All years
, All years
Visuo-Motor Mirror Neurons in Human Frontal and Temporal Lobes
Lecture
Tuesday, July 15, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Visuo-Motor Mirror Neurons in Human Frontal and Temporal Lobes
Dr. Roy Mukamel
UCLA
Recently, a unique population of neurons in the monkey ventral pre-motor cortex and in the rostral inferior parietal lobe, have been shown to respond during both execution of a goal-directed action and the perception of a goal-directed action performed by someone else. Since the activity of these motor neurons ‘reflects’ the perceived actions, these neurons have been termed mirror neurons. Due to their unique response properties, these neurons have been implicated in various behaviors such as imitation and empathy. Moreover, a dysfunction of this neural system has been implicated in various disorders such as autism. In humans, there is accumulating evidence from various techniques, supporting the existence of a parallel mirror neuron system however direct evidence is still lacking. We recorded extra-cellular activity of single neurons in medial pre-frontal and medial temporal regions of 23 epileptic patients while performing and observing hand movements and facial gestures. We found that 13.5% of the recorded neurons in both frontal and temporal lobes exhibited visuo-motor mirror properties. A subset of these mirror neurons responded with excitation action-observation and inhibition to action-execution suggesting a possible mechanism for inhibition of unwanted imitation. Our data supports a revision of the current definition of mirror neurons to include not only motor neurons that respond also to the perception of actions performed by others but also perceptual neurons in temporal lobe, responding to actions performed by oneself.
Gateways to tactile perception: Parallel processing of pain and somatosensation
Lecture
Tuesday, July 8, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Gateways to tactile perception: Parallel processing of pain and somatosensation
Prof. Asaf Keller
University of Maryland
Vibrissal information is relayed to the barrel cortex through at least two parallel pathways: a lemniscal pathway involving the ventroposterior medial thalamic nucleus (VPM), and a paralemniscal pathway involving the posteromedial nucleus (POm). I will review the role of the lemniscal system, focusing on the mechanisms by which VPM shapes the response properties of neurons in cortical barrels. I will argue that although analyses of these properties (e.g. receptive field structure and angular preference) have illuminated the process of input transformation in sensory pathways, they may have only limited ethological role. I will show that this lemniscal pathway is critical for temporal coding of somatosensory inputs. In the paralemniscal pathway, and in POm in particular, neurons respond poorly and unreliably to physiologically relevant stimuli. I will show that the GABAergic nucleus zona incerta (ZI) regulates POm activity is a state-dependent manner. This regulation is mediated by the cholinergic activating system, which enhances POm activity during states of arousal and vigilance. However, even in these states, POm neurons fail to reliably encode sensory inputs. I will show that POm is critically involved in coding noxious stimuli. Specifically, I will present evidence in support of the hypothesis that the phenomenon of central pain may be the result of suppressed inhibitory regulation of POm activity.
DC Magnetic Fields Produced by the Human Body
Lecture
Thursday, July 3, 2008
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
DC Magnetic Fields Produced by the Human Body
Prof. David Cohen
Biomag Group Leader (ret.), MIT Magnet Lab,& Assoc. Prof. of Radiology, Harvard Med. School
This is a review of measurements made mostly at the MIT Biomag Lab during the period of 1969 to 1983, partly in collaboration with Prof. Yoram Palti. These measurements are usually unique, in that their current sources are difficult to be seen with electric potentials. They are timely today because the new multi-channel SQUID systems are now being made capable of measuring DC fields from the head (and other organs). Our measurements were essentially a mapping over the whole body. DC fields were found almost everywhere, from many internal sources. They were larger over the limbs and head than over the torso proper, except over the abdomen, where it was largest. Over the head, there were puzzling signals from vicinity of healthy hair follicles, suggesting that so-called neural sources of the dcMEG could be overshadowed by more superficial sources. One major mechanism for generating these fields generally appeared to be a change in the K+ concentration in the vicinity of long excitable fibers. Overall, we concluded that DC fields are a rich and complex phenomena, including the dcMEG.
Information theory and the perception-action-cycle
Lecture
Tuesday, July 1, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Information theory and the perception-action-cycle
Prof. Naftali Tishby
School of Computer Science & Engineering and
Interdisciplinary Center for Neural Computation
The Hebrew University, Jerusalem
I will argue that living organisms can be characterized by their abilities to exchange information with their environment through sensing and acting. Moreover, the optimal interaction of an organism with its environment is determined by the information it can extract and store from the past about the future of its environment, on multiple time scales. Its optimal achievable performance is therefore bounded by the predictive-information of the environment, in some analogy with the entropy and channel-capacity bounds in Shannon's theory of communication. In that sense, life utilizes the predictability of its environment and act in order to increase its predictive capacity.
This conceptual and quantitative framework can allow us to design and analyze experiments in neuroscience in a new way. I will discuss some recent applications to auditory and motor physiology.
Wiring mechanisms in the mammalian somatosensory system
Lecture
Tuesday, June 24, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Wiring mechanisms in the mammalian somatosensory system
Prof. Avraham Yaron
Dept of Biological Chemistry, WIS
During development, the basic wiring of the nervous system is established by connecting trillions of neurons to their target cells. To reach their correct targets, neurons extend axons that are guided by cues in the extracellular environment.
The talk will describe our efforts to understand the mechanisms of axonal guidance using the somatosensory system as a model; with special focus on the role of the Semaphorins family of guidance cues in the process.
Grouping by synchrony and precise temporal patterns in the visual cortex: evidence from voltage-sensitive dye imaging
Lecture
Sunday, June 22, 2008
Hour: 10:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Grouping by synchrony and precise temporal patterns in the visual cortex: evidence from voltage-sensitive dye imaging
Dr. Hamutal Slovin
Bar Ilan University
Accumulating psychophysical and physiological evidence suggest the involvement of early visual areas in the process of visual integration and specifically in local facilitation of proximal and collinear stimuli. To investigate the early integration mechanisms at the population level, we performed voltage-sensitive dye imaging that is highly sensitive to subthreshold population activity, and imaged from the primary visual cortex (V1) and extrastriate cortex (V2) of a behaving monkey. The animal was trained on a simple fixation task while presented with collinear or non-collinear patterns of small gratings, Gabors or short oriented bars. Facilitation in terms of increased amplitude activity at the corresponding retinotopic site of the target was observed for low contrast targets presented as part of collinear or non-collinear pattern. The facilitation effect and its time course depended on the target flanker separation distance, suggesting the role of horizontal connections. Next, we compared the dynamics of cortical response. We found that the time course of responses increased faster in the collinear pattern as compared with the non-collinear pattern. Finally, to study synchronization, we calculated the spatial correlation of pixels at the target location and found that correlation was higher for the collinear pattern, suggesting that the neuronal code for collinear versus non-collinear pattern may be carried by synchronization and response dynamics rather than simply maximal amplitude of response.
These results suggest that neuronal population activity in area V1 is involved in local visual integration processes, and specifically in the increased sensitivity for low-contrast visual stimuli surrounded by high contrast flankers. In the second part of my talk I will discuss repeating spatio-precise spatio-temporal patterns. Numerous studies of neuronal coding have reported precise time relations among spikes in cortical neurons. Here our main goal was to study whether information processing in the cortex involves precise spatio-temporal patterns and to detect and characterize those patterns among neuronal populations exploiting voltage-sensitive dye imaging (VSDI) in visual cortical areas of a fixating monkey. Our preliminary results demonstrate that spatio-temporal patterns do exist above chance level (p<0.0001). The spatial characteristics of those patterns are consistent with physiological studies regarding the interplay between different visual areas, and the temporal characteristics show that the majority of the patterns appear in a range of 10-20ms apart
Timing and the olivo-cerebellar system
Lecture
Tuesday, June 17, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Timing and the olivo-cerebellar system
Prof. Yosef Yarom
Hebrew University of Jerusalem
The crystal-like anatomy and circuitry of the cerebellum and its preservation throughout vertebrate phylogeny suggest that it performs a single basic computation. It has been proposed that this basic computation is to create temporal patterns of activity necessary for timing motor, sensory and cognitive tasks. Despite the wide agreement about the involvement of the cerebellum in temporal coordination, there is an ongoing debate as to the neural mechanism that subserves this function. This debate stems from the current dogma that dominates cerebellar research. According to this dogma, PC simple spikes are evoked by input from granule cells and determine cerebellar nuclear (CN) activity, thus governing cerebellar output. The complex spikes, according to this view, serve as an error signal which is used by the system to readjust the simple spike activity.
A novel theory of cerebellar function will be presented. According to this theory, the complex spike, rather than the simple spike, transmits the cerebellar output. The inferior olive generates accurate temporal patterns orchestrated by the cerebellar cortex and implemented in a variety of motor and non-motor tasks. Although this is a radical change of concept, it is well supported by experimental observations and it settles major problems inherent to the current dogma
Incubation of cocaine craving: behavioral and neuronal mechanisms
Lecture
Tuesday, June 10, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Incubation of cocaine craving: behavioral and neuronal mechanisms
Dr. Yavin Shaham
National Institute on Drug Abuse, NIH
Abstract: Using a rat model of drug relapse and craving, we previously found time-dependent increases in cocaine seeking induced by exposure to drug cues after withdrawal from the drug, suggesting that cocaine craving incubates over time. In this lecture, I will first summarize our earlier behavioral and neurophysiological studies on incubation of cocaine craving. I will then discuss in more detail results from more recent studies implicating neuronal activity in the ventromedial prefrontal cortex and glutamate synaptic plasticity in the nucleus accumbens in the incubation of cocaine craving. I will also briefly address the relevance of our rat findings to the understanding of relapse to drug use in humans.
Selected references related to incubation of cocaine craving
Grimm JW, Hope B, Wise RA, Shaham Y (2001) Incubation of cocaine craving after withdrawal. Nature 412:141-142
Grimm JW, Lu L, Hayashi T, Su TP, Hope BT, Shaham Y (2003) Time dependent increases in brain-derived neurotrophic factor (BDNF) protein levels within the mesolimbic dopamine system following withdrawal from cocaine: implications for incubation of cocaine craving. The Journal of Neuroscience 23:742-747
Lu L, Dempsey J, Liu S, Bossert J, Shaham Y (2004) A single infusion of BDNF into the ventral tegmental area induces long-lasting potentiation of cocaine-seeking after withdrawal. The Journal of Neuroscience 24:1604-1611
Lu L, Grimm JW, Hope BT, Shaham Y (2004) Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47(S1): 214-227 (invited review for a special issue commemorating 30 years of NIDA research)
Lu L, Hope BT, Dempsey J, Liu S, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nature Neuroscience 8:212-219
Shaham Y, Hope BT (2005) The role of neuroadaptations in relapse to drug seeking. Nature Neuroscience 8:1437-1439 (special issue on Neurobiology of Addiction)
Lu L, Uejima JL, Gray SM, Bossert JM, Shaham Y (2007) Systemic and central amygdala injections of the mGluR2/3 agonist LY379268 attenuate the expression of incubation of cocaine craving. Biological Psychiatry 61:591-598
Koya E, Uejima J, Wihbey K, Bossert JM, Hope BT, Shaham Y (2008) Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology (in press, for a special issue commemorating 35 years of NIDA research))
Conrad KL, Tseng K, Uejima J, Reimers J, Heng L, Shaham Y, Marinelli M, Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature (in press)
Single- and Double-Opponent Neurons in Primary Visual Cortex, and Their Different Roles in Color Perception
Lecture
Thursday, June 5, 2008
Hour: 13:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Single- and Double-Opponent Neurons in Primary Visual Cortex, and Their Different Roles in Color Perception
Prof. Robert Shapley
Center for Neural Science, New York University
Surrounding colors have a great influence on color perception. The reason is that the neural mechanisms of color perception need to make computations that take into account the spatial layout of the scene as well as the spectral reflectances of the target surface, in order to make color perception stable when illumination changes. It is not known how the visual system integrates form and color but it is now widely believed that the primary visual cortex, V1, plays an important role. Therefore, it is important to understand the spatial properties of V1 color-responsive neurons. Our investigations (in collaboration with Drs. Elizabeth Johnson and Michael Hawken) of color-responsive neurons in macaque monkey V1 revealed that there are two distinct groups of color-responsive cells in V1—single- and double-opponent cells—that have different functions in color perception. For example, V1 double-opponent cells are orientation-selective for pure color stimuli while single-opponent color cells are not. Double-opponent cells are selective for the spatial frequency of pure color stimuli while single-opponent color cells are very broadly tuned. The different types of color-responsive V1 cells probably both contribute to linking form and color, but in different ways.
Pain Selective Anesthesia
Lecture
Tuesday, June 3, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Pain Selective Anesthesia
Dr. Alex Binshtok
Harvard Medical School, MA
Although pain is a complex entity, understanding the mechanisms of pain will reveal clues for better control. Perception of nociceptive, inflammatory and neuropathic pain - although initiated by distinctive mechanisms - all depend to some degree on generation and transmission of noxious signals by specific sets of primary sensory afferent neurons, nociceptors. Local anesthetics, by blocking voltage-gated sodium channels, prevent the transmission of nociceptive information and therefore block pain. However, since all local anesthetics act non-selectively on all types of axons, they also cause a loss of innocuous sensation, motor paralysis and autonomic block. Thus, approaches that produce only a selective blockade of pain fibers are of great potential clinical importance.
In my talk, I will present a novel method to selectively block pain sensation. Using capsaicin to activate the TRPV1 channel, the noxious thermo-sensitive transducer localized specifically to high-threshold nociceptors, we were able to introduce QX-314, a membrane impermeable and therefore clinically ineffective lidocaine derivative, into nociceptors, and thereby blocked their electrical activity. Neurons that did not express TRPV1 were not blocked by the combination of QX-314 and capsaicin. Injection of QX-314 and capsaicin in vivo together but not alone abolished the response to noxious mechanical and thermal stimuli, without any motor or tactile deficit.
This approach could be used clinically to produce long lasting regional analgesia while preserving motor and autonomic function. In addition to applications for dental procedures, surgery and childbirth, this technique could also be used to diminish postoperative and cancer pain, as well as inflammatory and neuropathic pain.
Moreover, using TRP channels as a “natural” drug delivery system will enable specific cationic drugs to be targeted only to those cells that express the TRP channel. This technique offers a new strategy for treating pain.
Pages
All years
, All years
Plasticity in the circadian clock and social organization in bees
Lecture
Tuesday, May 6, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Plasticity in the circadian clock and social organization in bees
Prof. Guy Bloch
Hebrew University of Jerusalem
In honeybees (Apis mellifera) natural plasticity in circadian rhythms is associated with the division of labor that organizes their colonies. "Nurse" bees (typically < 2 weeks old) care for brood around-the-clock whereas bees older than 3 weeks of age typically forage for flowers with strong circadian rhythms. We found that nurses care for brood around-the-clock even under a light/dark illumination regime. Brain oscillations in the abundance of the putative clock genes Period and Cryptochrom-m were attenuated or totally suppressed in nurses as compared to foragers, irrespective of the illumination regime. However, nurses showed circadian rhythms in locomotor activity and molecular oscillations in brain clock gene expression shortly after transfer from the hive to constant laboratory conditions. The onset of their activity occurred at the subjective morning, suggesting that some clock components were entrained even while in the hive and active around-the-clock. These results suggest that the hive environment induces reorganization of the molecular clockwork. To test this hypothesis, we studied activity and brain clock gene expression in young bees that were confined to a broodless area on the honeycomb in a light/ dark illuminated observation hive. These bees experienced the hive environment and could interact with other bees, but not with the brood. By contrast to same-age nurses from these colonies, the confined bees showed molecular oscillations in clock gene expression and were more active during the day. These findings are consistent with the hypothesis that interactions with the brood modulate plasticity in the molecular clockwork of the honeybee. These findings together with our previous research, suggest the evolution of sociality shaped the bee clock in a way that facilitate integration of individuals into a complex society.
Rational therapeutic strategies for modifying Alzheimer's disease: Abeta oligomers as the validated target
Lecture
Monday, April 28, 2008
Hour: 11:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Rational therapeutic strategies for modifying Alzheimer's disease: Abeta oligomers as the validated target
Prof. Colin Masters
A Laureate Professor in the University of Melbourne
&
Executive Director of Mental Health Research Institute of Victoria
Medication Development for Treating Addiction: A New Strategy Focusing on the Brain's Dopamine D3 Receptor
Lecture
Sunday, April 27, 2008
Hour: 10:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Medication Development for Treating Addiction: A New Strategy Focusing on the Brain's Dopamine D3 Receptor
Dr. Eliot Gardner
Chief, Neuropsychopharmacology Section
National Institute on Drug Abuse, NIH
Medication discovery and development for the treatment of addictive diseases has focused for many decades on so-called 'substitution' therapies such as methadone for opiate addiction and the nicotine patch or nicotine chewing gum for nicotine addiction. Recent developments in understanding the underlying neurobiology of addiction, craving, and relapse now augur to revolutionize such medication discovery and development. It has long been understood that the meso-accumbens dopamine circuitry of the ventral mesolimbic midbrain and forebrain plays a crucial role in the acutely euphoric 'high' or 'rush' or 'blast' produced by addictive drugs. More recently, it has come to be understood that this brain circuitry is also critically involved in mediating drug craving and relapse to drug-seeking behavior. The dopamine D3 receptor is a remarkable neurotransmitter receptor in the brain. It exists virtually only in those dopaminergic circuits known to mediate drug-induced reward, drug craving, and relapse to drug-seeking behavior. Moreover, blockade of the D3 receptor enhances dopaminergic tone in those circuits. If drug addiction is - to some degree – a 'reward deficiency' disease, as postulated by many workers in addiction medicine, enhancing dopaminergic tone in these circuits could be therapeutic. This lecture will focus on a lengthy series of experiments- using animal models of addiction - that suggest that highly-selective dopamine D3 receptor antagonists show remarkable therapeutic potential as anti-addiction, anti-craving, and anti-relapse medications."
Phenomenology of hypnosis
Lecture
Wednesday, April 16, 2008
Hour: 10:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Phenomenology of hypnosis
Dr. Alexander Solomonovich
Hypnosis Unit, Wolfson Medical Center
Astrocytes Regulation of Information Processing
Lecture
Tuesday, April 1, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Astrocytes Regulation of Information Processing
Prof. Eshel Ben-Jacob
Tel Aviv University
In the last decade, following many findings about Neuro-Glia interaction, the perception of glia has been reconsidered. This lecture addresses astrocyte regulation of synaptic information transfer. I will present a simple biophysical model for the coupling between synaptic transmission and the local calcium concentration on an astrocyte domain that envelopes the synapse. We found that the special interaction and feedback loop between the astrocyte and the synapse activity enables the astrocyte to modulate the information flow from presynaptic to postsynaptic cells in a manner dependent on previous activity at this and other nearby synapses. Thus, it can introduce temporal and spatial correlations in the information transfer in neural networks. I will show that astrocyte intracellular calcium dynamics in response to the synaptic information flow can encode information in amplitude modulations, frequency modulations and mixed modulations that, in turn, regulate the information transfer in later time. I will discuss the possibility that such regulation mechanisms might hint to the existence of new principles of information processing in neural networks yet to be deciphered. The models, analysis and results will be presented for multidisciplinary audience.
Neurobiology of Mood Disorders: A developmental perspective
Lecture
Tuesday, March 25, 2008
Hour: 10:00
Location:
Gerhard M.J. Schmidt Lecture Hall
Neurobiology of Mood Disorders: A developmental perspective
Prof. John Mann
Columbia University & The New York State Psychiatric Institute
Abstract: Past neurobiological models of mood disorders have not considered etiology or a developmental perspective. Recently enough data regarding candidate genes and the impact of adverse early experience has been published that the beginnings of a plausible and heuristically useful hypothetical causal model can be proposed. This talk will integrate known effects of susceptibility genes and childhood adversity in explaining the psychopathology and biological phenotype of major depression including data from postmortem studies and in vivo brain imaging.
Contrasting tuning properties of cortical and spinal neurons reveal distinct coding strategies
Lecture
Tuesday, March 18, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Contrasting tuning properties of cortical and spinal neurons reveal distinct coding strategies
Dr. Yifat Prut
Hebrew University Jerusalem
When executing volitional movements an externally defined target must be translated into internally represented muscle activation. We studied this process of extrinsic-to-intrinsic transformation by simultaneously recording activity from motor cortex and cervical spinal cord of primates. Preferred directions (PD) of motor cortical neurons were uniformly distributed while spinal PDs were biased in a manner consistent with enhanced representation of flexor muscles. Changes in PDs during hand rotation were used to assign an extrinsic or intrinsic coordinate frame to recorded neurons. During trial performance firing of motor cortical neurons gradually shifted from an extrinsic to an intrinsic representation of movement. In contrast, representation in the spinal cord was consistently intrinsic. Finally, at movement onset, connected corticospinal neurons expressed a transient alignment of directional tuning consistent with an increased cortical drive operating at this time.
We suggest that motor cortical neurons contain a mixed representation of intrinsic and extrinsic parameters, whereas a consistent muscle-based command is obtained only at the spinal level via the termination pattern of corticospinal pathways or local segmental processing. Furthermore, spinal processing translates a phasic cortical command into a sustained muscle activation. (Joint work with Yuval Yanai, Nofya Adamit, Itay Asher, Ran Harel).
From c-Fos to extracellular matrix remodelling in synaptic plasticity, learning, memory and epilepsy
Lecture
Monday, March 10, 2008
Hour: 12:30
Location:
Wolfson Building for Biological Research
From c-Fos to extracellular matrix remodelling in synaptic plasticity, learning, memory and epilepsy
Prof. Leszek Kaczmarek
Nencki Institute, Warsaw, Poland
The last twenty years of intense research have provided convincing evidence for a role of regulation of gene expression in control of long-term neuronal plasticity, including learning and memory. Starting from our discovery–in late eighties–of c-fos activation in those phenomena, we have focused on correlating the expression of c-fos mRNA and c-Fos protein in various cognition-related brain structures with neuronal plasticity, learning and memory. The major conclusion from our studies, as well as those by the others, is that c-Fos and its functional form, AP-1 transcription factor, is the best correlate of learning processes, especially of a novelty of the behavioral information, whose processing constitutes the very foundation of the learning phenomenon. However, our understanding of exact biological function(s) of c-Fos/AP-1 still remains largely missing. Recently, an extracellular proteolytic system, composed of tissue inhibitor of matrix metalloproteinases, TIMP-1 and matrix metalloproteinase-9, MMP-9, has emerged as a major AP-1 target in hippocampal neurons responding to enhanced neuronal activity. Structural remodeling of the dendritic spines and synapses is essential for synaptic plasticity, underlying learning and memory. Matrix metalloproteinases are pivotal for tissue remodeling throughout the body, especially during development.
Matrix metalloproteinase 9 (MMP-9) is an extracellularly operating enzyme that have recently been implicated in dendritic remodeling, synaptic plasticity, learning and memory (Szklarczyk et al., J. Neurosci., 2002; Nagy et al., J. Neurosci., 2006; Okulski et al., Biol. Psych., 2007). Furthermore, we have recently identified MMP-9 as a being produced, expressed and active at the synaptic contacts (Konopacki et al., Neuroscience, 2007; Michaluk et al., J. Biol. Chem., 2007; Wilczynski et al., J. Cell Biol. in press). Most recently, we have also found that MMP-9 plays a key pathogenic role in two animal models of temporal lobe epilepsy (TLE): kainate-evoked-epilepsy and pentylenetetrazole (PTZ) kindling-induced epilepsy. TLE is a devastating disease in which aberrant synaptic plasticity plays a major role Notably, we show that the sensitivity to PTZ-epileptogenesis is decreased in MMP-9 KO mice, but is increased in novel strain of transgenic rats, we have produced to overexpress MMP-9 selectively in neurons. Immunoelectron microscopy has revealed that MMP-9 associates with hippocampal dendritic spines bearing asymmetric (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9-deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis following mossy-fibers sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE.
Preattentive Processing of Sound Space
Lecture
Tuesday, March 4, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Preattentive Processing of Sound Space
Dr. Leon Deouell
Hebrew University Jerusalem
Space has a pivotal role in perception, attention, and conscious awareness. In particular, space may link information obtained through different modalities such as vision and audition. However, the cortical basis of spatial processing in the auditory modality remains elusive. Especially, there are several open questions about the degree to which space is encoded for sounds which are outside the focus of attention. I will discuss recent fMRI and ERP studies investigating this issue. Human fMRI studies suggest that a part of the planum temporale (PT) is involved in auditory spatial processing, but it was recently argued that this region is active only when the task requires voluntary spatial localization. I will describe a series of fMRI experiments that challenge this notion. This will be corroborated with studies of the mismatch negativity (MMN) event related potential involving spatial change detection. Having shown fine preattentive spatial auditory tuning, I will address conditions under which this process can be nevertheless suppressed.
Where but not what: The fusion of reafferent and exafferent inputs to perceive the location of objects
Lecture
Sunday, February 17, 2008
Hour: 11:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Where but not what: The fusion of reafferent and exafferent inputs to perceive the location of objects
Prof. David Kleinfeld
UCSD
Sensory perception in natural environments involves the dual challenge to encode external stimuli and manage the influence of changes in body position that alter the sensory field. To examine mechanisms used to integrate sensory signals elicited by both external stimuli and motor activity, we use a mixture of psychophysics and electrophysiology to study rats trained to perform an active sensory task with a single vibrissa. We identify a nonlinear interaction between vibrissa touch and a motion-derived signal that dynamically labels each neuron with a preferred phase. The observed response enables the rodent to estimate object position in a head-centered reference frame. More generally, our result delineates a computation that is likely to occur in all active sensorimotor systems.
Pages
All years
, All years
There are no events to display