All years
, All years
Second Nachmansohn Memorial Symposium: Molecular Approaches to the Nervous System
Conference
Wednesday, November 25, 2009
Hour:
Location:
Computational Model of Spatio-Temporal Cortical Activity in V1: Mechanisms Underlying Observations of Voltage Sensitive Dyes
Lecture
Thursday, October 29, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Computational Model of Spatio-Temporal Cortical Activity in V1: Mechanisms Underlying Observations of Voltage Sensitive Dyes
Prof. David McLaughlin
Provost and Professor of Mathematics and Neuroscience
New York University
To investigate the existence and the characteristics of possible cortical operating points of the primary visual cortex, as manifested by the coherent spontaneous ongoing activity revealed by real-time optical imaging based on voltage-sensitive dyes, we studied numerically a very large-scale (_5 _ 105) conductancebased, integrate-and-fire neuronal network model of an _16-mm2 patch of 64 orientation hypercolumns, which incorporates both isotropic local couplings and lateral orientation-specific long-range connections with a slow NMDA component. A dynamic scenario of an intermittent desuppressed state (IDS) is identified in the computational model, which is a dynamic state of (i) high conductance, (ii) strong inhibition, and (iii) large fluctuations that arise from intermittent spiking events that are strongly correlated in time as well as in orientation domains, with the correlation time of the fluctuations controlled by the NMDA decay time scale. Our simulation results demonstrate that the IDS state captures numerically many aspects of experimental observation related to spontaneous ongoing activity, and the specific network mechanism of the IDS may suggest cortical mechanisms and the cortical operating point underlying observed spontaneous activity.In addition, we address the functional significance of the IDS cortical operating points by investigating our model cortex response to the Hikosaka linemotion illusion (LMI) stimulus—a cue of a quickly flashed stationary square followed a few milliseconds later by a stationary bar. As revealed by voltage-sensitive dye imaging, there is an intriguing similarity between the cortical spatiotemporal activity in response to (i) the Hikosaka LMI stimulus and (ii) a small moving square. This similarity is believed to be associated with the preattentive illusory motion perception. Our numerical cortex produces similar spatiotemporal patterns in response to the two stimuli above, which are both in very good agreement with experimental results. The essential network mechanisms underpinning the LMI phenomenon in our model are (i) the spatiotemporal structure of the LMI input as sculpted by the lateral geniculate nucleus, (ii) a priming effect of the long-range NMDA-type cortical coupling, and (iii) the NMDA conductance–voltage correlation manifested in the IDS state. This mechanism in our model cortex, in turn, suggests a physiological underpinning for the LMI-associated patterns in the visual cortex of anaesthetized cat.
Locust swarms and their immunity
Lecture
Sunday, October 4, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Locust swarms and their immunity
Gabriel Miller
Harvard University
Locusts are arguably the most notorious pests in history, directly affecting the livelihood of 1 in 10 people worldwide. These fascinating insects exhibit dramatic phenotypic plasticity in response to environmental fluctuation, changing from shy and cryptic 'solitarious' forms to brightly-colored and swarming 'gregarious' forms. How do these swarms form? What triggers this phenotypic switch? I will discuss how the experience of locust females influences the phenotype of her offspring, and how the 'gregarizing factor' underlying this maternal effect was isolated, purified, and partially characterized. Finally, I present field and laboratory data suggesting that swarm formation (and this gregarizing factor) affects locust immune function.
Learning in Recurrent Networks with Spike-Timing Dependent Plasticity
Lecture
Wednesday, September 23, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Learning in Recurrent Networks with Spike-Timing Dependent Plasticity
Prof. Klaus Pawelzik
Institute for Theoretical Physics, Dept of Neuro-Physics
University of Bremen, Germany
Memory contents are believed to be stored in the efficiency of synapses in recurrent networks of the
brain. In prefrontal cortex it was found that short and long term memory is accompanied with persistent spike
rates [1,2] indicating that reentrant activities in recurrent networks reflect the content of synaptically encoded
memories [3]. It is, however, not clear which mechanisms enable synapses to sequentially accumulate
information from the stream of patterned inputs which under natural conditions enter as perturbations of the
ongoing neuronal activities. For successful incremental learning only novel input should alter specific synaptic
efficacies while previous memories should be preserved as long as network capacity is not exhausted. In other
words, synaptic learning should realise a palimpsest property with erasing the oldest memories first.
Here we demonstrate that synaptic modifications which sensitively depend on /temporal changes /of pre- and
the post-synaptic neural activity can enable such incremental learning in recurrent neuronal
networks. We investigated a realistic rate based model and found that for robust incremental learning in a
setting with sequentially presented input patterns specific adaptation mechanisms of STDP are required that
go beyond the observed synaptic changes for sequences of pre- and post-synaptic spikes [4]. Our predicted
pre- and post-synaptic adaptation of synaptic changes in response to respective rate changes are
experimentally testable and --if confirmed-- would suggest that STDP provides an unsupervised learning
mechanism particularly well suited for incremental memory acquisition by circumventing the stability-plasticity
dilemma.
Molecular mechanisms of neuron-glia interactions: roles in development and disease
Lecture
Tuesday, September 22, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Molecular mechanisms of neuron-glia interactions: roles in development and disease
Prof. Gabriel Corfas
F.M. Kirby Neurobiology Center
Harvard Medical School
Why is visual perception multi-stable?
Lecture
Tuesday, September 8, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Why is visual perception multi-stable?
Prof. Jochen Braun
Cognitive Biology Group
Otto-von-Guericke-University Magdeburg, Germany
Visual experience is an extrapolation of the retinal image on the basis of prior knowledge about the visual environment. Intriguingly, this inferential process frequently fails to reach a definitive conclusion so that visual experience of a stable scene continues to fluctuate between alternative percepts. This multi-stability of visual perception has long been attributed to adaptive processes that curtail the persistence of any dominant percept. However, more and more evidence points to a fundamentally stochastic, fluctuation-driven nature of multi-stable perception.
We have discovered subtle regularities in series of perceptual alternations that allow us to quantify the relative contributions of adaptive and stochastic processes to perceptual reversals. In collaboration with Gustavo Deco, Barcelona, we have used our observations to constrain a generic attractor network model for multi-stable perception (Moreno-Bote et al., 2007). In the context of this model, our measurements imply that multi-stable perception consistently straddles the dividing line between the oscillatory (adaptation dominated) and the bistable (fluctuation-driven) regimes. In other words, visual perception seems to be maintained in a state of criticality.
Excitable networks are known to respond most sensitively and with maximal dynamic range when in a state of criticality. Accordingly, visual perception may be maintained in a critical state in order to maximize sensitivity, with multi-stability as an unavoidable side-effect. Our conclusions throw a surprising new light on many well-known observations and raise several new questions. For example, they imply the existence of hitherto unsuspected homeostatic mechanisms.
“Tomorrow is another day": A 24 h persistent synaptic plasticity in hippocampal interneuron circuits
Lecture
Tuesday, August 18, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
“Tomorrow is another day": A 24 h persistent synaptic plasticity in hippocampal interneuron circuits
Dr. Israeli Ran
Dept of Physiology
University of Montreal, Canada
Hippocampal interneurons synchronize the activity of large neuronal ensembles during memory consolidation. Although the latter process is manifested as increases in synaptic efficacy which require new protein synthesis in pyramidal neurons, it is unknown whether such enduring plasticity occurs in interneurons. In the present talk, I will discuss a long-term potentiation (LTP) of transmission at individual interneuron excitatory synapses which persists for at least 24 h, after repetitive activation of type-1 metabotropic glutamate receptors [mGluR1-mediated chemical late LTP (cL-LTPmGluR1 )]. cL-LTPmGluR1 involves pre- and postsynaptic expression mechanisms and requires both transcription and translation via phosphoinositide 3-kinase/mammalian target of rapamycin and MAPkinase kinase extracellular signal-regulated protein kinase signaling pathways. Moreover, cL-LTPmGluR1 involves translational control at the level of initiation as it is prevented by hippuristanol, an inhibitor of eIF4A, and facilitated in mice lacking the cap-dependent translational repressor, 4E-BP. These results reveal novel mechanisms of long-term synaptic plasticity that are transcription and translation-dependent in inhibitory interneurons, indicating that persistent synaptic modifications in interneuron circuits may contribute to hippocampal-dependent cognitive processes.
Active Sensing by Bat Biosonar: Strategies of Information Flow Control
Lecture
Monday, August 17, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Active Sensing by Bat Biosonar: Strategies of Information Flow Control
Dr. Marc Holderied
University of Bristol, UK
Abstract: Echolocation or biosonar is an alien sense to humans. For us as visually guided mammals it is hard to imagine what an echolocator's acoustic perception of its surroundings 'looks' like. Part of this difficulty arises because vision and biosonar differ fundamentally in a number of ways: a) Vision is based on two dimensional data, i.e. images focused on the retina in the eye, while bats evaluate a linear stream of echoes and have to reconstruct all directional/spatial information from the temporal and spectral properties of the echo stream; b) the number of sensory cells in hearing is much lower than in vision and c) biosonar is a case of active sensing, i.e. bats actively produce the signals with which they probe the environment, while vision (in the vast majority of cases) relies on external light sources. This combination of traits, i.e. limited bandwidth and active sensing has led to a number of behavioural adaptive strategies by which bats control what information about the environment becomes available to them. In a sense, external mechanisms to extract the relevant information from the plethora of available data are far more important in biosonar than in vision.
Hence, biosonar offers unique opportunities to study behavioural strategies of information flow control by active sensing. We employed high resolution acoustic tracking techniques and 3D laser scanning of natural habitats to study free flying bats in forests. We investigated how they adapt flight patterns, calling behaviour and sonar signal design to optimize information flow.
Movement selectivity in the human mirror system
Lecture
Tuesday, July 28, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Movement selectivity in the human mirror system
Ilan Dinstein New York University Visiting PhD Student – Malach Lab
Abstract: “Monkey mirror neurons are unique visuomotor neurons that respond when executing a particular movement (e.g. grasping, placing, or manipulating) and also when passively observing someone else performing that same movement. Importantly, subpopulations of mirror neurons respond in a selective manner to one preferred movement whether executed or observed. It has been proposed that the activity of mirror neurons underlies the monkey’s ability to perceive the goals and intentions of others. Human mirror neurons are thought to exist in two cortical areas, the anterior intraparietal sulcus (aIPS) and the ventral premotor (vPM), which have been called the human mirror system. A dysfunction in the responses of this system has been hypothesized to cause impairment in the ability to understand one another resulting in Autism. I will talk about three studies where we characterized the responses of the human mirror system using fMRI adaptation and classification techniques to assess their response selectivity for observed and executed hand movements. Two studies were performed with neurotypical individuals and the third with Autistic individuals.”
Role of Dopamine in Reward: Anatomical and Conceptual Issues
Lecture
Tuesday, July 14, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Role of Dopamine in Reward: Anatomical and Conceptual Issues
Dr. Satoshi Ikemoto
NIDA (Nat. Inst. on Drug Abuse)
Behavioral Neuroscience Research Branch
NIH, USA
Abstract: The mesolimbic dopamine system from the ventral tegmental area (VTA) to the ventral striatum has been implicated in reward. Using intracranial self-administration procedures, we found that rats learn to self-administer cocaine or amphetamine into the medial portion of the ventral striatum more readily than the lateral ventral striatum. Rats learn to self-administer drugs such as opiates and cholinergic drugs into the posterior portion of the VTA more readily than the anterior VTA. Axonal tracer experiments revealed that the medial ventral striatum is preferentially innervated by dopamine neurons localized in the posterior VTA, while the lateral ventral striatum is preferentially innervated by dopamine neurons in the anterolateral VTA. Therefore, the mesolimbic dopamine system from the posterior VTA to the medial ventral striatum appears to be more responsive for rewarding effects of drugs. In addition, we have studied the nature of the rewarding effects of drugs. We found that noncontingent administration of cocaine or amphetamine into the medial ventral striatum increases leverpressing, when leverpressing contingently elicits visual signals. These results suggest that a function of dopamine in the ventral striatum is to facilitate actions in response to salient stimuli. Dopamine in the medial ventral striatum also appears to facilitate associative learning as shown by conditioned place preference of cocaine. We suggest that ventral striatal dopamine induces an arousing state that facilitates ongoing appetitive responding and reinforcement.
Pages
All years
, All years
Brain and Reality: How Does the Brain Generate Perceptions and Actions
Lecture
Tuesday, June 23, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Brain and Reality: How Does the Brain Generate Perceptions and Actions
Prof. Eilon Vaadia
Dept of Medical Neurobiology
Hadassah Medical School
Hebrew University, Jerusalem
Evoked neural synchrony, visual attention and grouping
Lecture
Tuesday, June 16, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Evoked neural synchrony, visual attention and grouping
Prof. Marius Usher
Dept of Psychology,
Tel Aviv University
Neural synchrony was proposed as a mechanism for visual attention, and more controversially, for grouping and figure-ground processing. In this talk I will first present evidence showing that evoked Gamma synchrony, via 50Hz subliminal flicker produces attentional orientation in the absence of awareness. Second, I will present data on the effects of evoked synchrony on grouping and figure-ground processing. The results indicate a fast temporal resolution for these processes (<20ms), which is mediated by lateral connections and which is sensitive to synchrony, but not to sustained oscillations of a specific frequency.
Collaboration with: S Cheadle, F Bauer, H Mueller.
Large-scale brain dynamics: Functional MRI of spontaneous and optically-driven neural activity
Lecture
Monday, June 15, 2009
Hour: 12:45
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Large-scale brain dynamics: Functional MRI of spontaneous and optically-driven neural activity
Dr. Itamar Kahn
Howard Hughes Medical Institute
Harvard University
A fundamental problem in brain research is how distributed brain systems work together to give rise to behavior. I seek to advance our understanding of principles underlying the dynamic interaction between multiple neural systems, how the different systems co-operate and/or compete to give rise to goal-directed behavior, and the dynamics of the system when one or more of its components fail.
Magnetic resonance imaging (MRI) methods allow us to simultaneously measure the function of multiple brain systems. In humans we can characterize the functional organization and specialization, and compare the system between health and disease. In animal models we can further dissect the circuits underlying these dynamics. In my work I aim to identify functional networks that span multiple cortical and subcortical regions, characterize their responses in the presence and absence of overt behavior, and modulate the observed dynamics. To advance these goals, I am developing new tools that will allow us to study large-scale neural systems across species.
In this talk, I will review recent studies that use functional neuroimaging in humans and animal models. I will describe how spontaneous fluctuations of the blood oxygenation level-dependent (BOLD) signal measured with MRI in awake resting humans, reveal functional subdivisions in the medial temporal lobe memory system and parietal and prefrontal cortical components linked to it. I will describe results from non-human primates demonstrating that this functional organization persists across the species, highlighting cortical components that have undergone considerable areal expansion in humans relative to non-human primates, how this method can be used to identify homologue regions, and more generally, what can be learned from a comparative perspective.
In the second part of my talk I will describe recent efforts to selectively modulate system dynamics. A lentivirus was used to target excitatory neurons in the rat cortex with light-activated cation channel channelrhodopsin-2. Using photostimulation to activate these neurons we were able to drive the BOLD response locally and in regions anatomically connected to the infected site in a variety of stimulation paradigms. I will discuss implications for understanding the BOLD signal and prospects for this approach in studying the microcircuit as well as large-scale brain dynamics. Finally, I will discuss the challenges and promises of whole-brain imaging in small animals, and how this work can provide avenues to bridge between a basic understanding of human behavior, large-scale neural dynamics, and psychiatric disorders where such dynamics are disrupted.
Optical control of neural population activity and growth
Lecture
Tuesday, June 9, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Optical control of neural population activity and growth
Dr. Shy Shoham
Faculty of Biomedical Engineering
Technion – I.I.T. Haifa
Retinal neuroprosthetics can potentially be used to address some of the major degenerative disorders that cause blindness, including Retinitis Pigmentosa and Macular Degeneration, by bypassing the degenerated photoreceptor layer, and interfacing directly the more viable Retinal Ganglion Cells (RGCs). I will describe the development of new optical and computational tools aimed at allowing controlled experimental emulation of activity patterns in a large population of retinal ganglion cells and their correlation structure. First, we introduce new optical systems allowing control of increasingly complex spatiotemporal activity patterns in neural populations, focusing on holographic photo-stimulation which has several fundamental advantages in this application. Next, we introduce a general new computational strategy based on correlation distortions, for controlling and analyzing the pair-wise correlation structure (defined in terms of auto- and cross-correlation functions) in multiple synthetic spike trains. This approach can be used to generate stationary or non-stationary network activity patterns with predictable spatio-temporal correlations.
In a final part of the talk I will describe a new approach for exact, flexible control of neurite outgrowth in three-dimensional neural structures, and its possible applications.
Omega-3 fatty acids are essential for neuronal migration and dopaminergic wiring in the developing brain
Lecture
Wednesday, June 3, 2009
Hour: 12:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Omega-3 fatty acids are essential for neuronal migration and dopaminergic wiring in the developing brain
Prof. Ephraim Yavin
Dept of Neurobiology, WIS
Diminished levels of docosahexaenoic acid (DHA, 22:6n-3), the major polyunsaturated fatty acid (FA) synthesized from alpha linolenic acid (ALA, 18:3n-3), have been implicated in changes in neurotransmitter production, ion channels disruption and impairments of a variety of cognitive, behavioural and motor functions in the developing and the adult mammal. We studied neuronal migration in the cortex and hippocampus of newborn and postnatal rats after ALA-deficiency, beginning on the 2nd day after conception and continuing for three weeks after birth. A marked decrease in the migration of bromodeoxyuridine(+)/NeuN(+)/Neurofilament(+) and glia fibrilary acidic protein(-) neuronal cells to the dense cortical plate was accompanied by a corresponding abundance of non-migrating cells in several regions such as cortical layers IV-VI, corpus callosum and the sub-ventricular zone of ALA-deficient newborn. Similarly, a delayed migration of cells to CA1 and dentate gyrus areas was noticed while most cells were retained in the subicular area adjacent to the hippocampus. The delay in migration was transient most likely due to a temporary reelin disorganization.
In addition to these changes a drastic reduction in tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT-2) levels, both of which are prerequisites for appropriate synthesis and transport of DA were noticed by RNA subtractive hybridization and proteomic techniques. Concomitantly, a large increase in DA receptors DAR1 and DAR2 were noticed. The transient impairment induced by ALA deprivation may compromise the organization of neuronal assemblies and result in aberrant neuronal connectivity (lateral connections) to enhance the risk of neurodevelopmental disorders including cerebral palsy.
The Neural Dynamics of Perception
Lecture
Tuesday, June 2, 2009
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
The Neural Dynamics of Perception
Prof. Donald Katz
Dept of Psychology and Neuroscience
Brandeis University
Much of the research done in sensory neuroscience is founded on the assumption that "sensory" function can be adequately characterized without knowledge of response dynamics, trial-to-trial variability, between-neuron interactions, or stimulus-response relationships. My lab's research demonstrates that single-neuron taste responses in gustatory cortex (GC) in fact contain dynamics that reflect tight perception-action coupling: across 1.5 sec, these responses progress from first "coding" the presence of taste on the tongue, then the identity of that taste, and finally the taste's palatability. In this talk, I will describe the tests that we have done to relate these response dynamics to changes (attentional, motivational, and learning-related) at longer time-scales, and our evidence that they reflect coherent, attractor-like processes emerging from interactions among local and distributed networks of neurons.
Perception and Brain Plasticity in Humans: New Insights from Phase-locking Fourier Approaches to fMRI
Lecture
Tuesday, May 26, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Perception and Brain Plasticity in Humans: New Insights from Phase-locking Fourier Approaches to fMRI
Dr. Amir Amedi
Hadassah Medical School
Hebrew University Jerusalem
An integrative approach towards understanding the neural basis of congenital prosopagnosia
Lecture
Tuesday, May 19, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
An integrative approach towards understanding the neural basis of congenital prosopagnosia
Dr. Galia Avidan
Dept of Psychology and Zlotowski Center for Neuroscience
Ben Gurion University of the Negev
Congenital prosopagnosia (CP) refers to the deficit in face processing that is apparently life-long in duration, arises in the absence of brain damage of any form and occurs in individuals with intact sensory and intellectual function. As such, CP provides a unique model in which to explore the psychological and neural bases of normal face processing. Despite the growing interest in CP, the neural mechanism giving rise to this disorder is still unclear. We addressed this issue by adopting an integrative approach in which both functional and structural imaging techniques were combined. Specifically, using fMRI, we have documented normal face selective activation in face -related regions in occipito-temporal cortex but in contrast, revealed abnormal activation in these individuals in frontal regions, suggesting that information propagation between frontal and occipito-temporal regions is disrupted in this disorder. Consistently with this account, diffusion tensor imaging (DTI) measures revealed that the two major posterior-anterior tracts (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus) through the fusiform face area (FFA) had significantly fewer fibers and lower fractional anisotropy (FA) values in CP. Finally, along the same line, structural imaging data revealed a significant reduction in volume of the anterior fusiform gyrus in the CP group, but normal volume at the location of the functionally defined FFA. Thus, taken together, these findings provide, for the first time, a comprehensive account for the neural deficits underlying congenital prosopagnosia and shed light on the underlying distributed circuit mediating normal face processing.
Behavioral and neurophysiological correlates of GABA modulation in the basal ganglia
Lecture
Tuesday, May 5, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Behavioral and neurophysiological correlates of GABA modulation in the basal ganglia
Dr. Izhar Bar-Gad
Gonda Brain Research Center
Bar Ilan University
The cortico-basal ganglia pathway is involved in normal motor control and implicated in multiple movement disorders. We used focal microinjections of the GABA-A antagonist bicuculline to the sensorimotor putamen of behaving primates to induce stereotyped tics similar to those observed in human Tourette syndrome. The tics were accompanied by synchronized phasic changes in the local field potential and single cell activity of neurons throughout the cortico-basal ganglia loop. We also used focal injection of bicuculline to different functional domains of the globus pallidus external segment (GPe) to induce a variety of hyper-behavioral symptoms. These, symptoms varied between dyskinesia, stereotypy and attention deficit depending on injection site within the motor, limbic and associative domains respectively. The injections led to distributed uncorrelated changes in firing pattern throughout the cortico-basal ganglia loop. The neurophysiological findings and their implication on models of information processing in the basal ganglia will be discussed in the lecture.
Odotopic maps, odor coding, rats, mice, and behavior
Lecture
Monday, May 4, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Odotopic maps, odor coding, rats, mice, and behavior
Prof. Burton Slotnick
Dept of Psychology
American University
What is the neural code for odor quality perception? Perhaps the most widely accepted view is spatial: that different odors are represented at the level of the olfactory bulb by bulbar patterns of activation, a so-called odotopic combinatorial coding for the receptive fields of olfactory sensory neurons. The primary evidence for this view comes from variety of imaging studies demonstrating orderly relationships between chemical structure of odorants and sites of activation across the olfactory bulb. However, behavioral studies with rodents fail to support predictions based on anatomy but open new avenues for research on this still elusive sensory modality.
Pages
All years
, All years
There are no events to display