All events, All years

Active Sensing by Bat Biosonar: Strategies of Information Flow Control

Lecture
Date:
Monday, August 17, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Dr. Marc Holderied
|
University of Bristol, UK

Abstract: Echolocation or biosonar is an alien sense to humans. For us as visually guided mammals it is hard to imagine what an echolocator's acoustic perception of its surroundings 'looks' like. Part of this difficulty arises because vision and biosonar differ fundamentally in a number of ways: a) Vision is based on two dimensional data, i.e. images focused on the retina in the eye, while bats evaluate a linear stream of echoes and have to reconstruct all directional/spatial information from the temporal and spectral properties of the echo stream; b) the number of sensory cells in hearing is much lower than in vision and c) biosonar is a case of active sensing, i.e. bats actively produce the signals with which they probe the environment, while vision (in the vast majority of cases) relies on external light sources. This combination of traits, i.e. limited bandwidth and active sensing has led to a number of behavioural adaptive strategies by which bats control what information about the environment becomes available to them. In a sense, external mechanisms to extract the relevant information from the plethora of available data are far more important in biosonar than in vision. Hence, biosonar offers unique opportunities to study behavioural strategies of information flow control by active sensing. We employed high resolution acoustic tracking techniques and 3D laser scanning of natural habitats to study free flying bats in forests. We investigated how they adapt flight patterns, calling behaviour and sonar signal design to optimize information flow.

Movement selectivity in the human mirror system

Lecture
Date:
Tuesday, July 28, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Ilan Dinstein New York University Visiting PhD Student – Malach Lab

Abstract: “Monkey mirror neurons are unique visuomotor neurons that respond when executing a particular movement (e.g. grasping, placing, or manipulating) and also when passively observing someone else performing that same movement. Importantly, subpopulations of mirror neurons respond in a selective manner to one preferred movement whether executed or observed. It has been proposed that the activity of mirror neurons underlies the monkey’s ability to perceive the goals and intentions of others. Human mirror neurons are thought to exist in two cortical areas, the anterior intraparietal sulcus (aIPS) and the ventral premotor (vPM), which have been called the human mirror system. A dysfunction in the responses of this system has been hypothesized to cause impairment in the ability to understand one another resulting in Autism. I will talk about three studies where we characterized the responses of the human mirror system using fMRI adaptation and classification techniques to assess their response selectivity for observed and executed hand movements. Two studies were performed with neurotypical individuals and the third with Autistic individuals.”

Role of Dopamine in Reward: Anatomical and Conceptual Issues

Lecture
Date:
Tuesday, July 14, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Satoshi Ikemoto NIDA (Nat. Inst. on Drug Abuse) Behavioral Neuroscience Research Branch NIH, USA

Abstract: The mesolimbic dopamine system from the ventral tegmental area (VTA) to the ventral striatum has been implicated in reward. Using intracranial self-administration procedures, we found that rats learn to self-administer cocaine or amphetamine into the medial portion of the ventral striatum more readily than the lateral ventral striatum. Rats learn to self-administer drugs such as opiates and cholinergic drugs into the posterior portion of the VTA more readily than the anterior VTA. Axonal tracer experiments revealed that the medial ventral striatum is preferentially innervated by dopamine neurons localized in the posterior VTA, while the lateral ventral striatum is preferentially innervated by dopamine neurons in the anterolateral VTA. Therefore, the mesolimbic dopamine system from the posterior VTA to the medial ventral striatum appears to be more responsive for rewarding effects of drugs. In addition, we have studied the nature of the rewarding effects of drugs. We found that noncontingent administration of cocaine or amphetamine into the medial ventral striatum increases leverpressing, when leverpressing contingently elicits visual signals. These results suggest that a function of dopamine in the ventral striatum is to facilitate actions in response to salient stimuli. Dopamine in the medial ventral striatum also appears to facilitate associative learning as shown by conditioned place preference of cocaine. We suggest that ventral striatal dopamine induces an arousing state that facilitates ongoing appetitive responding and reinforcement.

Collective Motion and Decision-Making in Animal Groups

Lecture
Date:
Thursday, July 9, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Prof. Iain Couzin
|
Dept of Ecology and Evolutionary Biology and Program in Computational and Mathematical Biology Princeton University USA

Grouping organisms, such as schooling fish, often have to make rapid decisions in uncertain and dangerous environments. Decision-making by individuals within such aggregates is so seamlessly integrated that it has been associated with the concept of a “collective mind”. As each organism has relatively local sensing ability, coordinated animal groups have evolved collective strategies that allow individuals to access higher-order computational abilities at the collective level. Using a combined theoretical and experimental approach involving insect and vertebrate groups, I will address how, and why, individuals move in unison and investigate the principles of information transfer in these groups, particularly focusing on leadership and collective consensus decision-making. An integrated "hybrid swarm" technology is introduced in which multiple robot-controlled replica individuals interact within real groups allowing us new insights into group coordination. These results will be discussed in the context of the evolution of collective biological systems.

Neuronal Avalanches in the Cortex:A Case for Criticality

Lecture
Date:
Tuesday, July 7, 2009
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Dietmar Plenz
|
Laboratory of Systems Neuroscience NIMH, USA

Complex systems, when poised near a critical point of a phase transition between order and disorder, exhibit scale-free, power law dynamics. Critical systems are highly adaptive and flexibly process and store information, which prompted the conjecture that the cortex might operate at criticality. This view is supported by the recent discovery of neuronal avalanches in superficial layers of cortex. The spatiotemporal, synchronized activity patterns of avalanches form a scale-free organization that spontaneously emerges in vitro as well as in vivo in the anesthetized rat and awake monkeys. Avalanches are established at the time of superficial layer differentiation, require balanced fast excitation and inhibition, and are regulated via an inverted-U profile of NMDA/dopamine-D1 interaction. Neuronal synchronization in the form of avalanches naturally incorporates nested theta/gamma-oscillations as well as sequential activations as proposed for synfire chains. Importantly, a singleavalanche is not an isolated network event, but rather its specific occurrence in time, its spatial spread, and overall size is part of an elementary organization of the dynamics that is described by three fundamental power laws. Overall, these results suggest that neuronal avalanches indicate a critical network dynamics at which the cortex gains universal properties found at criticality. These properties constitute a novel framework that allow for a precise quantification of cortex function such as the absolute discrimination of pathological from non-pathological synchronization, and the identification of maximal dynamic range for input-output processing.

Critical thoughts on critical periods: Are children better than adults at acquiring skills?

Lecture
Date:
Tuesday, July 7, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Avi Karni
|
Department of Human Biology University of Haifa

Physiological studies of the functional architecture of the basal ganglia neural networks

Lecture
Date:
Tuesday, June 30, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Hagai Bergman
|
Dept of Physiology and The Interdisciplinary Center for Neural Computation Hebrew University, Jerusalem

The basal ganglia (BG) are commonly viewed as two functionally related subsystems. These are the neuromodulators subsystem and the main-axis subsystem, in analogy with the critic-actor division of reinforcement learning agent. We propose that the BG main axis is performing dimensionality reduction of the cortical input leading to optimal trade-off between maximization of future cumulative reward and minimization of the cost (information bottleneck). In line with the information bottleneck dimensionality reduction model, BG main axis neurons maintain flat spike crosscorrelation functions, diverse responses to behavioral events, and broadly distributed values of signal and response correlations with zero population mean. On the other hand, the spontaneous and the evoked activity of BG dopaminergic and cholinergic modulators (critics) are significantly correlated. BG plasticity and learning are therefore controlled by homogenous modulators effects associated with local coincidences of cortico-striatal activity.

Brain and Reality: How Does the Brain Generate Perceptions and Actions

Lecture
Date:
Tuesday, June 23, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Eilon Vaadia
|
Dept of Medical Neurobiology Hadassah Medical School Hebrew University, Jerusalem

Evoked neural synchrony, visual attention and grouping

Lecture
Date:
Tuesday, June 16, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Marius Usher
|
Dept of Psychology, Tel Aviv University

Neural synchrony was proposed as a mechanism for visual attention, and more controversially, for grouping and figure-ground processing. In this talk I will first present evidence showing that evoked Gamma synchrony, via 50Hz subliminal flicker produces attentional orientation in the absence of awareness. Second, I will present data on the effects of evoked synchrony on grouping and figure-ground processing. The results indicate a fast temporal resolution for these processes (<20ms), which is mediated by lateral connections and which is sensitive to synchrony, but not to sustained oscillations of a specific frequency. Collaboration with: S Cheadle, F Bauer, H Mueller.

Large-scale brain dynamics: Functional MRI of spontaneous and optically-driven neural activity

Lecture
Date:
Monday, June 15, 2009
Hour: 12:45
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Dr. Itamar Kahn
|
Howard Hughes Medical Institute Harvard University

A fundamental problem in brain research is how distributed brain systems work together to give rise to behavior. I seek to advance our understanding of principles underlying the dynamic interaction between multiple neural systems, how the different systems co-operate and/or compete to give rise to goal-directed behavior, and the dynamics of the system when one or more of its components fail. Magnetic resonance imaging (MRI) methods allow us to simultaneously measure the function of multiple brain systems. In humans we can characterize the functional organization and specialization, and compare the system between health and disease. In animal models we can further dissect the circuits underlying these dynamics. In my work I aim to identify functional networks that span multiple cortical and subcortical regions, characterize their responses in the presence and absence of overt behavior, and modulate the observed dynamics. To advance these goals, I am developing new tools that will allow us to study large-scale neural systems across species. In this talk, I will review recent studies that use functional neuroimaging in humans and animal models. I will describe how spontaneous fluctuations of the blood oxygenation level-dependent (BOLD) signal measured with MRI in awake resting humans, reveal functional subdivisions in the medial temporal lobe memory system and parietal and prefrontal cortical components linked to it. I will describe results from non-human primates demonstrating that this functional organization persists across the species, highlighting cortical components that have undergone considerable areal expansion in humans relative to non-human primates, how this method can be used to identify homologue regions, and more generally, what can be learned from a comparative perspective. In the second part of my talk I will describe recent efforts to selectively modulate system dynamics. A lentivirus was used to target excitatory neurons in the rat cortex with light-activated cation channel channelrhodopsin-2. Using photostimulation to activate these neurons we were able to drive the BOLD response locally and in regions anatomically connected to the infected site in a variety of stimulation paradigms. I will discuss implications for understanding the BOLD signal and prospects for this approach in studying the microcircuit as well as large-scale brain dynamics. Finally, I will discuss the challenges and promises of whole-brain imaging in small animals, and how this work can provide avenues to bridge between a basic understanding of human behavior, large-scale neural dynamics, and psychiatric disorders where such dynamics are disrupted.

Pages

All events, All years

An integrative approach towards understanding the neural basis of congenital prosopagnosia

Lecture
Date:
Tuesday, May 19, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Galia Avidan
|
Dept of Psychology and Zlotowski Center for Neuroscience Ben Gurion University of the Negev

Congenital prosopagnosia (CP) refers to the deficit in face processing that is apparently life-long in duration, arises in the absence of brain damage of any form and occurs in individuals with intact sensory and intellectual function. As such, CP provides a unique model in which to explore the psychological and neural bases of normal face processing. Despite the growing interest in CP, the neural mechanism giving rise to this disorder is still unclear. We addressed this issue by adopting an integrative approach in which both functional and structural imaging techniques were combined. Specifically, using fMRI, we have documented normal face selective activation in face -related regions in occipito-temporal cortex but in contrast, revealed abnormal activation in these individuals in frontal regions, suggesting that information propagation between frontal and occipito-temporal regions is disrupted in this disorder. Consistently with this account, diffusion tensor imaging (DTI) measures revealed that the two major posterior-anterior tracts (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus) through the fusiform face area (FFA) had significantly fewer fibers and lower fractional anisotropy (FA) values in CP. Finally, along the same line, structural imaging data revealed a significant reduction in volume of the anterior fusiform gyrus in the CP group, but normal volume at the location of the functionally defined FFA. Thus, taken together, these findings provide, for the first time, a comprehensive account for the neural deficits underlying congenital prosopagnosia and shed light on the underlying distributed circuit mediating normal face processing.

Behavioral and neurophysiological correlates of GABA modulation in the basal ganglia

Lecture
Date:
Tuesday, May 5, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Izhar Bar-Gad
|
Gonda Brain Research Center Bar Ilan University

The cortico-basal ganglia pathway is involved in normal motor control and implicated in multiple movement disorders. We used focal microinjections of the GABA-A antagonist bicuculline to the sensorimotor putamen of behaving primates to induce stereotyped tics similar to those observed in human Tourette syndrome. The tics were accompanied by synchronized phasic changes in the local field potential and single cell activity of neurons throughout the cortico-basal ganglia loop. We also used focal injection of bicuculline to different functional domains of the globus pallidus external segment (GPe) to induce a variety of hyper-behavioral symptoms. These, symptoms varied between dyskinesia, stereotypy and attention deficit depending on injection site within the motor, limbic and associative domains respectively. The injections led to distributed uncorrelated changes in firing pattern throughout the cortico-basal ganglia loop. The neurophysiological findings and their implication on models of information processing in the basal ganglia will be discussed in the lecture.

Odotopic maps, odor coding, rats, mice, and behavior

Lecture
Date:
Monday, May 4, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Burton Slotnick
|
Dept of Psychology American University

What is the neural code for odor quality perception? Perhaps the most widely accepted view is spatial: that different odors are represented at the level of the olfactory bulb by bulbar patterns of activation, a so-called odotopic combinatorial coding for the receptive fields of olfactory sensory neurons. The primary evidence for this view comes from variety of imaging studies demonstrating orderly relationships between chemical structure of odorants and sites of activation across the olfactory bulb. However, behavioral studies with rodents fail to support predictions based on anatomy but open new avenues for research on this still elusive sensory modality.

Interactions between environmental changes and brain plasticity in birds

Lecture
Date:
Monday, April 27, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Prof. Anat Barnea
|
Dept of Natural and Life Sciences The Open University of Israel

Neurogenesis (birth of new neurons) occurs in many vertebrates, including humans. Most of the new neurons die before reaching destination. Those which survive migrate to various brain regions, replace older ones and connect to existing circuits. Evidence suggests that this replacement is related to acquisition of new information. Therefore, neuronal replacement is seen as a form of brain plasticity that enables organisms to adjust to environmental changes. However, direct evidence of a causal link between replacement and learning remains elusive. I will review a few of our studies which tried to uncover conditions that influence new neuronal recruitment and survival, and how these phenomena relate to the life of birds. We hypothesize that an increase in new neuron recruitment is associated with expected or actual increase in memory load, particularly in brain regions that process and perhaps store this new information. Moreover, since new neuronal recruitment is part of a turnover process, we assume that the same conditions that favor the survival of some neurons induce the death of others. I will offer a frame and rational for comparing neuronal replacement in the adult avian brain, and try to uncover the pressures, rules, and mechanisms that govern its constant rejuvenation. I will discuss a variety of behaviors and environmental conditions (food-hoarding, social change, parent-offspring recognition, migration) and their effect on new neuronal recruitment in relevant brain regions. I will describe various approaches and techniques which we used in those studies (behavioral, anatomical, cellular and hormonal), and will emphasize the significance of studying behavior and brain function under natural or naturalistic conditions.

Neural decoding and optimal filtering: on a reverse engineering view of neural information processing

Lecture
Date:
Monday, April 20, 2009
Hour: 12:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Prof. Ron Meir
|
Faculty of Electrical Engineering Technion, Haifa

The representation of value in the human brain

Lecture
Date:
Tuesday, April 7, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Ifat Levy
|
Yale University

The neural representation of value is a matter of great debate. In particular, it is not clear whether multiple valuation systems exist, each representing value under different conditions, or whether a single system that uses a &#8220;common currency&#8221; for the representation of value under many different conditions can be identified. I will present two studies in which we combined experimental methods from behavioral economics with functional MRI to study the representation of value in the human brain. The first study compared choices under two terms of uncertainty: risk, when probabilities of different outcomes are known, and ambiguity, when such probabilities are not known. Our results show that although subjects exhibit markedly different choice behaviors under these two conditions, a single system, consisting of the striatum and the medial prefrontal cortex (MPFC) encodes choice values in both cases. In the second study we used MPFC activation elicited by passive viewing of goods in the scanner to predict subsequent choices between these goods made outside of the scanner. Our predictions were significantly above chance, suggesting that the same valuation system is engaged whether or not choice is required. Based on these results together with previous studies we suggest that the striatum and the MPFC are the final common pathway for valuation &#8211; other areas may be differentially involved in encoding value under different conditions, but all of these areas should transfer their output to the final system to guide choice behavior.

“LIS1, More or Less? Implications for Brain Development and Human Disease”

Lecture
Date:
Tuesday, March 31, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Orly Reiner
|
Dept of Molecular Genetics, WIS

Perception and Action Interactions:Evidence from Neuropsychology, Neuroimaging, and Transcranial Magnetic Stimulation

Lecture
Date:
Thursday, March 26, 2009
Hour: 11:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Prof. Jody Culham
|
Dept of Psychology, University of Western Ontario, Canada Visiting Senior Fellow, Institute of Advanced Studies University of Bologna, Italy

Although prominent theories of vision have emphasized dissociations between two visual streams specialized for perception and action, in some situations, the two streams must interact. One such situation is the performance of actions upon remembered objects. Neuropsychological evidence from two patients with occipitotemporal lesions suggests that while immediate actions can be performed using only the dorsal vision-for-action stream, delayed actions require integrity of the ventral vision-for-perception stream. My lab has investigated the interactions between the two streams during delayed grasping using functional magnetic resonance imaging and transcranial magnetic stimulation. Our results suggest that delayed actions re-recruit information about object properties such as shape, size and orientation from the ventral stream and early visual areas at the time the delayed action is performed

Synergistic Interactions Between Molecular Risk Factors of Alzheimer’s Disease

Lecture
Date:
Tuesday, March 24, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Daniel Michaelson
|
Dept of Neurobiology, Tel Aviv University

The allele E4 of apolipoprotein E (apoE4), the most prevalent genetic risk factor for Alzheimer&#8217;s disease, is associated with elevated levels of brain amyloid. This led to the suggestion that the pathological effects of apoE4 are mediated via synergistic pathological interactions with amyloid &#946; (A&#946;). We have recently shown that activation of the amyloid cascade by inhibition of the A&#946;-degrading enzyme neprilysin in brains of apoE3 and apoE4 mice results in the isoform specific degeneration in apoE4 mice, of hippocampal CA1 neurons and of entorhinal and septal neurons. This is accompanied by the accumulation of intracellular A&#946; and apoE and by pronounced cognitive deficits in the ApoE4 mice. We presently investigated the cellular mechanisms underlying the apoE4 dependent A&#946; mediated neurodegeneration of CA1 and septal neurons and their neuronal specificity. Confocal microscopy kinetic studies revealed that the accumulated A&#946; in CA1 neurons of apoE4 mice co-localizes with lysosomes and is associated with lysosomal activation and subsequent apoptotic neuronal cell death. Furthermore the accumulated A&#946; is oligomerized. In contrast the degeneration of septal neurons is not associated with oligomerization of the accumulated A&#946;. Instead intracellular A&#946; in septal neurons co-localizes with the apoE receptor LRP whose levels are specifically elevated in these cells. These findings suggest that the apoE4 dependent A&#946; mediated neurodegeneration is related, in CA1 but not in septal neurons, to oligomerization of the accumulated A&#946;. In addition, neurodegeneration of CA1 but not of septal neurons is associated with inflammatory activation suggesting that the brain area specificity of the effects of apoE4 and A&#946; are also related to brain area specific non neuronal mechanisms such as inflammation. Neuronal plasticity experiments revealed that apoE4 inhibits synaptogenesis and neurogenesis and stimulates apoptosis in hippocampal neurons of apoE4 mice that have been exposed to an enriched environment. These effects are also associated with the specific accumulation of apoE4 and oligomerized A&#946; in the affected neurons. Additional experiments revealed that apoE4 up-regulates the expression of inflammation-related genes following i.c.v injection of LPS and that this effect is also associated with the accumulation of intra neuronal A&#946; in hippocampal neurons. These findings suggest that the impaired neuronal plasticity and hyper inflammatory effects of apoE4 may also be mediated via cross talk interactions of apoE4 with the amyloid cascade.

Now I See It, Now I Don’t: Neural Basis of Simple Perceptual Decisions in the Human Brain

Lecture
Date:
Wednesday, March 18, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Dr. Tobias H. Donner
|
Center for Neural Science & Dept of Psychology New York University

It is frequently proposed that conscious perceptual decisions are produced by recurrent interactions among multiple brain areas. Sensory stimuli, which are close to psychophysical threshold or perceptually bistable, induce fluctuating percepts in the face of constant sensory input. Thus, these stimuli provide ideal tools for probing the intrinsic neural mechanisms underlying perceptual decisions, in the absence of extrinsic stimulus changes. I will present human neuroimaging (MEG and fMRI) studies, in which we used this approach for probing the large-scale neural mechanisms underlying decisions about the presence or absence of simple visual features. Our results suggest that neural population activity in parietal, prefrontal, and premotor areas reflects the decision process, and that population activity in extrastriate ventral visual cortex reflects perception. Further, cooperative and competitive long- range interactions, across multiple levels of the cortical processing hierarchy, both seem to underlie simple perceptual decisions.

Pages

All events, All years

There are no events to display

All events, All years

There are no events to display

Pages