All events, All years

The envious brain: to the neural basis of social inequity

Lecture
Date:
Tuesday, April 13, 2010
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Simone Shamay-Tsoory
|
Dept. of Psychology University of Haifa

A large corpus of evidence concerning social comparison processes indicates that relative material payoffs affect people’s well-being and behavior. Envy and schadenfreude are emotions related to social comparison. Envy is a negative reaction in the face of another person’s good fortune while schadenfreude, is the joy about the misfortune of another. We suggested that the neural network which mediates envy and schadenfreude involves the 'mentalizing network' and the reward/punishment systems. To examine our model we conducted a lesion study, an fMRI study and a study involving administration of oxytocin. The results confirm our model and shwo differential patterns of activation in the reward and mentalizing networks in envy and schadenfreude. These studies support the role of the metalizing system (particularly the medial prefrontal cortex) in these emotions. The pattern of activation in the ventral striatum suggests that winning money can seem like a loss when another person wins a larger amount. Likewise, losing money can seem like a gain when another person loses more. Finally, we demonstrate that the oxytocinergic system modulates the feeling of envy and schadenfruede. Specifically, intranasal administration of oxytocin increases ratings of envy and schadenfreude in competitive situations, suggesting that this hormone has a general role in negative as well as positive social behaviors. Although it has been well established that humans are motivated to seek rewards and avoid punishments, our studies demonstrate that humans are as sensitive to social comparisons, that even a loss can induce joy when it is compared to another's greater loss. These processes seem to be mediated by the reward system and the oxytocinegic system

Understanding neuronal circuits in the mammalian olfactory bulb

Lecture
Date:
Wednesday, April 7, 2010
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Dr. Dinu Florin Albeanu
|
Cold Spring Harbor Laboratory

Abstract: In many regions of the brain, neurons form an ordered representation of the outside world. For example, the 'homunculus' of the somatosensory cortex is a point-to-point topographic map of the body surface onto the brain surface. The spatially organized convergence of sensory inputs often leads to similar response properties in target neurons that are in close vicinity. Whether their individual information content is redundant or independent depends on the circuit architecture (the interplay between common input, lateral signals and feedback from other brain areas) and the computational goals of the network. In the mammalian olfactory bulb (OB), sensory neurons expressing the same type of olfactory receptor (~10,000) converge in tight focus, forming clusters of synapses called glomeruli (~2,000). From each glomerulus, a few dozen mitral cells (principal output neurons of the OB) carry the output further to the cortex. The mitral cells, typically have only one primary dendrite that projects to a single glomerulus, but can sample inputs on their primary and secondary dendrites from functionally diverse glomeruli via several types of interneurons. Thus, a few dozen mitral cells share input from the same parent glomerulus, but may have different inhibitory surrounds. In the first part of this talk, I will discuss the topographic layout of glomeruli on the bulb - the olfactory map. How precise is this map within and across two species: mouse and rat? How does its structure relate to odor processing? Do glomeruli that are responsive to structurally similar odor molecules have a tendency to lie next to each other? In other words, is there a chemotopic map? In the second part of the talk, I will focus on probing the odor response properties of mitral cells using extracellular recordings and an optogenetic strategy to ask whether the OB is more than a relay station. Do mitral cells receiving common input from the same parent glomerulus carry redundant information about odors to cortex? I will conclude by describing novel strategies that allow monitoring the input-output transfer function of the OB via multi-photon microscopy imaging of bulb neurons activity in the same animal, in different states of the circuit. Link for further information: http://www.cshl.edu/public/SCIENCE/albeanu.html

Recording from human neurons in vivo: electro-olfactograms

Lecture
Date:
Thursday, March 25, 2010
Hour: 10:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Hadas Lapid
|
Sobel Group, Dept of Neurobiology, WIS

The olfactory epithelium offers a rare opportunity to record sensory activity directly from olfactory receptor neurons in awake behaving humans. A potential method to probe this neural sheet is by recording a local field potential (LFP) known as the Electro-Olfactogram (EOlfG). Although this method is considered a standard tool in anesthetized animals, it has gained only little attention in humans mostly due to the technical barriers in targeting this tissue. We first validated EOlfGs as a tool for quantification of the evoked olfactory response. Specifically, we found that EOlfGs were concentration dependent and odorant specific. We then turned to ask how specific odorant qualities are reflected in the EOlfG. Initial findings suggested that EOlfG area under the curve was correlated with an aspect of physicochemical odorant structure that we refer to as "molecular compactness". In summary, we find EOlfGs a promising tool for elucidating the link between an olfactory stimulus, its evoked neuronal response, and its percept.

Molecular Neurobiology of Social Bonding: Implications for Autism Spectrum Disorders

Lecture
Date:
Tuesday, March 23, 2010
Hour: 13:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Larry Young
|
Dept of Psychiatry and Behavioral Sciences Emory University School of Medicine, Atlanta GA

Social relationships are at the core of every healthy society and the quality of early social attachments contributes to emotional and social development. I will discuss the neurobiological mechanisms underlying social attachment and bonding, as well as the impact of early life social experience on later life social relationships. The highly social and monogamous prairie vole is an ideal animal model for investigating the biological mechanisms of social attachment and bonding. Studies in voles have revealed that the neuropeptides oxytocin and vasopressin promote social bonding. Furthermore, variation in the oxytocin and vasopressin systems contributes to diversity in social behavior both across species and within populations. I will discuss the genetic mechanisms giving rise to diversity in social organization in voles. Finally I will discuss parallels between these studies in voles and recent studies in humans which suggest that these mechanisms are highly conserved from rodent to man. These observations have important implications for psychiatric disorders characterized by disruptions in social behavior, including autism.

Binding elements to a whole, problem and solution

Lecture
Date:
Tuesday, March 16, 2010
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Moshe Abeles
|
Bar-Ilan University

Firing rates of neurons cannot explain how we compose complex mental representations from more primitive elements. If spike time matters compositionality can easily be explained. This can easily be achieved by synfire chains. We provide indirect evidence that monkey scribbling is generated by synfire chains. Furthermore, we show by simulations that synfire chains in two distinct areas with a few random connections may learn to resonate with each other. We also show how many representations of mental elements may reside in the same small area, when practically all neurons participate in all the presentations, and yet what is represented can be identified in a few ms. In simulations, the global activity may oscillate in the gamma range without any oscillatory activity of individual neurons. When the activity of synfire chains in the two regions are bound the oscillations synchronize. We illustrate such processes in MEG recordings.

From geometry to kinematics in motion production and perception: principles, models and neural correlates

Lecture
Date:
Tuesday, March 2, 2010
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Tamar Flash
|
Dept of Computer Science and Applied Mathematics, WIS

Behavioral and theoretical studies have focused on identifying the kinematic and temporal characteristics of various movements ranging from simple reaching to complex 2D and 3D drawing and curved motions. These kinematic and temporal features are quite instrumental in investigating the organizing principles that underlie trajectory formation. Similar kinematic constraints play also a critical role in visual perception of abstract as well as biological motion stimuli and in action recognition. In my talk I will review the results of recent studies showing that 2D and 3D movements might be represented in terms of non-Euclidian metrics. I will also present a recent extension of these studies leading to a new theory which suggests that movement duration, invariance, and compositionality may arise from cooperation among several geometries. The theory has led to concrete predictions which were corroborated by the kinematic and temporal features of both drawing and locomotion trajectories. Finally I will discuss the findings of several behavioral and brain mapping studies aiming at identifying the neural correlates of the suggested organizing principles.

A new look (and smell) into the auditory cortex

Lecture
Date:
Tuesday, February 23, 2010
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Adi Mizrahi
|
Dept of Neurobiology, Institute of Life Sciences and the Interdisciplinary Center for Neural Computation The Hebrew University of Jerusalem

Classically, the cortex has been studied using electrophysiological techniques, which extract single-cell response profiles with great accuracy but leave other aspects of network responses largely inaccessible. Recently, in vivo two-photon calcium imaging (2PCI), has offered a new “look” into the cortex; allowing the imaging of response profiles and network dynamics from dozens of singly identified neurons simultaneously. I will present our work using both in vivo electrophysiology as well as 2PCI in the primary auditory cortex (A1) of mice highlighting the strengths and weaknesses of both. We first mapped the functional architecture of A1 in response to pure tones using 2PCI. This new “look” at A1 revealed a surprisingly high level of functional heterogeneity (measured as signal correlation vs. distance) in the face of the known tonotopic organization. The high variance of signal correlations suggested that neurons in A1 are organized in small cortical subnetworks. Additionally, I will discuss our preliminary analysis of population activity (i.e. pairwise noise correlations) and its potential for studying network dynamics in the future. Next, using in vivo loose patch clamp recordings, we studied the responses to natural sounds in a natural context – the mother-pup bond. We discovered that neuronal activation patterns to pup vocalizations are modulated by pup body odors. Specifically, pup odors significantly enhanced the responsiveness to natural calls of over a third of auditory responsive neurons in lactating females. This plasticity was absent in virgins and decreased in mothers following weaning of their pups. These experiments reveal a previously unknown interaction between natural sounds and smells in the neocortex which is context-dependent and ethologically relevant.

Dogs, Rats and Explosives Detection

Lecture
Date:
Tuesday, February 9, 2010
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Allen Goldblatt
|
Center for Applied Animal Behavior for Security Purposes

Dogs are the gold standard in explosives detection. They are fast, mobile, sensitive and not prone to making false positive responses. More and more security and defense agencies are using dogs as explosives detectors in the field, at ports of entry, and in any area where there is a threat of terrorism. Surprisingly and unfortunately there has been very little published and/or peer reviewed research on the variables that can affect the explosives detection dog (EDD). Therefore in order to provide a scientific basis for the training and maintenance of explosives detection dogs, it is necessary to extrapolate from the extensive olfactory research which has been published on rodents and humans. The question then arises as to how applicable the research on rats and humans is to the training and maintenance of the EDD. Recent research on dogs suggests that the research on rodents and humans may be of limited applicability to EDDs. This research will be discussed and possible explanations for the discrepancies offered.

NEURAL CODES AND COMPUTATIONS UNDERLYING ODOR-GUIDED DECISIONS IN THE RAT

Lecture
Date:
Thursday, February 4, 2010
Hour: 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Prof. Zach Mainen
|
Champalimaud Neuroscience Programme at the Instituto Gulbenkian de Ciência, Portugal

Abstract: For several years we have been studying the performance of rats in an odor mixture categorization task, in which an animal makes a left/right spatial choice instructed by the dominant component of a binary odor mixture. In order to better understand the neural basis of such odor guided decisions we have recorded ensembles of tens of neurons in several different brain regions during the performance of this task. I will present findings from these studies, emphasizing the nature of neural representations in the primary olfactory cortex as well as two downstream structures, orbitofrontal cortex and superior colliculus. My talk will emphasize the read-out and evaluation of sensory information by higher order brain regions and the contributions of non sensory variables to the performance of perceptual tasks.

Zebrafish shed light on the vertebrate circadian clock system

Lecture
Date:
Tuesday, February 2, 2010
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Yoav Gothilf
|
Dept of Neurobiology Tel Aviv University

The core circadian clock in zebrafish is similar to that described in mammals. Nevertheless, there are some notable features that render the zebrafish an attractive model for chronobiologists 1) Circadian rhythms appear early in life; rhythms of melatonin production in the pineal gland begin two days after fertilization. 2) Zebrafish peripheral clock-containing structures and cell lines are directly light-entrainable. 3) The zebrafish model offers a plethora of molecular-genetics techniques, such as gene knockdown and over expression, transgenesis, genome-wide transcriptome analysis (gene chip) and bioinformatics tools, including the entire genomic sequence. Studies in our lab have indicated that circadian rhythms of pineal aanat2 expression appear on the third day of development and that light exposure is mandatory for the development of this rhythm. Additionally, light induces the expression of period2 (per2) in the pineal gland; an important event in the development of the pineal circadian clock. Utilization of the light-entrainable zebrafish cell lines enables to study the mechanisms underlying light-induced per2 expression and light-entrainment. These cell-based studies are being complimented by in vivo studies in wild type and per2:EGFP transgenic zebrafish line, where gene knockdown and over expression are used to determine the involvement of putative transcription factors in this process. Further, a genome-wide examination of gene expression allows the detection of known and novel rhythmic and light-induced genes, and their function in the pineal gland can be investigated in vivo by current molecular-genetic techniques. In conclusion, the use of zebrafish advances our understanding of the mechanisms underlying clock function, light-entrainment and functional development of the pineal gland.

Pages

All events, All years

Changing Human Fear:Brain Mechanisms Underlying Emotional Control and Flexibility

Lecture
Date:
Tuesday, January 12, 2010
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Daniela Schiller
|
New York University

Learned fear is a process allowing quick detection of associations between cues in the environment and prediction of imminent threat ahead of time. Adaptive function in a changing environment, however, requires organisms to quickly update this learned information and have the ability to hinder fear responses when predictions are no longer correct. Research on changing fear has highlighted several techniques, most of which rely on the inhibition of the learned fear response. An inherent problem with these inhibition techniques is that the fear commonly returns, for example with stress or even just with the passage of time. I will present research that examines new ways to flexibly control fear and the underlying brain mechanisms. I will describe a brain system mediating various strategies to modulate fear, and present findings suggesting a novel non-invasive technique that could be potentially used to permanently block or even erase fear memories.

Novel optogenetic tools for understanding emergent patterns in neural circuits

Lecture
Date:
Tuesday, January 5, 2010
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Ofer Yizhar
|
Stanford University, CA

Gamma oscillations are fast (30-80 Hz) rhythmic patterns of neural activity that have been proposed to support information processing in the brain. Gamma rhythms are altered in diseases such as schizophrenia and autism and are therefore of both basic and clinical interest. I have been developing optogenetic tools for light-based control over the activity of genetically defined neuronal populations. A new set of such tools, step function opsins (SFOs), are optimized for modulating the activity of neural circuits and ideal for observing emergent network properties. I will present the molecular engineering approach we used for developing these opsins and show new data on application of these tools to study the mechanisms underlying gamma oscillations in the prefrontal cortex. Some technological aspects will be discussed, with emphasis on the array of available optogenetic tools and how they might be improved to further extend the range of experiments feasible with these new techniques.

Theoretical models of grid cell dynamics and coding in the rat entorhinal cortex

Lecture
Date:
Monday, January 4, 2010
Hour: 11:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Dr. Yoram Burak
|
Center for Brain Science Harvard University

Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space, and have been hypothesized to form the neural substrate for dead-reckoning. I will address two theoretical questions that arise from this remarkable experimental discovery: First, how is grid cell dynamics generated in the brain. Second, what information is conveyed in grid cell activity. In discussing the first question, I will focus on continuous-attractor models of grid cell activity, and ask whether such models can generate regular triangular grid responses based on inputs that encode only the rat's velocity and heading direction. In a recent work, we provided a proof of concept that such models can accurately integrate velocity inputs, along trajectories spanning 10-100 meters in length and lasting 1-10 minutes. The range of accurate integration depends on various properties of the continous-attractor network. After presenting these results, I will discuss possible experiments that may differentiate the continuous-attractor model from other proposed models, where activity arises independently in each cell. In the second part of the talk, I will examine the relationship between grid cell firing and rat location, asking what information is present in grid-cell activity about the rat's position. I will argue that, although the periodic response of grid cells may appear wasteful, the grid-cell code is in fact combinatorial in capacity, and allows for unambiguous position representations over ranges vastly larger than the ~0.5-10m periods of individual lattices. Further, the grid cell representation has properties that could facilitate the arithmetic computation involved in position updating during path integration. I will conclude by mentioning some of the implications for downstream readouts, and possible experimental tests.

Sound Texture Perception via Synthesis

Lecture
Date:
Sunday, January 3, 2010
Hour: 14:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Dr. Josh McDermott
|
New York University

Many natural sounds, such as those produced by rainstorms, fires, and swarms of insects, result from large numbers of rapidly occurring acoustic events. Such “sound textures” are often temporally homogeneous, and in many cases do not depend much on the precise arrangement of the component events, suggesting that they might be represented statistically. To test this idea and explore the statistics that might characterize natural sound textures, we designed an algorithm to synthesize sound textures from statistics extracted from real sounds. The algorithm is inspired by those used to synthesize visual textures, in which a set of statistical measurements from a real sound are imposed on a sample of noise. This process is iterated, and converges over time to a sound that obeys the chosen constraints. If the statistics capture the perceptually important properties of the texture in question, the synthesized result ought to sound like the original sound. We tested whether rudimentary statistics computed from the responses of a bank of bandpass filters could produce compelling synthetic textures. Simply matching the marginal statistics (variance, kurtosis) of individual filter responses was generally insufficient to yield good results, but imposing various joint envelope statistics (correlations between bands, and autocorrelations within each band) greatly improved the results, frequently producing synthetic textures that sounded natural and that subjects could reliably recognize. The results suggest that statistical representations could underlie sound texture perception, and that in many cases the auditory system may rely on fairly simple statistics to recognize real world sound textures. Joint work with Andrew Oxenham and Eero Simoncelli.

PKMzeta and the core molecular mechanism of long-term memory storage and erasure

Lecture
Date:
Tuesday, December 29, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Todd Sacktor
|
SUNY Downstate Medical Center, Brooklyn, NY

How long-term memories are stored as physical traces in the brain is a fundamental question in neuroscience. Most molecular work on LTP, a widely studied physiological model of memory, has focused on the early signaling events regulating new protein synthesis that mediates initial LTP induction. But what are the newly synthesized proteins that function in LTP maintenance, how do they sustain synaptic potentiation, and do they store long-term memory? Recent studies have identified a brain-specific, autonomously active, atypical PKC isoform, PKMzeta, that is central to the mechanism maintaining the late phase of LTP. In behavioral experiments, the persistent activity of PKMzeta maintains spatial memories in hippocampus, fear-motivated memories in amygdala, and, in work performed in the Dudai lab, elementary associative memories in neocortex. This is because 1-day to several month-old memories appear to be rapidly erased after local intracranial PKMzeta inhibition. PKMzeta, a persistently active enzyme, is thus the first identified molecular component of the long-term memory trace.

Plasticity in high level visual cortex: insights from development and fMRI-adaptation

Lecture
Date:
Tuesday, December 22, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Kalanit Grill-Spector
|
Dept of Psychology and Neurosciences Institute Stanford University, CA

The human ventral stream consists of regions in the lateral and ventral aspects of the occipital and temporal lobes and is involved in visual recognition. One robust characteristic of selectivity in the adult human ventral stream is category selectivity. Category selectivity is manifested by both a regional preference to particular object categories, such as faces, places and bodyparts, as well as in specific (and reproducible) distributed response patterns across the ventral stream for different object categories. However, it is not well understood how these representations come about throughout development and how experience modifies these representations and how do. I will describe two sets of experiments in which we addressed these important questions. First, I will describe experiments in which we examined changes in category selectivity throughout development from middle childhood (7-11 years), through adolescence (12-16) into adulthood. Surprisingly, we find that it takes more than a decade for the development of adult-like face and place-selective regions. In contrast, the lateral occipital object-selective region showed an adult-like profile by age 7. Further, recent findings from our research indicate that face-selective regions have a particularly prolonged development as they continue develop through adolescence in correlation with improved face, but not object or scene recognition memory. Development manifests as increases in the size of face-selective regions, increases in face-selectivity as well as increases in the distinctiveness of distributed response patterns to faces compared to nonfaces. Second, I will describe experiments in adults in which we examined the effect of repetition on categorical responses in the ventral stream. Repeating objects decreases responses in the human ventral stream. Repetition in lateral ventral regions manifests as a proportional effects in which responses to repeated objects are a constant fraction of nonrepeating stimuli with no change in selectivity. In contrast in medial ventral temporal cortex, we find differential effects across time scales whereby immediate repetitions produce proportional effects, but long-lagged repetitions sharpen responses, increasing category selectivity. Finally, I will discuss the implications of these results on plasticity in the ventral stream and our theoretical models linking between fMRI measurements and the underlying neural mechanisms.

Ongoing Dynamics and Brain Connectivity: From Intracellular Recordings to Human Neurophysiology

Lecture
Date:
Tuesday, December 15, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Amos Arieli
|
Department of Neurobiology, WIS

What is the temporal precision of cortical activity? It is clear that the wide range of coding schemes occur on different time scales: Millisecond scale characterizes direct sensory events, tens to hundreds of milliseconds scale characterizes attention processes, while different states of alertness can last many seconds. It seems that there is a direct relationship between the time scale and the spatial resolution in cortical activity. The activity involved in a direct sensory process is well defined in small areas; for example an orientation column. On the other hand an attention process involves huge populations and maybe even the whole cortex. In my talk I will try to bridge the gap between the recordings of single neurons (intracellular and extracellular recordings) and the recordings of large populations of neurons (EEG, LFP,VSD or fMRI) in order to understand the spatio-temporal organization underlying the function of cortical neuronal population and it's relation to brain connectivity. I will relate to the following topics: - What is the size of the neuronal population that contributes to the population activity in different cognitive states? - What is the degree of synchronization within this population? - What is the relationship between the population activity and the activity of single cortical neurons? - The dynamic of coherent activity in neuronal assemblies - ongoing & evoked activity

Long-term relationships between network activity, synaptic tenacity and synaptic remodeling in networks of cortical neurons

Lecture
Date:
Tuesday, December 8, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Noam Ziv
|
Dept of Physiology, Rappaport Faculty of Medicine Technion, Haifa

The human brain consists of a vast number of neurons interconnected by specialized communication devices known as synapses. It is widely believed that activity-dependent modifications to synaptic connections - synaptic plasticity - represents a fundamental mechanism for altering network function, giving rise to emergent phenomena commonly referred to as learning and memory. This belief also implies, however, that synapses, when not driven to change their properties by physiologically relevant stimuli, should retain these properties over time. Otherwise, physiologically relevant modifications would be gradually lost amidst spurious changes and spontaneous drift. We refer to the expected default tendency of synapses to hold onto their properties as "synaptic tenacity". We have begun to examine the degree to which synaptic structures are indeed tenacious. To that end we have developed unique, long-term imaging technologies that allow us to record the remodeling of individual synaptic specializations in networks of dissociated cortical neurons over many days and even weeks at temporal resolutions of 10-30 minutes, and at the same time record and manipulate the levels of activity in the same networks. These approaches have allowed us to uncover intriguing relationships between network activity, synaptic tenacity and synaptic remodeling. These experiments and the insights they have provided will be described.

Computational Model of Spatio-Temporal Cortical Activity in V1: Mechanisms Underlying Observations of Voltage Sensitive Dyes

Lecture
Date:
Thursday, October 29, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. David McLaughlin
|
Provost and Professor of Mathematics and Neuroscience New York University

To investigate the existence and the characteristics of possible cortical operating points of the primary visual cortex, as manifested by the coherent spontaneous ongoing activity revealed by real-time optical imaging based on voltage-sensitive dyes, we studied numerically a very large-scale (_5 _ 105) conductancebased, integrate-and-fire neuronal network model of an _16-mm2 patch of 64 orientation hypercolumns, which incorporates both isotropic local couplings and lateral orientation-specific long-range connections with a slow NMDA component. A dynamic scenario of an intermittent desuppressed state (IDS) is identified in the computational model, which is a dynamic state of (i) high conductance, (ii) strong inhibition, and (iii) large fluctuations that arise from intermittent spiking events that are strongly correlated in time as well as in orientation domains, with the correlation time of the fluctuations controlled by the NMDA decay time scale. Our simulation results demonstrate that the IDS state captures numerically many aspects of experimental observation related to spontaneous ongoing activity, and the specific network mechanism of the IDS may suggest cortical mechanisms and the cortical operating point underlying observed spontaneous activity.In addition, we address the functional significance of the IDS cortical operating points by investigating our model cortex response to the Hikosaka linemotion illusion (LMI) stimulus—a cue of a quickly flashed stationary square followed a few milliseconds later by a stationary bar. As revealed by voltage-sensitive dye imaging, there is an intriguing similarity between the cortical spatiotemporal activity in response to (i) the Hikosaka LMI stimulus and (ii) a small moving square. This similarity is believed to be associated with the preattentive illusory motion perception. Our numerical cortex produces similar spatiotemporal patterns in response to the two stimuli above, which are both in very good agreement with experimental results. The essential network mechanisms underpinning the LMI phenomenon in our model are (i) the spatiotemporal structure of the LMI input as sculpted by the lateral geniculate nucleus, (ii) a priming effect of the long-range NMDA-type cortical coupling, and (iii) the NMDA conductance–voltage correlation manifested in the IDS state. This mechanism in our model cortex, in turn, suggests a physiological underpinning for the LMI-associated patterns in the visual cortex of anaesthetized cat.

Locust swarms and their immunity

Lecture
Date:
Sunday, October 4, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Gabriel Miller
|
Harvard University

Locusts are arguably the most notorious pests in history, directly affecting the livelihood of 1 in 10 people worldwide. These fascinating insects exhibit dramatic phenotypic plasticity in response to environmental fluctuation, changing from shy and cryptic 'solitarious' forms to brightly-colored and swarming 'gregarious' forms. How do these swarms form? What triggers this phenotypic switch? I will discuss how the experience of locust females influences the phenotype of her offspring, and how the 'gregarizing factor' underlying this maternal effect was isolated, purified, and partially characterized. Finally, I present field and laboratory data suggesting that swarm formation (and this gregarizing factor) affects locust immune function.

Pages

All events, All years

There are no events to display

All events, All years

There are no events to display

Pages