long time scale
(see Fig. 5C,D). We then performed a nonlinear least-square fit to this
population mean curve to find the best-fitting exponential function as
follows: decay_size � (1 � e �t/�) 
 asymptote.

For the switching-oddball stimuli, we performed a similar fitting pro-
cedure (for all fits, the SD of � was derived from the least-square fitting
procedure). We chose to fit the mean population responses, because the
responses of individual neurons were often too noisy to allow a good fit,
although many of the neurons did show clear adaptation and recovery
from adaptation (see Fig. 6 A, B). Importantly, when taking those neu-
rons where the fitting converged successfully, the median time constant
was quite similar to the time constant computed by fitting the mean

population response. Thus, the typical fit was quite similar to the fit of the
average (see Results).

Modeling the effect of global probability and local sequence. The response
of each neuron at every trial (i.e., the spike count evoked by each tone)
was normalized as follows:

Responsenormalized �

log10�1 �
(response � 0.5) � mean response�p � 50%,fi	

�response � 0.5	 � mean response�p � 50%,f1	
� .

Thus, the normalized responses were centered at the mean response in
the 50% condition. The addition of 0.5 spikes per second to each trial was
necessary for avoiding logarithms of 0 where zero counts occurred. We
also tried a number of other normalizations (z-score, ratio of responses)
combined with a number of transformations (log transformation, power
transformation, linear transformation); they all gave similar results. For
each stimulus probability, the normalized responses of all neurons were
then analyzed together to determine the effects of local and global stim-
ulus history.

Statistics. Statistical tests were considered significant when p � 0.05,
except where multiple comparisons were made, in which case the signif-
icance level was adjusted appropriately. In some cases, p values are spe-
cifically stated as a measure for the strength of the effects.

Results
Adaptation of A1 neurons to stimulus statistics
When presenting oddball stimuli (Fig. 1A), A1 neurons tended to
respond more strongly to the deviant stimuli, often responding
more strongly to frequency f1 when f1 was the deviant but also
more strongly to frequency f2 when f2 was the deviant [Fig. 2,
red( f1) � blue( f2) and red( f2) � blue( f1)]. Thus, A1 neurons
showed SSA.

We used an SI to quantify the adaptation strength (see Mate-
rials and Methods). SI was on average positive in all four stimulus
conditions: condition 1 (n � 30 neurons), SI � 0.142 � 0.212
(mean � SD); condition 2 (n � 99), SI � 0.265 � 0.223; condi-
tion 3 (n � 107), SI � 0.126 � 0.202; condition 4 (n � 68), SI �
0.053 � 0.126. These average SIs correspond to a response that
was stronger when the tone was deviant, compared with the same
tone when standard, by 33, 72, 29, and 11%, respectively, for the
four stimulus conditions.

The SI values were correlated between the four stimulus con-
ditions so that highly adapting neurons tended to have large SIs in
all conditions: the average Spearman correlation between the six
pairs of conditions was rs � 0.252, and the average correlation
between condition 2 ( p � 90/10%; �f � 0.37) and the other three
conditions was rs � 0.337. Although stimulus-specific changes in
firing rates were found in essentially all neurons, only a few neu-
rons (6 of 158) showed an effect of latency, whereby the latency of
the onset responses was shorter for the deviant. Therefore, the
analyses of neuronal responses presented here are based on spike
counts, focusing on the two conditions for which we collected the
most data: condition 2 ( p � 90/10%; �f � 0.37), in which the
adaptation was also strongest, and condition 3 ( p � 90/10%;
�f � 0.10), which elicited adaptation only in A1 and not in MGB
(Ulanovsky et al., 2003).

Many neuronal properties in cortex are organized in columns.
To check whether SSA is also arranged in columns, we compared
the SI values for neurons recorded within the same electrode
track, as opposed to neurons recorded in different tracks. Because
tracks were mostly perpendicular to the cortical surface, the neu-
rons recorded in each track approximately represent a single cor-
tical column. Figure 3A shows the SI values for condition 3, sum-
marizing 91 neurons recorded in 29 tracks in four cats. Included
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in this analysis are all neurons in tracks that had two neurons or
more per track.

As illustrated by Figure 3A, the between-track SI variability
was larger than the within-track SI variability (one-way ANOVA,
grouped by tracks; condition 3, F(28,62) � 1.751, p � 0.05; condi-
tion 2, F(26,64) � 1.911, p � 0.02), suggesting that well separated
neurons recorded in the same cortical column tended to undergo
adaptation of similar magnitude.

The track length (depth difference between the first and last
recording location in each track) had an average of 444 �m,
averaged across all 29 tracks, with an interquartile range of 243–
654 �m and a total range of 0 –1217 �m. We did not observe any

clear variation of SI with absolute recording depth (data not
shown), but because absolute depth was not measured accurately
(unlike the relative depth along a track, which was accurate), it is
possible that some systematic relationship between SI and corti-
cal layer does exist.

Because the distances that we measured along a track were
substantially shorter than the distances between tracks along the
cortical surface, it could be possible that it is not columnar orga-
nization but rather absolute distance (both in depth and along the
cortical surface) that determines the differences between the SIs
of neurons. In this case, we would expect a correlation between
the length of a track and the range of SI values (maximum SI
minus minimum SI) along it; however, this correlation was not

Figure 1. Auditory stimuli used in this study. A, The oddball design: stimuli consisted of
sequences of standard and deviant tones, differing in frequency. We used three probability
ratios ( p � 90/10, 70/30, and 50/50%) and three frequency differences (�f � 0.37, 0.10, and
0.04), and their combination defined four stimulus conditions. For each condition, we schemat-
ically represent here the three blocks that were used. The stimulus probability is denoted by the
height of bars as well as by their darkness (standard, black; deviant, light gray; 50/50% control,
dark gray), and the frequency difference �f is denoted by the horizontal separation. B, The
switching-oddball design, consisting of a basic 40 trial sequence, in which the f1 /f2 probability
ratio switched in the middle from 80/20 to 20/80% (�f � 0.37). This frozen basic sequence,
which is given at the bottom, was repeated 20 times for a total of 800 trials and was
identical for all neurons. C, The response-curve design. We randomly presented 20 fre-
quencies, 10 repetitions each, spanning a total frequency range of 0.97 octaves (each dot
represents 1 stimulus trial).

Figure 2. Activity of four neurons in A1 in response to the oddball stimuli. Each row corre-
sponds to one neuron. First column, FRA (color coded) with the tuning curve (white line) and
amplitude and frequencies used for the oddball stimuli (magenta; vertical lines are for �f �
0.37). Second column, Responses to condition 2 of the oddball stimuli ( p � 90/10%; �f �
0.37), for frequency f1 and f2 separately, as well as the mean response to f1 and f2. Third column,
Responses to condition 3 ( p � 90/10%; �f � 0.10). Colors denote standard (blue), deviant
(red), and p � 50% control (black). The stronger response to the deviant than to the
standard (red � blue), both when f1 was the deviant and f2 was the deviant, demon-
strates the presence of SSA.
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significant (r � �0.01; df � 27; NS), further indicating a colum-
nar structure of adaptation.

The similarity of SI values along an electrode track could be an
epiphenomenon of other shared properties. For example, it could
be attributable to the variability between cats; however, the
within-track similarity of SIs remained when we took into ac-
count the variability between cats (one-way nested ANOVA;
tracks nested within cats; condition 3, F(25,61) � 1.798, p � 0.05;
condition 2, F(23,63) � 1.584, p � 0.077).

Another possibility is that the SSA is correlated with other
neuronal properties, which in turn are organized in cortical col-
umns; however, the SI was uncorrelated with all parameters that
describe the shape of the receptive fields of auditory neurons
(their FRA). Figure 3, B and C, shows that the SI was uncorrelated
with the BF of the neuron and with its f2 � f1 response difference
(the absolute difference of responses to f2 and f1 for p � 50/50%
presentation; see Materials and Methods). This lack of correla-
tion is illustrated in Figure 2, in which all neurons showed strong
adaptation despite variability in their BF (e.g., higher BF in unit
54 than in unit 65) and their f2 � f1 response difference (e.g., in
condition 2, frequency f1 evoked substantially stronger responses
than frequency f2 in unit 50 but not in the other units; however,
the SSA was as strong as in other units. The response to f1, when
standard, was smaller not only than the response to f1, when
deviant, but also than the response to f2, when deviant). Figure 2
also illustrates the independence of SI from the FRA bandwidth
(larger bandwidth in units 54 and 50 than in units 65 and 44).
Altogether, we computed the correlation of SI with the following
response parameters: minimal threshold, stimulus level above
threshold, BF, stimulus frequency difference from BF, tuning
curve compactness, FRA sharpness at 40 dB above threshold

(Q40) and 10 dB above threshold (Q10), average firing rate, and f2
� f1 response difference (see Materials and Methods for defini-
tions). We computed these correlations for conditions 2 and 3,
yielding a total of 18 correlations. None of these correlations was
significant (we considered the Bonferroni-corrected p � 0.003
level, but in fact all correlations yielded p � 0.04 individually).
Together, these data indicate that the tendency of an A1 neuron
to undergo adaptation is independent of its tonal response prop-
erties and that SSA is a neuronal property that seems to be clus-
tered in “adaptation columns.”

Adaptation increases the proportion of failures in the
responses of A1 neurons
The strong adaptation in the firing rate for the standard could
result from a decrease in the mean of the spike count distribution,
preserving the shape of this distribution, or it could result from a
nontrivial change in the shape of the spike count distribution. To
examine this, we analyzed the full spike count distributions of the
neurons, computed separately for the standard trials and for the
deviant trials (Fig. 4). Figure 4, A and B, shows the spike count
distributions for two neurons. These distributions have a prom-
inent zero-count bin; this bin contains all trials in which the
neuron failed to respond altogether. The excess of failures was
especially large for the standard stimuli (black bars). To quantify
this, we fit to the spike count distributions a mixture model of a
Poisson process and a binary component as follows: p(n) �
pf�0 
 (1 � pf)Poiss(n;�) (see Materials and Methods) (Fig. 4A,B,
solid lines denote the Poisson component).

The parameter pf, which quantifies the extra failure probabil-
ity relative to a pure Poisson distribution, was positive in most
neurons (Fig. 4C), both for the standard stimuli (91 of 99 neu-
rons; Wilcoxon signed rank test: p � 10�14) and for the deviant
stimuli (75 of 99 neurons; Wilcoxon signed rank test: p � 10�7).
In fact, for the standard stimuli, 52% of the neurons (51 of 99)
had pf � 0.4, which means that if the probability of failures pre-
dicted from the Poisson model was, for example, 0.2, then the
observed probability of failures was �0.6. This suggests that the
excess failures in this model are indeed essential for describing the
responses. A trial results either in a failure (with probability pf) or
in a response, and if there is a response, the spike count is approx-
imately Poisson distributed (which also contributes to the total
failure probability).

Moreover, pf was larger for the standard than for the deviant
stimulus (Fig. 4C) (86 of 99 neurons above the diagonal; Wil-
coxon signed rank test: p � 10�12). This difference in pf could be
caused by the difference in firing rates (smaller rate for the stan-
dard), or it could be caused by adaptation per se (which is stron-
ger for the standard), regardless of the firing rate. To dissociate
these two possibilities, we plotted pf for the standard and the
deviant, separated into groups of matched firing rates (Fig. 4D).
Figure 4D demonstrates that pf was reduced at higher rates (two-
way ANOVA on firing rate groups � standard/deviant status;
effect of firing rate groups: F(3,186) � 5.26, p � 0.002); however,
when this effect of firing-rate group is factored out, pf was clearly
higher for the standards than for the deviants (two-way ANOVA
as above; effect of standards vs deviants: F(1,186) � 12.11, p �
0.001; no significant interaction was found between standard/
deviant status and firing rate: F(3,186) � 1.3, p � 0.28, although it
seems that the difference between the groups does become
smaller with increased firing rate). These data suggest that in the
adapted state, A1 neurons have an increased number of “fail-
ures,” regardless of firing rate.

In some extreme cases, such as frequency f2 of the neuron in

Figure 3. A, Adaptation columns in A1: box plots of SI values for neurons recorded along the
same electrode track (29 tracks from 4 cats), sorted for each cat in ascending order of average SI.
Each box plot represents the median, interquartile range, and total range of SIs along a single
electrode track. Only electrode tracks with two neurons or more are shown (total n � 91
neurons). In cat 1, only a single track was recorded (track #1). Data are for p � 90/10%; �f �
0.10. B, No correlation between the SI and the BF of the neuron (left; n � 76 neurons) or the
f2 � f1 response difference (right; n � 56) for p � 90/10%, �f � 0.37. C, Same lack of
correlation for p � 90/10%, �f � 0.10 (n � 90 and 81 for left and right panels, respectively).
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Figure 4A, the fitted Poisson distributions were essentially iden-
tical for the standard and the deviant (note overlap of black and
gray solid lines). In this case, the adaptation increased the prob-
ability of failures without affecting at all the spike count distribu-
tion in those trials when the neuron did respond; however, in
most neurons, the firing rate was suppressed for the standard
compared with the deviant even in trials with non-zero re-
sponses, as can be seen from SI values computed for trials with
non-zero responses only (Fig. 4E) (SI � 0; Wilcoxon signed rank
test: p � 10�5). Nevertheless, the SI computed for non-zero re-
sponses only was much smaller than the SI computed for all of the
trials (Wilcoxon signed rank test: p � 10�10; data not shown).
Thus, adaptation had a dual effect on neuronal firing: it decreased
the firing rate in those trials when the neuron did respond, but it
also increased disproportionately the probability of failures.

Finally, one interpretation of these data is that the neuronal
firing is determined by a two-stage mechanism. First, the neuron
either responds or fails, in a Bernoulli process (or a binary pro-
cess) with probability of failure Pf ; second, if the neuron does
respond, it responds in a Poisson manner. We propose that this is
a generalization of the recently reported finding of “binary spik-
ing” in A1 (DeWeese et al., 2003). In that case, the neuron, when
responding, almost always fired a single spike. We show here that
the distribution of spikes, when responding, may also be different
from that suggested by DeWeese et al. (2003), although keeping
the binary character of the response–failure decision.

Multiple time constants of adaptation in A1
To address the time course of cortical adaptation, we first exam-
ined how the neuronal responses develop over consecutive trials
of the oddball design (Fig. 5) (see also Materials and Methods).
Figure 5, A and B, illustrates the time course of adaptation of two
single neurons in condition 2. These neurons adapted over time
to the high-probability stimuli but showed very little adaptation,

or even enhancement of the responses, to
the low-probability stimuli. We were in-
terested in computing the time constants
of this adaptation and comparing them
with reported time constants from human
evoked potentials and sensory memory
studies, which presumably reflect the activity
of large neuronal populations. Because of
this, and because it was difficult to compute
time constants for most individual neurons
attributable to variability in the responses,
we report here the dynamics of the mean
population responses (Fig. 5C,D).

The time course of adaptation differed
with stimulus probability. For example, in
condition 2 ( p � 90/10%; �f � 0.37) (Fig.
5C), there was no adaptation when the
tone appeared with a probability of 10%
(light gray), but when the same tone was
equiprobable (dark gray), the responses
adapted exponentially with a single time
constant � � 48.4 � 6.5 sec. When the tone
appeared with a probability of 90%
(black), the time constant was � � 18.7 �
2.1 sec, with an additional faster time con-
stant of �1 sec expressed as a substantial
decline immediately after the first trial. For
the other stimulus conditions (e.g., condi-
tion 3, p � 90/10%, �f � 0.10) (Fig. 5D),

there was some adaptation for the deviant, but otherwise the
results were similar. The responses in the equiprobable condition
were fit well by a single slow exponential, whereas when the tones
appeared with a probability of 90%, the responses contained both
a fast (�1 sec) and a slow component.

Figure 5E displays the slow time constant for the four stimulus
conditions, showing that the time constant of adaptation was
consistently longer when the tones were equiprobable (probabil-
ity 50%) than when the same tones appeared with a probability of
90% (� 2 � 46.9; df � 4; p � 10�8). The ratios of time constants
between the 50 and 90% cases equaled 4.7, 2.6, 2.0, and 3.2 for the
four stimulus conditions, being larger than the ratio of standard
probabilities (90% divided by 50% � 1.8) and smaller than the
ratio of deviant probabilities (50% divided by 10% � 5), indicat-
ing that the time constants were not simply proportional to the
probability of either the standard or the deviant. Thus, adapta-
tion had complex dynamics, consisting of at least two time con-
stants, in which the slower time constant depended on the prob-
ability of the tone being faster when the tone probability was
higher.

The steady-state responses also varied with the stimulus con-
dition (Fig. 5F). The difference between the steady-state re-
sponses for a tone when rare and when common decreased as the
frequency difference decreased. This was caused mostly by a de-
crease in the steady-state responses to the tones when rare (Fig.
5F, light gray) but also by a possible increase in responses for the
same tones when common (black).

To further study the dynamics of adaptation, we presented 24
neurons in A1 with a switching-oddball design, in which we re-
petitively switched between two stimulus probability distribu-
tions (Figs. 1B, 6A). These stimuli consisted of frozen sequences
that were identical for all neurons. The responses to the frozen
sequences had at least four time constants of adaptation and re-
covery from adaptation (Fig. 6): (1) “one-trial effect” (� � inter-

Figure 4. Adaptation increases the proportion of failures in the responses of A1 neurons. A, B, Spike-count distributions for two
neurons (A, B), for frequencies f1 and f2 , when they were standards (black bars) or deviants (gray bars). Solid lines, Fits of Poisson
distributions, based on non-zero counts only. C, The parameter pf indicates the observed probability of zero-counts minus pre-
dicted probability from the Poisson fits, plotted for standards against deviants. D, More failures for standards than for deviants.
Population means of pf for standards and deviants, grouped by firing rate, are shown. Note that each neuron contributes twice to
this plot; for example, for the deviant it may contribute to a high firing-rate bin and for the standard it may contribute to a lower
firing-rate bin. Number of neurons averaged for each bar, from left to right: 57, 38, 13, 21, 11, 6, 16, and 32. E, Adaptation index
SI, computed for non-zero counts only. Data are for stimulus condition 2 ( p � 90/10%; �f � 0.37).
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stimulus interval � 0.736 sec): responses to the standard stimulus
in postdeviant trials (Fig. 6A, red arrows) were enhanced com-
pared with predeviant trials (blue arrows). (2) “Adaptation to
stimulus statistics”: neuronal responses to a stimulus adapted
when it was the standard and recovered from adaptation when it
was the deviant (Fig. 6A,B, examples of three neurons). When
fitting exponential functions to the single-neuron responses (Fig.
6B), the time constants were quite variable among neurons, with
a median time constant of � � 6.57 sec for the adaptation (inter-
quartile range, 2.9 –17.2 sec) and � � 14.71 sec for the recovery
(interquartile range, 3.4 – 61.0 sec). The time course of the mean
population response (Fig. 6C) was well fit by single exponentials
and had time constants that were reasonably similar to the pop-
ulation medians: � � 3.20 � 1.56 sec for the adaptation and � �
8.75 � 5.65 sec for the recovery. Thus, in this case, the fit to the

Figure 5. Time course of adaptation to oddball stimuli in A1 neurons. A, B, Two examples of
adaptation to stimulus condition 2 (90/10%; �f � 0.37), plotted separately for deviant (light
gray), p � 50% (medium gray), and standard (black). Responses were smoothed with a three-
element hamming window for display only. C, Time course of adaptation of the mean popula-
tion responses for stimulus condition 2 (90/10%; �f � 0.37); colors are the same as in A and B.
The abscissa shows the average serial position of the trial inside the block; the ordinate shows
the mean population firing rate (without any smoothing) together with single-exponential fits
(white). D, Time course of adaptation of the mean population responses for stimulus condition
3 (90/10%;�f �0.10). E, Time constants of fitted exponentials for the four stimulus conditions
(data for deviants are not shown because the weak adaptation made computation of these time
constants very inaccurate). F, Asymptotic firing rates of the exponential fits. In all population
panels, for each of the four stimulus conditions, we used all of the neurons presented with this
condition: n � 30, 99, 107, and 68, respectively, for conditions 1– 4 (the 4 stimulus conditions
are listed from left to right in E, F ).

Figure 6. Time course of adaptation to frozen switching-oddball stimuli, showing multiple
time scales of adaptation (n � 24 neurons in A1). A, Left, Responses of a single neuron to the
two tones that comprise the basic 40 trial stimulus sequence (the sequence is displayed along
the ordinate) (see also Fig. 1 B). The responses were averaged over the 20 repetitions of this
frozen sequence and are represented as color-coded PSTHs. Right, Spikes counts for the same
cell, for frequencies f1 (black) and f2 (magenta). Arrows mark examples of predeviant (blue) and
postdeviant (red) standards. B, Average responses of two more neurons as a function of the
sequential position of the stimulus within the basic 40 stimulus sequence (black, f1; magenta,
f2 ), together with exponential fits (cyan). C, Exponential fits to the population mean responses
(same colors as in B). We computed the mean response over all neurons and then used nonlinear
least-squares fitting of exponential functions to this mean. D, Population responses to the full
800 trials, unfolding the 20 repetitions of the basic sequence (ticks at the bottom). Top inset,
“Zoom in” on the responses to three consecutive repetitions of the basic sequence. Right
inset, Average population response to frequencies f1 and f2 , with separate exponential fits
for trials 1– 80 (steep cyan curve), for which we used the exponential computed from the
p � 50% responses in Figure 5C (� � 48.4 sec), and for trials 81– 800 (shallow cyan
curve). E, Mean within-tone population response in the switching-oddball design, aver-
aged over the two frequencies for all of the trials and all neurons (gray), together with a
double-exponential fit (cyan).
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average was reasonably similar to the average of the fits. (3) “Ad-
aptation to stimulus meta-statistics”: to reveal slower time con-
stants, the full block of 800 trials was used (Fig. 6D). The transi-
tions 80/20%3 20/80%3 80/20%3 20/80%3 (. . . ) resulted
in a long-term presentation probability of 50/50% for the two
tones. Indeed, the initial portion of the long-term curve (Fig. 6D,
right inset) was well fit by the same exponential as the p � 50%
responses from Figure 5C: � � 48.4 sec [to obtain this curve, we
eliminated the antiphase modulations in the responses that were
caused by the probability switching (Fig. 6D, top inset) by inter-
polating and averaging the responses to the two frequencies as a
function of location in the global sequence]. This result suggests
that the neurons adapted to the long term meta-statistics of the
stimuli. (4) “Very slow adaptation”: the latter portion of the
curve in Figure 6D showed a very slow adaptation, with time
constant � � 630 � 969 sec; however, this was a very small decline
that, in addition, was not stimulus specific, so we will henceforth
focus on time constants of up to a few tens of seconds.

Adaptation was present not only when considering responses
over the time course of many trials but also during the tone
presentation itself, as seen from the population PSTH (Fig. 6E).
This adaptation was well fit by a double exponential, with a fast
time constant describing the early adaptation of the responses
(� � 6.6 � 0.4 msec) and a slower time constant describing the
adaptation of the sustained responses (� � 150.3 � 29.0 msec).
Together, this multitude of time constants, from � � 6.6 msec to
� � 48.4 sec (and perhaps up to � � 630 sec), provides evidence
that the time scales of adaptation in A1 neurons span at least four
to five orders of magnitude, from milliseconds to tens and hun-
dreds of seconds, all being present simultaneously.

Effect of short-term versus long-term stimulus history
The one-trial effect that we observed in the responses to the fro-
zen stimuli (Fig. 6A, red and blue arrows) can be restated as
follows. The response to tone A is stronger when it is preceded by
a different tone, B (B3A, or “BA sequence”), than when it is
preceded by the same tone, A (AA sequence). In principle, such a
one-trial effect could explain the stronger neuronal responses to
the deviants relative to the standards. According to this “local-
only hypothesis,” the response to stimulus A in the sequence BA
(response RBA) and the response to stimulus A in the sequence
AA (response RAA) obey the one-trial effect (that is, RBA � RAA),
but RBA and RAA are fixed responses that are independent of the
global probability of A. If A has a probability of 10%, however,
then BA sequences occur nine times more often than AA se-
quences, and the average response to A is Rdeviant � (0.9 RBA 
 0.1
RAA), whereas if A has a probability of 90%, the situation is re-
versed, and the average response to A is Rstandard � (0.1 RBA 
 0.9
RAA). It follows that because of the one-trial effect (RBA � RAA),
we should observe Rdeviant � Rstandard, as was indeed the case.

In contrast to this local-only hypothesis, the “local-plus-
global hypothesis” suggests that in addition to the one-trial effect
(RBA � RAA), the responses are also influenced by the global
probability of A, so that both RBA and RAA are higher when A is a
deviant than when A is a standard, thus further increasing the
difference between Rdeviant and Rstandard. In other words, the hy-
pothesis is that A1 neurons integrate the sensory input over long
time periods, becoming more adapted to A when A occurs more
often, so that the responses also depend on the long-term prob-
ability of stimulus A.

To distinguish between these two hypotheses, we analyzed the
concurrent effects of the local sequence and the global probabil-
ity, following the analysis method of Squires et al. (1976) that was

originally applied to the P300 evoked potential. The analyses were
done separately for each probability condition. We represented
the stimulus at every trial by “A” (the “first-order response”),
where A could be frequency f1 or f2, whether standard or deviant.
We then associated each response with the sequence that pre-
ceded it, the “local stimulus history.” Thus, when the preceding
stimulus was identical to the current stimulus, the responses were
associated with the second-order sequence AA, whereas when the
preceding stimulus was different from the current stimulus, the
responses were associated with the second-order sequence BA.
Similarly, there were four possible third-order sequences that
ended with A (BBA, ABA, BAA, and AAA), eight possible fourth-
order sequences (BBBA, BABA, etc.), and 16 possible fifth-order
sequences (BBBBA, ABABA, etc.). We then computed the aver-
age normalized neuronal response associated with each of these
sequences (see Materials and Methods for the normalization pro-
cedure), considering only sequences that occurred at least 25
times among all trials times all neurons. The averaged responses
for each class were plotted in the form of “local history trees,”
drawn separately for each of the five probabilities (Fig. 7).

As expected from both the local-only and local-plus-global
hypotheses, the one-trial effect was indeed present, with response
to stimulus A being stronger when preceded by B than by A
(RBA � RAA). In fact, this one-trial effect was present in each of
the five trees. Moreover, in most cases, the one-trial effect was
generalized to an “n-trial effect,” whereby the response to stimu-
lus A was stronger when it was preceded by a sequence that
started with B than by the same sequence that started with A (e.g.,
RBBA � RABA). This n-trial effect was present up to sequences of
orders three to four and less pronounced for fifth-order se-
quences (Fig. 7) ( p � 50%), suggesting a decaying “memory” for
the local sequence.

The responses to local sequences, however, depended on the
global probability as well. For example, in Figure 7, it is clear that
RBA( p � 10%) � RBA( p � 30%) � RBA( p � 50%) � RBA( p �
70%) � RBA( p � 90%). This is inconsistent with the prediction
of the local-only hypothesis but consistent with the prediction of
the local-plus-global hypothesis.

To quantify these observations, we constructed a linear model
for the history sensitivity of A1 responses, similar to the model of
Squires et al. (1976). We assumed that the neuronal responses to
a stimulus are positively correlated with the “unexpectedness” of
the stimulus, which in turn is determined by a linear combination
of two factors: (1) the global probability of the stimulus, which
could take here the values p � 0.1, 0.3, 0.5, 0.7, or 0.9, and (2) the
memory (M) for the local abundance of this stimulus within the
preceding sequence. For M, we assumed that the effect of preced-
ing stimuli is a decaying function of serial position; specifically,
we assumed that the memory for stimulus A at trial k depends in
an exponentially decaying manner on the sequence of stimuli Si

that preceded it, as follows:

Mk� A	 �
1

Z �
i�k�N

k�1

	k�iSi,

where Si � 1 for stimulus A, Si � 0 for stimulus B, N is the order
of the sequence (we used N � 5), 	 is a constant that determines
the time course of memory decay, and Z � 
	 i is a normalization
factor that makes M into a measure of local probability. Our
prediction was that the neuronal responses would be negatively
correlated with both p and M.
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We started by fitting the model to the
�f � 0.37 data (probabilities 90/10, 70/30,
and 50/50%). First, we computed the free
parameter 	, by finding the 	 that gave the
most negative linear correlation between
the local memory M and the averaged nor-
malized neuronal responses (the correla-
tion was computed over all fifth-order se-
quences, n � 16). The obtained value was
	 � 0.51, which corresponded to correla-
tions r � �0.603, �0.897, �0.927, �0.611,
and �0.398, respectively, for probabilities
90, 70, 50, 30, and 10%. This determined the
time constant of the exponentially decaying
memory M: �M � 1/(1 � 	) � 2.04 trials �
1.50 sec (the quality of the fit was in fact quite
insensitive to the exact value of 	, with 	 �
0.51 yielding correlation coefficients that dif-
fered on average only by 0.01 from their in-
dividual optimal values when 	 was fit sepa-
rately for each of the five probabilities). This
value of 	 was used in the rest of the analyses
of �f � 0.37 data. To determine the depen-
dence of the neuronal responses on the un-
expectedness, we performed multiple linear
regression of the average responses on the
global probability p and local memory M
(the regression was done for the 16 se-
quences � 5 probabilities, n � 80). This re-
sulted in the following linear model: re-
sponses � unexpectedness � �0.071 �
0.147 p � 0.099 M.

Figure 8 shows the observed responses
for the five-trial sequences, plotted as a
function of the unexpectedness, indicating
that the data were well fit by the linear
model (R 2 � 0.682; F � 76.0; p � 10�16).
For the �f � 0.10 data (Fig. 8, inset), for
which we had only three probabilities, p �
0.1, 0.5, and 0.9, we obtained a similar
value of 	 (	 � 0.48), and the model pro-
vided a good fit as well (R 2 � 0.396; F �
12.8; p � 10�4). Thus, the concept of un-
expectedness that depends on both local
and global contexts is able to explain a significant amount of the
variability in the data.

The coefficient of p, �0.147 � 0.016, and the coefficient of M,
�0.099 � 0.015, were both significant, indicating that p and M
contributed separately to the explained variance of the observed
neuronal responses. As a consequence, the response was nega-
tively correlated with both the global probability p and the local
memory M. The factors p and M were also significant when com-
puting single-variable regressions for �f � 0.37 ( p: R 2 � 0.473,
F � 64.6, p � 10�10; M: R 2 � 0.300, F � 30.8, p � 10�6) and for
�f � 0.10 ( p: R 2 � 0.341, F � 20.7, p � 0.0001; M: R 2 � 0.124,
F � 5.7, p � 0.03). Moreover, the factors p and M were essentially
independent of each other (correlation coefficient: r � 0.138; NS)
because of the design of the experiment: most values of M ap-
peared at all levels of p. Together, these data suggest the existence
of multiple time scales for the influence of stimulus history, with
the local history (M) and the global history ( p) operating on two
independent time scales. Specifically, the local history M had a
time constant of two trials [�M � 1/(1 � 	) � 1.5 sec], whereas

the global history may perhaps be accumulating over the long
time constants observed in Figures 5 and 6 (�P � tens of seconds).

Finally, to assess the dynamics of this linear model throughout
the 230 msec duration of the tone, we repeated the above analysis
using 50 msec sliding windows. Figure 9A shows the time depen-
dence of the regression slopes, and Figure 9B shows the time
dependence of the R 2 values. Note that the numerical values of
the p regression slopes (Fig. 9A, black) and the M regression
slopes (dark gray) can be compared directly, because both of
these factors are probabilities. The p and M factors influenced the
responses with a similar time course during their rise phase (Fig.
9A,B, insets); however, the dependence on the p and M factors
differed in their falling phase (Fig. 9C). The long-term history p
(black) contributed to the neuronal responses throughout the
stimulus, whereas the contribution of the short-term history M
(dark gray) seemed to terminate before the end of the stimulus.
Thus, the encoding of different stimulus aspects terminated at dif-
ferent times. This finding is in contrast to the results of some studies
of visual cortical neurons, which have suggested that the encoding of

Figure 7. Local history trees for the responses to the oddball stimuli, for �f � 0.37, computed separately for each of the five
stimulus probabilities ( p � 10, 30, 50, 70, and 90%). Ordinate, Mean normalized response to a stimulus, grouped according to
the preceding stimulus sequence, starting from the stimulus (A) and ending with fourth-order sequences (e.g., BBBA) (see
Results). The fifth-order sequences (e.g., BBBBA), were much less orderly and therefore were drawn only for p � 50% for
illustration. Each sequence in the tree connects with two higher-order sequences (corresponding to the addition of B or A before
that sequence) and one lower-order sequence. All of the plotted sequences are based on averaging of at least 25 repetitions
among all trials � all neurons (the AAAA sequence for p � 10% did not meet this criterion and therefore was omitted). Trees for
p � 50, 10, and 90% are based on 68 neurons; trees for p � 30 and 70% are based on 29 neurons.
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local and global aspects of visual stimuli start, rather than terminate,
at different times (Sugase et al., 1999; Pack et al., 2001).

No sensitivity to stimulus history in thalamic neurons
For the oddball stimuli (Fig. 1A), we have demonstrated previ-
ously that in stimulus condition 3 (90/10%; �f � 0.10), neurons
in the auditory thalamus (MGB) did not show a significant dif-
ference between the responses to standards and deviants
(Ulanovsky et al., 2003); however, the lack of stimulus-specific
adaptation does not necessarily preclude the presence of any type
of adaptation in the MGB.

In fact, adaptation does occur in MGB while a stimulus is on,
on time scales of milliseconds and hundreds of milliseconds, sim-
ilar to Figure 6E here (Ulanovsky et al., 2003). To study the
possible presence of longer-term adaptation in MGB, we plotted
the time course of neuronal responses (Fig. 10A) (compare Fig.
5D, showing data from cortex). The result demonstrates that
such adaptation is not present in MGB under the current exper-
imental conditions. Second, the local history trees for the MGB
(Fig. 10B) showed the lack of a one-trial effect, at least for p �
10% and p � 90%. For these trees, response(AA) � respon-
se(BA), which is the opposite of the one-trial effect (compare
with the strong effects in cortex) (Fig. 7). For p � 50%, the tree
was somewhat more consistent with a one-trial effect, but the
thalamic one-trial effect was very weak compared with cortex
(note that the scale of the ordinate in Fig. 10B is substantially
magnified compared with that of Fig. 7). Third, fitting the best
linear model (Fig. 10C), as in Figure 8, resulted in a poor fit (R 2 �
0.050; F � 0.764; p � 0.475), and this was also true for the sepa-
rate linear regressions on p and M (R 2 � 0.050 and 0.017, respec-
tively). Thus, for the same stimulus parameters for which the
linear model provided a good fit to the responses of A1 neurons,
it failed to fit the responses of MGB neurons. These data suggest
that the neuronal responses in MGB do not adapt to stimulus
history on time scales of seconds or longer.

SSA causes bias in the neuronal responses to unbiased stimuli
SSA in A1 may affect neuronal responses not only in oddball
designs with two frequencies but also in more complex designs,
e.g., in an equal-probability presentation of many tones, as used
for example in the measurement of auditory response curves. To
examine this, we measured response curves of 89 neurons in A1,
using the response-curve design. We presented a stimulus en-
semble consisting of 20 evenly spaced frequencies � 10 repeti-
tions each, presented randomly and spanning a relatively small
frequency extent (FE) of � 0.97 octaves (Figs. 1C, 11A, dot raster
illustrates the randomized stimuli). The central frequency of this
ensemble was placed close to the best frequency of the neuron,
the stimulus level was �40 dB above the threshold of the neuron,
and the interstimulus interval was 0.736 sec. Thus, except for
the narrow frequency range used here, the other parameters were
quite similar to those used in standard tests of frequency
response.

To understand the possible effect of adaptation, we consider
only the one-trial effect demonstrated above, whereby the adap-

Figure 8. Fitting a linear model of stimulus “unexpectedness” to A1 responses. Each dot
represents the mean population response to one fifth-order local sequence, with symbol shape
representing the global probability p. Main plot, �f � 0.37. Inset, �f � 0.10 (x-axis and y-axis
limits: �0.31 to �0.12).

Figure 9. Dynamics of the fits to the linear model of Figure 8, computed using a 50 msec
sliding window. The windows were shifted by 20 msec (before and after the stimulus), 10 msec
(during the stimulus), or 5 msec (during the onset responses). The abscissa denotes the centers
of the 50 msec bins. The vertical lines indicate time of stimulus offset (t � 230 msec). A,
Regression slopes of the model, separately for the global probability p (black) and local se-
quence M (dark gray). Light gray, Difference between the population response to the deviant
and the standard, DS � PSTH(Deviant) � PSTH(Standard), inverted and scaled. Inset, Scaling
of all three curves to the same minimum. B, Fraction of variance explained by the model R 2.
Inset, “Zoom in” on the initial time. C, Fraction of variance explained by the model, R 2, showing
separately the significant time bins (filled circles and solid lines) and nonsignificant time bins
(empty circles and dotted lines). Light gray, DS � PSTH(Deviant) � PSTH(Standard). Inset,
Scaling all three curves to the same maximum.
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tation strength is correlated negatively with the frequency differ-
ence from the stimulus at the preceding trial (see also Brosch and
Schreiner, 1997). For our uniformly distributed stimuli, the av-
erage frequency difference from preceding trials has a U shape
(Fig. 11A, bottom), equaling FE/4 for frequencies at the center of
the frequency range (“central” frequencies) (Fig. 11A, arrow)
and FE/2 for frequencies at the edges of this range (“eccentric”
frequencies). Because of the one-trial effect, it may be expected
that adaptation should be minimal in trials preceded by dissimi-
lar stimuli. Furthermore, Figure 11A suggests that the responses
to central frequencies should adapt more strongly than the re-
sponses to eccentric frequencies, potentially creating a U-shaped
bias in measured response curves.

To test the prediction that adaptation is minimal in trials pre-
ceded by dissimilar stimuli, we computed the “full” response
curves of neurons (based on all 10 repetitions of each frequency),
as well as response curves based on subsets of the trials: “far”
curves, based on trials preceded by dissimilar stimuli (differing
by � FE/4; the exact value did not affect the results much), and

Figure 10. No adaptation in auditory thalamus (MGB; n � 27 neurons; p � 90/10%; �f �
0.10). A, Time course of mean population responses to the oddball stimuli, showing no decline
over trials (gray, deviant; black, standard) (compare Fig. 5D). Data for p � 50% were not
plotted here, because of the smaller number of neurons (n � 17). B, Local history trees (com-
pare Fig. 7). C, The linear model of stimulus “unexpectedness” provides a poor fit to MGB
responses (compare Fig. 8). In both B and C, some dots were missing for the p � 10% and p �
90% conditions, because not all possible sequences occurred in the data.

Figure 11. Adaptation-induced bias in neuronal response curves measured over a
narrowband range of 0.97 octaves (A1; n � 89 neurons). A, Response-curve design (see
also Fig. 1C). Stimuli were tones of 20 frequencies � 10 repetitions each, totaling 200
trials (dot raster illustrates the first 40 trials). Gray circles, Trials preceding the occurrences
of frequency 10 (denoted by arrow). At frequency 10, the near trials (�) and the far trials
(�) are marked separately (see Results for definitions). U-shaped curve, Theoretical
average frequency difference (AFD) of each tone from the preceding trials. B, Three neu-
rons in primary auditory cortex, showing for each neuron the far (light gray), full (dark
gray), and near (black) response curves and the full � far difference curve (plotted below
each graph). Error bars represent SEM, averaged across frequencies. Gray rectangles indi-
cate spontaneous firing rate � SD. C, Mean population responses for neurons with an
average full firing rate of more than five spikes per second (Sp/s) (n � 42). D, Difference
curve of the population responses (black), overlaid with the U-shaped average frequency
difference curve (gray), demonstrating the U-shaped bias in narrowband response curves.
Main plot, Full � far (n � 42 neurons); left inset, near � far (n � 42); right inset: full � far
for all of the neurons (n � 89). Error bars, SEM y-axis limits for left and right insets: �7.5–1.5
and �2.25– 0.45 spikes/sec, respectively. E, Scatter plot of bias index versus adaptation index.
Histograms, Index distributions, together with numbers of neurons above and below 0 (black
lines).
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“near” curves, based on trials preceded by similar stimuli (differ-
ing by � FE/4). Response curves of three neurons are displayed in
Figure 11B. Compared with the far condition (light gray), in
which adaptation was expected to be minimal, the adaptation
appeared to be stronger in the full condition (dark gray) and even
stronger in the near condition (black). This adaptation was also
seen in population averages (Fig. 11C) (Wilcoxon signed rank
test; pooling all neurons times all frequencies: p � 10�15 for far �
full and for full � near).

To quantify the overall tendency of a neuron to undergo ad-
aptation, we used an adaptation index, computed as the contrast
between the total spike counts evoked in the far and near condi-
tions: adaptation index � (far � near)/(far 
 near). The adapta-
tion index was positive in 72% of the neurons (64 of 89 neurons;
Wilcoxon signed rank test: p � 10�5), and moreover, 24% of the
neurons (21 of 89) had an adaptation index �0.1666, corre-
sponding to a �40% increase in firing rate in the far relative to the
near adaptation condition.

To test the predicted U-shaped bias in the full response curve,
we compared it with the far curve (in which adaptation is mini-
mal). The population average of the full � far difference curves
(Fig. 11D) did indeed have the expected U shape, which was also
similar to the U-shaped curve of the average frequency difference
displayed in Figure 11A (Pearson correlation: r � 0.685, 0.467,
and 0.634 for main plot, left inset, and right inset, respectively, of
Fig. 11D, with df � 18, p � 0.001, p � 0.05, and p � 0.005). This
effect was seen, although not very strongly, in many individual
neurons (Fig. 11B, plots below each graph). To quantify this, we
used a bias index, computed as the correlation of the U-shaped
average frequency difference curve in Figure 11A with the full �
far difference curve for each neuron. The bias index was positive
on average (Fig. 11E, right histogram) (55 of 89 neurons; Wil-
coxon signed rank test: p � 0.05), suggesting the presence of a
U-shaped bias in most neurons.

We expect that the stronger the adaptation, the more pro-
nounced should be the U-shaped bias. Indeed, the adaptation
index (Fig. 11E, top histogram) and the bias index (Fig. 11E,
right) were correlated (Fig. 11E) (Spearman correlation: rs �
0.30; df � 87; p � 0.005), suggesting that neurons with a stronger
tendency to adapt also show a stronger U-shaped bias in their
response curves.

The bias was maximal at the center of the frequency range
used in the experiment (Fig. 11D), rather than at the location of
the peaks of the individual response curves. In fact, the peaks of
the response curves were not necessarily at the center of the fre-
quency range. The average population tuning curve was flat (Fig.
11C), suggesting uniform distribution of peak locations. This
happened because we recorded simultaneously from several neu-
rons that often had somewhat different BFs (see Materials and
Methods) and hence had different peak locations for the response
curves. Furthermore, no significant difference from zero was
found for a centrality index, defined as the correlation of the
U-shaped curve from Figure 11A with the full response curve of
the neuron (Wilcoxon signed rank test: T � 1871, df � 88, p �
0.59). Thus, the observed bias (Fig. 11D) cannot be explained by
strong activity-dependent adaptation at the peak of the response
curve but is more likely caused by the stimulus-specific bias
mechanism proposed above.

These data demonstrate that measuring response curves using
unbiased sets of stimuli (randomized, equiprobable, equal ampli-
tude) may nevertheless result in a U-shaped bias, at least when
using a narrow frequency range, as we did here. This bias is largest
at the middle of the frequency range used. Such bias is not ex-

pected for angular parameters such as the orientation of visual
stimuli (Müller et al., 1999; Dragoi et al., 2000), where no “cen-
ter” or “edges” exist (provided that the stimuli evenly cover all
possible orientations); however, for other parameters for which
stimulus-specific adaptation has been shown, such as spatial fre-
quency (Saul and Cynader, 1989a) and temporal frequency (Saul
and Cynader, 1989b) of visual stimuli, we would expect such an
adaptation-induced U-shaped bias in neuronal responses.

Discussion
We demonstrated here multiple time scales of adaptation in A1,
spanning several orders of magnitude, from milliseconds to tens
and possibly hundreds of seconds. Furthermore, a simple linear
model, taking into account both the local and global history of
the sequence preceding a stimulus, accounted for a high propor-
tion of the variance in the responses of A1 but not of MGB
neurons.

Multiple time scales of adaptation in A1
Previous studies that examined the effect of stimulus history on
neurons in A1 and primary visual cortex focused either on long-
term history, using prolonged adapting stimulation (Movshon
and Lennie, 1979; Saul and Cynader, 1989a; Condon and Wein-
berger, 1991; Dragoi et al., 2000), or on short-term history, using
pairs of stimuli (Calford and Semple, 1995; Brosch and Schreiner,
1997; Müller et al., 1999).

Here we used designs in which the stimulus contained several
time scales, and this allowed us to reveal several concurrent time
scales of neuronal adaptation, ranging from milliseconds to tens
and possibly hundreds of seconds (Figs. 5, 6). The response of
cortical neurons during tone presentation is well known to adapt
rapidly, and here we have shown that it can be fit with two time
constants (� �6.6 and � �150 msec) (Fig. 6E). The adaptation
time constant was progressively slower for the local sequence
preceding the stimulus (�M �1.5 sec) (Fig. 8), for the stimulus
statistics (� �3–15 sec) (Fig. 6B,C), for the long-term stimulus
metastatistics (� �48 sec) (Fig. 6D), and for the very long-term
800 trial stimulus presentation (� �630 sec) (Fig. 6D), although
this effect was weaker than the others documented here. Thus,
neurons in A1 seem to adapt to any time scale present in the
stimulus.

Interestingly, previous studies in A1 have reported short time
scales when using short stimuli (Brosch and Schreiner, 1997),
medium time scales for medium-duration stimuli (Malone et al.,
2002), and long time scales for long-stimulation designs (Con-
don and Weinberger, 1991). Together with our results, this indi-
cates that the time constant of neuronal adaptation in A1 may
perhaps scale with the stimulus duration, similar to the power-
law scaling of adaptation observed in visual neurons of the fly
(Fairhall et al., 2001) and even in isolated Na
 channels (Toib et
al., 1998).

Finally, not all of these time constants of adaptation are stim-
ulus specific. The longest time constant (� � 630 sec) and the two
shortest time constants (6.6 and 150 msec) are not necessarily
stimulus specific but could reflect activity-dependent “fatigue.”
The stimulus-specific components had time constants that
ranged from �M �1.5 to � �48 sec. We have shown previously
that SSA also exists when shortening the interstimulus interval to
375 msec (Ulanovsky et al., 2003), and other reports have dem-
onstrated SSA for yet shorter intervals (Calford and Semple,
1995; Brosch and Schreiner, 1997). Therefore, when considering
SSA as a possible mechanism of auditory sensory memory in
single neurons, we conclude that this auditory memory has a time
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span that lasts between a few hundred milliseconds and a few tens
of seconds, depending on the stimulus. Interestingly, these num-
bers are very similar to the time span of auditory memory in
humans, as derived from both behavioral (Cowan, 1984) and
evoked-potential (Bottcher-Gandor and Ullsperger, 1992;
Cowan et al., 1993) studies.

Mechanisms of adaptation
Adaptation mechanisms can be divided into two classes (Gollisch
and Herz, 2004): (1) mechanisms operating at the output of the
neuron, such as activation of voltage-dependent conductances
(Sanchez-Vives et al., 2000a,b) or tonic hyperpolarization (Car-
andini and Ferster, 1997), both of which operate at the level of the
somatic membrane potential and cannot be stimulus specific,
and (2) mechanisms operating at the inputs to the neuron, such
as synaptic depression and facilitation (Abbott et al., 1997; Tso-
dyks and Markram, 1997) or inhibition (Zhang et al., 2003), both
of which may differentially affect different parts of the dendritic
tree of the neuron and thus may be stimulus specific. Our data
showed that in many neurons, the responses were enhanced for
frequency f1 when f1 was deviant and for f2 when f2 was deviant
(Fig. 2) (Ulanovsky et al., 2003); furthermore, the f2 � f1 response
difference was uncorrelated with the SI (Fig. 3B,C), implying that
it made no difference whether the two frequencies elicited the
same initial activity. These findings argue strongly against
activity-dependent adaptation and suggest a contribution by
mechanisms operating at the inputs to the neuron.

Synaptic depression of thalamocortical synapses has been
shown to contribute to activity-dependent adaptation in somato-
sensory and olfactory cortices (Chung et al., 2002; Best and Wil-
son, 2004), and in principle, such depression might also account
for stimulus-specific adaptation. The longer latency of SSA com-
pared with the latency of the neuronal responses (Ulanovsky et
al., 2003) suggests the involvement of intracortical processing,
however, so the depressing synapses involved may be corticocor-
tical rather than thalamocortical. Interestingly, recovery of corti-
cocortical synapses from depression is best described by several
time constants coexisting together (Varela et al., 1997), ranging
between a few hundreds of milliseconds and a few tens of seconds
(Tsodyks and Markram, 1997; Varela et al., 1997; Markram et al.,
1998), which matches the stimulus-specific time constants de-
scribed here.

Stimulus-specific changes in inhibition (Wehr and Zador,
2003; Zhang et al., 2003) could provide an alternative mechanism
for SSA. A recent study (Eytan et al., 2003) demonstrated an
analog of SSA in ex vivo networks of cortical neurons. Eytan et al.
(2003) used an analog of the oddball design by stimulating two
points in the network, one at a high rate and another at a lower
rate. They found a depression in the responses to the standard
and an increase for the deviant, and this selective enhancement of
responses was abolished by blocking GABAergic inhibitory trans-
mission using bicucculine. An inhibitory mechanism is consis-
tent with recent intracellular studies in A1 (Wehr and Zador,
2003; Zhang et al., 2003), which showed that the input to A1
neurons is composed of a balanced combination of excitation
and inhibition, during which the inhibitory input follows the
excitatory input with some time delay. The longer delay of the
inhibition may account for the longer latency of SSA; however, it
remains to be seen whether such inhibition has time constants
that are slow enough to account for the longer time constants of
SSA demonstrated here.

Finally, both of these mechanisms would face the challenge of
explaining the robust SSA evoked by frequency differences as

small as �f � 0.10 (Fig. 2) and �f � 0.04 (Ulanovsky et al., 2003).
This �f is substantially smaller than the typical peripheral tuning
width, and hence the standard and deviant tones presumably
activate highly overlapping sets of inputs to MGB and A1 neu-
rons. Therefore, a more complex network effect might be neces-
sary to explain SSA.

SSA and sensory memory
Two components of the evoked potentials were studied exten-
sively using the auditory oddball design: the mismatch negativity
(MMN), which originates in the auditory cortex (Näätänen,
1992; Tiitinen et al., 1994; Jääskeläinen et al., 2004), and the P300,
which has diffuse origins centered mostly in frontal cortex (Es-
cera et al., 2000; Friedman et al., 2001; Ranganath and Rainer,
2003). The MMN is an early preattentive component implicated
in sensory memory; the P300 is a later component, implicated in
attention shift and behavioral orienting responses (Escera et al.,
2000).

The relationships of MMN and P300 are currently unclear.
We have suggested previously that SSA provides a detailed single-
neuron correlate of MMN (Ulanovsky et al., 2003). Although the
sensory processing mechanisms operating in awake behaving an-
imals may be substantially richer than those studied here (Fritz et
al., 2003; Weinberger 2004), our present results in anesthetized
cats nevertheless provide an interesting link among P300, MMN,
and SSA, in that they are all similarly influenced by stimulus
history. Squires et al. (1976) used the same linear model as we did
(Fig. 8) to describe the influence of sequence history on P300,
reporting very similar results, including a similar value of the
local memory parameter 	 (	 � 0.6 in their study; 	 � 0.51 in
ours). Although we are not aware of a study that applied the same
linear model to MMN, there were several studies that demon-
strated a one-trial effect for MMN (Sams et al., 1983, 1984; Jääske-
läinen et al., 2004), similar to our result for SSA. In addition, several
other similarities exist among SSA, MMN, and P300. The magnitude
of all three increases with deviant rarity, it increases with the para-
metric deviance of the deviant, and they all show long time constants
of seconds or tens of seconds (Näätänen, 1992; Cohen and Polich,
1997; Yago et al., 2001; Ulanovsky et al., 2003). On the basis of this,
we speculate that at least some of the simpler properties of P300 may
be inherited directly from the MMN, which in turn is attributable to
SSA in auditory neurons.

In summary, we have shown that A1 neurons are sensitive to
past auditory events for tens of seconds. The lack of such sensi-
tivity in auditory thalamus, for the same stimulus parameters for
which it was clearly present in A1, implies a function that is
unique to A1. Many years of research have indicated that the
performance of A1 neurons is not better than, and is probably
even worse than, subcortical neurons, when comparing standard
measures of sensory coding such as width of tuning curves and
temporal response properties (Creutzfeldt et al., 1980; Miller et
al., 2001; Joris et al., 2004). Therefore, we propose that we need to
consider higher-level functions, such as sensory memory, if we
want to understand the role of A1 in auditory processing.
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Sams M, Alho K, Näätänen R (1984) Short-term habituation and dishabitu-
ation of the mismatch negativity of the ERP. Psychophysiology
21:434 – 441.

Sanchez-Vives MV, Nowak LG, McCormick DA (2000a) Membrane mech-
anisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci
20:4267– 4285.

Sanchez-Vives MV, Nowak LG, McCormick DA (2000b) Cellular mecha-
nisms of long-lasting adaptation in visual cortical neurons in vitro. J Neu-
rosci 20:4286 – 4299.

Saul AB, Cynader MS (1989a) Adaptation in single units in visual cortex: the
tuning of aftereffects in the spatial domain. Vis Neurosci 2:593– 607.

Saul AB, Cynader MS (1989b) Adaptation in single units in visual cortex:
the tuning of aftereffects in the temporal domain. Vis Neurosci
2:609 – 620.

Squires KC, Wickens C, Squires NK, Donchin E (1976) The effect of stim-
ulus sequence on the waveform of the cortical event-related potential.
Science 193:1142–1146.

Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information
coded by single neurons in the temporal visual cortex. Nature
400:869 – 873.

Tiitinen H, May P, Reinikainen K, Näätänen R (1994) Attentive novelty
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