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The calculation of chemical reaction rates in condensed phase is a central preoccupation of the-
oretical chemistry. At low temperatures, quantum mechanical effects can be significant and even
dominant; yet quantum calculations of rate constants are extremely challenging, requiring theories
and methods capable of describing quantum evolution in the presence of dissipation.

In this paper we present a new approach, based on the use of a non-Markovian quantum master
equation (NM-QME). As opposed to other approximate quantum methods, the quantum dynamics of
the system coordinate is treated exactly and hence there is no loss of accuracy at low temperatures.
However, because of the perturbative nature of the NM-QME it breaks down for dimensionless
frictions larger than about 0.1. We show that by augmenting the system coordinate with a collective
mode of the bath, the regime of validity of the non-Markovian master equation can be extended
significantly, up to dimensionless frictions of 0.5 over the entire temperature range. In the energy
representation, the scaling goes as the number of levels in the relevant energy range to the 3rd power.
This scaling is not prohibitive even for chemical systems with many levels, and hence we believe
that the current method will find a useful place alongside the existing techniques for calculating

quantum condensed phase rate constants.

PACS numbers:

I. INTRODUCTION

The calculation of chemical reaction rates in condensed
phase is a central preoccupation of theoretical chemistry.
For activated processes, the microscopic formulation of
the rate involves the calculation of barrier crossing in the
presence of dissipation induced by the environment. For
many years, classical mechanics provided the only possi-
ble method to perform such calculations. Yet quantum
effects can be important, particularly at temperatures
below the so-called crossover temperature, where the ac-
tivated process becomes exponentially small and quan-
tum tunneling becomes dominant. The quantum pro-
cess is particularly important in reactions involving light
atoms, for example hydrogen transfer reactions, as well
as in electronically non-adiabatic processes. Wolynes [1]
calculated the quantum barrier crossing rate analytically
for a parabolic barrier, essentially extending the classi-
cal memory friction result of Grote and Hynes [2] to the
quantum regime. Subsequently, Pollak and Rips [3] de-
veloped an approximate theory of quantum barrier cross-
ing that described the quantum mechanical counterpart
of a Kramers’ turnover in the transmission coefficient.
About ten years ago, Topaler and Makri [4] provided
the first exact quantum mechanical calculations for bar-
rrier crossing in solution as a function of friction and
temperature. Their calculations have served ever since
as a benchmark against which to compare approximate
theories. However, the influence functional formalism of
quantum dissipative dynamics [5-7], used in [4], is com-
putationally costly, scaling exponentially with the num-
ber of time slices. As a result, much subsequent effort has

gone into developing faster, albeit approximate methods
for calculating quantum barrier crossing in the presence
of dissipation.

In recent years, several methods have emerged that
combine a quantum mechanical treatment of the equilib-
rium factors with a classical treatment of the dynam-
ical evolution. Geva, Shi and Voth [8] and Shi and
Geva [9] have developed an approximate method based
on centroid molecular dynamics (CMD) that calculates
the thermal flux contribution to the rate constant quan-
tum mechanically but uses a classical approximation for
the real time dynamics. Liao and Pollak [10] have devel-
oped a mixed classical-quantum method based on the use
of the Wigner representation for the thermal flux com-
bined with a classical approximation for the real time
dynamics. The methods of [8-10] tend to be accurate at
intermediate to high temperature, but deteriorate at low
temperature where the classical treatment of the system
dynamics begins to break down.

In this paper we present a new approach to calculat-
ing quantum rate constants based on the use of a non-
Markovian quantum master equation (NM-QME). As op-
posed to other approximate quantum methods, the quan-
tum dynamics of the system coordinate is treated exactly
and hence there is no loss of accuracy in the low temper-
ature regime. However, because of the perturbative na-
ture of the NM-QME, it breaks down for dimensionless
frictions larger than about 0.1. To overcome this limita-
tion, the original NM-QME approach developed by Meier
and Tannor [11] is reformulated in terms of the barrier
normal modes (see, e.g. [10, 12]). The normal mode
transformation allows one to express the system coordi-
nate in terms of the unstable barrier mode coordinate



and the collective bath coordinate, making the system
effectively two-dimensional. The unstable mode is (non-
linearly) coupled to the collective bath mode, while the
latter is coupled both to the unstable mode and to the
harmonic bath. The explicit treatment of the collective
bath mode amounts to replacing the density matrix of the
original one-dimensional system with a density matrix for
an extended two-dimensional system that includes the
original system and the collective bath coordinate. How-
ever, the increase in the system size is accompanied by
a significant reduction in the coupling strength to the
residual bath, extending the range of validity of the non-
Markovian master equation up to dimensionless frictions
of 0.5 over the entire temperature range.

In coordinate space, the method scales as the 4th
power of the number of grid points. However, a signifi-
cant savings in obtained by working in the energy repre-
sentation, where the scaling goes as the number of levels
in the relevant energy range, N, to the 3rd power. This
scaling is not prohibitive even for chemical systems with
many system levels. For example, for the calculations in
this paper on the double-well systems of ref. [4], N is up
to 30 for the one-dimensinonal system and up to 100 for
the extended two-dimensional system that includes the
collective bath. Thus, we believe that the current method
fills a useful niche alongside the techniques available for
calculating condensed phase rate constants.

The outline of the paper is as follows. Section II
provides a brief review of the NM-QME [11] (IIB) as
well as a review of the transformation of the Caldeira-
Leggett Hamiltonian to the collective mode representa-
tion [10, 12] (II C). Section IID shows how the NM-QME
may be combined with the flux-flux correlation function
formulation to calculate quantum reaction rates. In Sect.
IIT A we combine the formalisms of Sections IIB and IIC
to obtain a set of equations for the NM-QME in the col-
lective mode representation (QME-CM). All relevant pa-
rameters are derived for the specific example of the Drude
spectral density in Sect. IIIB. In Section IV we discuss
the effective two-dimensional potential, corresponding to
the double well potential used in [4] (IV A) and give addi-
tional details of the computational method in the collec-
tive mode formulation (IVB). In Sect. V we present the
results of rate constant calculations using both the orig-
inal NM-QME and its collective mode variant. Section
VI is a Conclusion.

II. PRELIMINARIES

A. A basic model

A widely used description of a system coupled to an
environment is the Caldeira-Leggett Hamiltonian:
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where ,p and M are the coordinate, momentum and
mass of the system; z;,p; and m; are the coordinate,
momentum and mass of the j-th bath oscillator ; ec; is the
coupling between the system and the j-th bath oscillator
and f(z) is some function of the system coordinate.

To emphasize the structure of the Hamiltonian that
makes it convenient for the perturbation expansion we
rewrite it in the following form:

H=H,+ Hy,+eHy + € Hyep, (2.2)
where we denote the free system Hamiltonian as
p?
H, = W + V(ZE) ) (23)
the free bath Hamiltonian as
N pg
H, = ; [ﬁ + zmngx]] ) (2.4)
the system-bath interaction term as
N
Hy=-) cjz;f(x), (2.5)
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and the counter term as
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To characterize the bath, we introduce a spectral den-
sity of the bath oscillators:

i
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where §(z) is the Dirac delta-function. It is further con-
venient to define a complex bath correlation function
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B. The non-Markovian QME

The non-Markovian QME for the reduced density op-
erator, as proposed in [11], is based on the second order
perturbation expansion in coupling parameter e of the
total Hamiltonian, applied within the Nakajima-Zwanzig
projection formalism [13]. It reads:

ps(t) = _i‘cseﬁps(t)

t
+ 62/ dt'/C(t,t')ps(t')+e2/
0
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(2.9)
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Here the reduced system density operator ps = T'ry(p) is
obtained from the density operator of the global system
by tracing out the bath degrees of freedom. The memory
kernel K is given by

K(t,t') = £L_TL(t,¢') [a(t—t')c_ —ib(t—t’)£+)] , (2.10)

where a(t) and b(t) are the real and imaginary parts of
the bath correlation function, Eq.(2.8), and other entries
are defined as follows:
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In Eq. (2.11), 8 = (kgT)™1, [,-] denotes a commutator,

[,-]+ an anti-commutator and 73 a positive time order-
ing, applied when Ly is explicitly time-dependent. The
last term in Eq.(2.9) corresponds to the contribution of
the system-bath correlations at time ¢ = 0. The global
system is assumed to be in thermal equilibrium for ¢ < 0,
such that p(0) = e #H /Tr(e-PH). The dynamics is in-
duced at ¢t > 0 by changing H.

A key feature of the efficient numerical solution of Eq.
(2.9) [11] is the expansion of the bath correlation func-
tion, (2.8), in terms of a sum of complex exponents:
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It was shown in [11], that with (2.12) substituted into
(2.10), Eq.(2.9) is equivalent to the following set of cou-
pled equations for the primary density matrix ps and for
the auxiliary density matrices p} and p;'-:
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with the auxiliary matrices defined as
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In this definition we combined the last two terms in
Eq.(2.9), assuming explicitly that the system was in ther-
mal equilibrium at ¢ < 0.

C. Derivation of the Hamiltonian in the collective
mode representation.

For the sake of completeness we repeat here the deriva-
tion of the Hamiltonian in the collective mode represen-
tation, following Ref.[10].

To apply the normal mode transformation we limit
ourselves to a one-dimensional double-well potential and
rewrite the original Hamiltonian (2.1) for the system by
defining a mass-weighted system coordinate g = xM ~1/2
bilinearly coupled to a bath of harmonic oscillators with

—1/2
mass-weighted coordinates z;m /2,

H= §pq+W 22[10] [wjxj—%q)z] (2.15)

For future use we define here the mass-independent bath
friction function

1 c
=— —5 cos(w;t) (2.16)
M ; wj

related to the spectral density of the bath oscillators,
Eq.(2.7), as
=2 / * dw J(w)
M)y T w

and its Laplace transform
/ 2s
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The potential W(q) is assumed to have two wells at
g = *qo and a barrier at ¢ = ¢}. One may expand the
potential around the barrier top:

cos(wt) (2.17)

-+ Wilg).  (219)
This expansion defines the barrier frequency w? and the
non-linear part of the potential, W1(q).
Discarding the non-linear part of the potential, we get
a quadratic in all coordinates and momenta Hamiltonian,
that may be diagonalized using the normal mode trans-
formation [14, 15]. In was shown in [14], that the bar-
rier frequency is determined by the Laplace transform of
the time-dependent friction through the Kramers-Grote-
Hynes equation:
2 . 2
M AR = Wt (2.20)
where —\? is a negative eigenvalue of the force constant
matrix at the barrier. We denote the coordinate associ-
ated with this eigenvalue as ¢, and the coordinates associ-
ated with the positive eigenvalues )\? asy;:j=1,...,N,
where N is the number of bath modes.



One can express the system coordinate in terms of the
barrier normal modes as:

N

q = ool + > ujoy;,
J=1

(2.21)

where the u;; are matrix elements of the transformational
matrix that diagonalizes the barrier force constant ma-
trix.

The parabolic Hamiltonian may be expressed in terms
of normal modes as

N N
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One may define a collective bath mode ¢ as

1 N N

= Zujoyj , U= Zu?o =1—-ug. (2.23)
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The matrix element ugy may be expressed in the con-
tinuum limit in terms of the Laplace transform of the
friction function as [16]
-1
)
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With this definition, the original Hamiltonian may be
rewritten in terms of the new set of coordinates 4,0, 7 as
[10]

(2.24)
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where A is defined by Eq.(2.20), the bath collective mode
frequency by

(2.26)

and h; are the system-bath coupling constants in the new
coordinate system. The friction function for the collec-
tive bath mode is given by:

N 2

Z 5 (2.27)
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From ~,(t) one can calculate the new spectral density us-
ing eq. 2.17, and then the new complex bath correlation
function from eq. 2.8. It can be shown [10] that all the
parameters of eq. 2.25, and therefore ~,(t) as well, are
completely determined in the continuum limit by «(¢) or
alternatively by 4(s).

In practice, in our method 7, (¢) is actually calculated
via the inverse Laplace transform of 4, (). The latter is
given by [10]

ut ZJ 1 AZ(A2+32) )

Ao (8) = s( (2.28)
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As shown in [10], by using the identity
ugo = “?0 _ 12 2 aroi—1
EYEI +j221 X+ 52 =[—w* +s°+55(s)] 7, (2.29)

together with eqgs. (2.20),(2.23), (2.24), eq.(2.28) can be
expressed in the continuum limit entirely as a function
of 5, 4(s) and wt.

The inverse Laplace transform of 4, (s) required in our
method can be tricky. Laplace transforms are very deli-
cate to handle numerically, and analytical inverse Laplace
transforms exist for only a limited class of functions. As
a result, our method is best suited for friction functions
~(t) which lead to a form of 4,(s) that is analytically
invertible. In contrast, in the MQCLT method used in
[10], the reaction rates are defined directly through the
Laplace transform of the new friction function 4, (s) it-
self, and thus does not require its inversion.

D. Reaction rate constant from flux-flux
correlation function.

The quantum mechanically exact expression for a ther-
mal rate constant can be written in terms of the flux
correlation function

T)=Q," li 2.
k(T) = Qo lim Crs(t) (2.30)
where Qo(T') is the reactant partition function per unit
volume and C/,(t) is the flux-side correlation function

Cys(t) = Tr[e PHFP] . (2.31)
Here F is the bare flux operator
F = 2[H,h(s)]ls0, (2.32)

h

s is the reaction coordinate, h(s) is the Heaviside step
function, equal to 0(1) on reactants(products) side of the
dividing point, defined by s = 0, and 8 = (kgT)~! is the
inverse temperature.

The projection operator P is defined by:

P =eM'h(p)e M, (2.33)
with p the momentum operator. Using these definitions
explicitly, the flux-side correlation function may be writ-
ten as:

— Tr[ﬁ‘(ﬂ)eth/hhe*th/h] :

Cys(r;t) (2.34)



where F(3) = e #H F is the Bolzmannized flux operator.
It was shown by Miller that the rate constant may be
equivalently expressed via a time integral of the flux-flux

autocorrelation function
Qo(TK(T) / dthf
Cys(t) = Tr[F(B)eH!Fe 1! | (2.35Db)
Qo(T) = Tr [ —AHp. (2.35¢)
The Boltzmannized flux operator may be written in
different ways. The simplest one is F((3) = e PHF. Per-

forming a cyclic permutation of e #H within the trace of
Eq. (2.35b) it may be “half-split” once

(2.35a)

F(B) = e PHI2FPH/? (2-36)
or twice
F(B/2) = e PH/A pe—PH/A (2.37)
to give a symmetric form of Cf(2.35b):
Cys(t) = Tr[F(8/2)e™ F(/2)e™ "] . (2.38)

Another variant of the flux operator is the Kubo form:

1 B
Fieuno(B) = ~ / dre—B—VH F(g) A (2 39)
0
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These formulae may be combined to give a smooth
interpolation between the half-split and Kubo forms [19]:

F.(3) = ﬁfﬂﬂ[ e~ (1=r)BH/2p —(1+K)3H /2 (2.40)

e~ (1HRBH /2y o~ (1-R)BH /2]

with 0 < ¥ < 1. This form reduces to the Kubo formula
for k = 1 and to the half-split form for x — 0. Different
forms have advantages and disadvantages for different
methods of propagation and at different temperatures.

As a first step, we use Eq.(2.38) with the intermediate
form of the Boltzmannized flux (k = 1/2)

24
-Finter(ﬂ) = %[6_(BH/4he_3BH/4

_ e3H/Ap—AH/4]

(2.41)

It was shown in [19] that this form of the Boltzmannized
flux has a particulary smooth shape in the coordinate
representation and leads to fast convergence of the inte-
gral.

Assuming factorized initial conditions, we can split the
trace in (2.38) into two parts:

Css(t) = TrsFu(B/2){Trvle” ! Fnter(8/2)e' ]}
Tr{F(8/2)F (t:8/2)} (2.42)

where
Fy(B) = ;—;[e‘(ﬂf’s“he—w}’s/‘* (2.43a)
- e—B/BFIS/%e—BfIS/z;]
F(t,B) = Trole” ! Fuer(B)e'™'] . (2.43D)

If we consider Fipter(8) as a (un-normalized) density ma-
trix of the global system, then F(¢, ) is the correspond-
ing reduced density matrix of the system. It may be
calculated by solving the Nakajima-Zwanzig equation (in
the Non-Markovian QME formulation). The initial con-
ditions are

F(0,8) = F(B),

where Fy(5) , Eq(2.43a), is defined via the un-normalized
equilibrium system density matrix e #Hs, and the auxil-
iary matrices are initially set to zero.

The reaction rate constant is calculated as a plateau
value of the integral of the flux-flux correlation function:

(2.44)

1 t
k(t,T) = —/ dt'Cr+(t"), 2.45
and the transmission coefficient is the ratio of k(t) to a
classical transition rate theory result

Wo _
29 e—BEy
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krst =
where wp is the well frequency and Ej is the barrier
height.

III. NON-MARKOVIAN QME IN COLLECTIVE
MODE REPRESENTATION

A. QME in collective mode representation

One may consider Eq. (2.25) as a particular case of
Eq.(2.1), where the system coordinate  has two compo-
nents £ = (¢,0) and the function f(z) in the coupling
term is just o. The coupling constants h; of the bath
oscillators contain some expansion parameter € with yet
unknown relation to e.

The Nakajima-Zwanzig projection formalism [13] is not
limited to one-dimensional systems. Applying it to the
evolution of the system described by Eq.(2.25) we receive
the following set of equations:

ps(l, 0 o,0't) =

t
é / dt'K(t,t")ps(L, 1, 0,0";t")
0

—iLFp(¢,0,0,0';1)

K(t,) = £_TI(t, ') [a(t )l —ib(t—t )£+)] (3.1b)

where we have written the coordinate dependence of the
density matrix explicitly and defined the following quan-
tities by analogy with Eq.(2.11):
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X = Trs(ae*ﬁHs)/Zs, Z, —Trs(se HS),
L= FlH), £o=3001,
C~+ = %[U—Xr]+;
£ = SH,+ @50 X071,
H, = ;(p[—i-p(, A2 4 w20%) + Wila(t, o).,

The parameters of Hy are defined in the previous section.
The functions a(t — t') and b(t — ') in (3.1b) are the
real and imaginary parts of the bath correlation function
with the bath spectral density, J(w), recovered from the
collective mode friction function ~, by

J(w) = w/ooo dty, (t) cos(wt) (3.3)

and expanded in a new sum of exponents, as in Eq.(2.12).
The non-local in time Eq. (3.1) may be rewritten as
before as a set of coupled simultaneous equations:

p.s(ea eI,U, Ul;t) =

+ ecl(Zafp;
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p5(t) = ELyps(6,€',0,0"5t) —i(Ls +3))pj(t), G =1,...,m

with the auxiliary matrices defined as:
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The evolution of the primary density matrix is affected
by the bath via £_, which depends only on ¢, while the
evolution of the auxiliary matrices include the terms with
Ls, that depend on both £ and o.

B. Calculation of the Parameters of the
Hamiltonian

We continue our analysis by specifying the spec-
tral density for the original harmonic bath. We
start by calculating the set of parameters of the two-
dimensional Hamiltonian, Eq.(2.25), defined by equa-
tions (2.20),(2.23),(2.24),(2.26) and (2.28). Next, we
have to recover a spectral density of a newly defined
harmonic bath using relation (3.3) to extract a new ex-
pansion parameter and to calculate the bath correlation

function &(t) = a(t) + ib(t), Eq.(2.8). As a last step, we
expand a@(t) and b(t) in a set of complex exponents and
calculate all a™’s and 7™’s.

To set a reference against which to check the calcu-
lations, we start with the simplest example, the Ohmic
spectral density

J(w) = = W . (3.6)

M
The corresponding friction function is v(t) = vd(t). Its
Laplace transform is just 4(s) = . Then, the effective

barrier frequency A! is calculated analytically from AP
A — wt® = 0 and

ugo =20 /(2A +9) Ui =v/(2M +9).

The collective bath mode frequency, (2.26), is calculated
by setting s = 0 in Eq.(2.29) which gives the simple re-
2, Finally, using (2.20),(2.26) and (2.28) we

(3.7)

sult w2 = wt
arrive at

Yo(8) =7+ 20%,
This simple spectral density is, however, not useful for
realistic calculations. Ideally, we should use the same
spectral density as Topaler and Makri, [4], the Ohmic
with exponential cutoff

(3.8)

J(w) = ewe™/<< (3.9)

Unfortunately, the resulting 4, (s) is not amenable to an-
alytic inversion.

Instead, we use the so-called Drude spectral density
Jw) = ew/(1+ @/we)?) , (3.10)

which corresponds to an exponential friction function
with a cutoff in the time domain:

~(t) = Te-t/r , T=w . (3.11)
T
Its Laplace transform
A(s) = /(1 + s7) (3.12)

reduces to the Ohmic case for 7 — 0. We therefore will
use this limit to check our results, where possible.

We start with A\¥. Eq.(2.20) becomes a cubic equation
for A\* and does not have a simple analytical solution.
We therefore will express all the Hamiltonian parameters
in terms of 4y, = 4(A\}) and the actual values will be
calculated later numerically for the specific parameters
of the potential and the coupling strength ~.

According to Egs.(2.23) and (2.24)

2 27)‘1 2 _ %,2\

S e =—2 . 3.13
UOO 2,YAI + A2 ’ ul 27)\1 +’/5/§ ( )

To check the result,we note that in the Ohmic case 4, =
. Substituting this relation into (3.13) we arrive at the
Ohmic results given above.



For the collective mode frequency we get

12
2 w

which for 7 — 0 coincides with the Ohmic result. An
elaborate analysis leads to the collective mode friction
function in the following form:

5 (s) = 74 221 + A )2
Tols) = (14 A7) (1 + s7 4+ 2M7)

(3.15)

that clearly goes to v + 2\ at 7 — 0. This function
may be inverted, giving the friction function in the time
domain

e~ tH2N /7 (o L 9NH(1 4 A¥7)2)
7(1 + 2)\i7) '

Vo (t) = (3.16)

Comparing with the form of the original friction function
we find that v, (t), Eq.(3.11) may be rewritten as:

_Eup gy F2NAAN? L 7
W)=z e e T T Tr o
(3.17)

Such a simple functional form allows us to immediately
recover the spectral density of the new harmonic bath:

€w

= Ge=we+ 22,
T+ /o2’ =t

J(w) (3.18)
a result that was verified by a direct calculation.

As a result of the transformation, the cutoff frequency
becomes higher by twice the effective barrier frequency,
and the coupling strength has changed. The behavior of
the renormalized coupling is quite interesting. For very
small ~,

2
21 +wir)? (3.19)
(14 2wir)?
and it grows slower than v, since A! itself decreases with
7. It will be used as a new expansion parameter in the
Hamiltonian. In the limit v — 0 all A;’s are equal to
zero and the unstable mode £ coincides with the original
coordinate [14].

The bath correlation function (2.8) was calculated by
contour integration and recast in the exponential expan-
sion (2.12). We obtain

~ _ a)c /BMC —@et
a(t) = 7coth[ > ]e (3.20a)
2 & Up ot
* %zn:yg/a)g—f :
b(t) = —%e_a’“t, (3.20b)

where v, = (2m)/(Bh) are the Matsubara frequencies, @,
is defined in (3.18), and the common factor € has been
omitted.

TABLE I: parameters of the DW1 potential
units E? wt wo We
cm™? 2085 500 707 500
a.u. |9.508 x 1073|2.278 x 1072(3.224 x 107%|2.28 x 1073

IV. COMPUTATIONAL DETAILS
A. Parameters of the potential.

The double-well potential that we use is DW1 used in

[4]

2 4
2
mowi 2 ’I'I’LO(A}I

4 4.1
54t 1epr ¢ (4.1)

Wi(g) =

with parameters given in Table I.

The mass of the system coordinate ( proton) is mg =
1836.46 a.u. A dimensionless dissipation parameter
el = €/mowt was used to characterize the coupling
strenth with the bath.

In the mass-weighted form that we used for the normal
mode transformation the potential reads:

(4.2)

where E* is the barrier height.  Comparing with
Eq.(2.19), we find that the barrier of the potential is at
gt = 0 and the non-linear part is just

w14

_ 4
= 165tY - (4.3)

Wi(q)

To match the conditions of [4], we use the dimension-
less friction coefficient

el = — - 44

r)/ el UJI ( )

as a starting point in the calculation of parameters. For

each o1 we calculate ¥ = yrew?. Then using (2.20) and

(3.12) we calculate At. Having A} we repeat all steps in

Sect.III B, i.e. Egs.(3.13),(3.17),(3.18) and (3.20). Next,

we express the original coordinate ¢ in the normal mode
coordinates: g = ugof + u10 and rewrite the potential as

4
(U()oe + U10')4 .

(4.5)
The parameters of the potential for a number of ¢ are
given in Table IIL.
The contours of the potential for v = 0.05,0.5 and
1 are shown in Fig.1. The rotation of the potential in
the ¢ — o plane is evident, reflecting the increasing role of
the collective mode in the system with increasing system-
bath coupling strength.

1
W(t,o) = ( a2y w?,aZ) + ﬁ
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FIG. 1: The contours of the two-dimensional potential for (a)

~Yret = 0.05, (b) re1 = 0.5, and (c) yret = 1. The coordinate £
and o are marked as z and s in the figures.

TABLE II: parameters of the potential in (4.5)

Yrel

2

Al

wy

Uoo

U1

0.05

5.061 x 10~

1.744 x 1076

0.997

0.079

0.1

4.936 x 10~

1.759 x 1076

0.993

0.114

0.5

4.039 x 10~

1.877 x 1076

0.962

0.272

1

3.138 x 10~°

2.031 x 1076

0.911

0.411

2

1.867 x 10~

2.359 x 10~

0.778

0.628

5

2.762 x 10~7

3.551 x 10~

0.350

0.937

10

8.875 x 10~

4113 x 10~°

0.179

0.983

B. The time propagation

To calculate the rates we have to calculate the flux op-
erator F (¢, 8) as a function of time. The general strategy
is the same for NM-QME and its collective mode version,
QME-CM.

The flux-flux correlation function, Cy(t), was defined
via F(t,) [cf. (2.43b)], which can be viewed as an (un-
normalized) reduced density matrix. The Hamiltonian is
first build on a grid using the discrete variable represen-
tation [20]. Even with a modest number of points in each
direction the calculation is challenging, especially for low
temperatures, due to the large number of N x N primary
and auxiliary density matrices. The difficulty is partic-
ularly acute for the QME-CM case (3.4), for which the
size of the matrices is N2 x N2. On the other hand, at
low temperatures, only limited number of energy levels
is populated. We will use this advantage to facilitate the
calculations.

We choose the energy representation for calculating the
time evolution of F (¢, ) using a relatively small number
of states.

The initial state is prepared as a flux operator
(2.41,2.43b), built using an (un-normalized) equilibrium
thermal density matrix e"#F». We then use the Short
Iterative Arnoldi [18] or 4*" -order Runge-Kutta method
to propagate the flux operator F (t,B) in time accord-
ing to (2.13) and (3.4), with all auxiliary matrices ini-
tially set to zero. The flux-flux correlation function
Tr{Fs(B/2)F(t,3/2)} is calculated as a function of time.
Here, trace over the system for the QME-CM is under-
stood to be over both system degrees of freedom.

Although for the NM-QME (2.13) the construction of
the Hamiltonian matrix and its diagonalization is a stan-
dard procedure, it is more complicated for the QME-CM
case (3.4). We therefore give the details of these calcula-
tions.

We start with the calculation of the matrix elements of
the system Hamiltonian on a two-dimensional grid (¢, 0):

1
Hi(l,0) = 5 +p7) + W(t,0) . (4.6)
The two-dimensional space (£, ) may be viewed as a ten-
sor product of two one-dimensional spaces £ ® 0. The
Hamiltonian and the density matrix in such a space are



represented by four-dimensional matrices. To use the
standard methods for diagonalization and for propaga-
tion, we represent them as two-dimensional matrices us-
ing the following standard notation: the tensor product
of a m by n matrix A with a m' by n' matrix B is an
mm' by nn’ matrix C' with entries:

Clitym/+k,(j—1)n'+1 = Ai,jBi,1 - (4.7)

We denote the number of mesh points in £ direction as ny,
in the ¢ direction as n, and the product space dimension
as nygy. The resulting Hamiltonian matrix of dimension
ng, X Ny, is diagonalized, giving the eigenvalues E,, and
the eigenfunctions ¢, n = 1, ..., ng,. The resulting eigen-
system is unique for each ¢ and is calculated once. It is
then used as a starting point for calculations at different
temperatures.

Besides the diagonal matrix of H, we need the matri-
ces ¥ = (¢ |o|dn) and X2 for calculation of the different
commutators, cf. Eq.(3.2). Since the two-dimensional
system vectors are stored and manipulated as a long one-
dimensional vector, in practice o is the column vector of
length ng, built out of ny column vectors o1, ..., 0, . The
static shift x vanishes in the symmetric system.

The number of energy states used in calculations de-
pends on temperature and is much smaller than ng,. Ac-
tually, the convergence with respect to the number of en-
ergy levels used in calculations was checked and it was
never necessary to use more that 30 levels for NM-QME
and more that 100 for QME-CM. We estimate that our
error bars are less than 10%.

V. RESULTS AND DISCUSSION

The derivation of the QME is based on perturbation
theory and therefore is a priorilimited to the weak damp-
ing regime. On the other hand, the fact that the treat-
ment of the system is fully quantum allows for an ex-
act zeroth order description in both the activated and
the tunneling regime. To illustrate this we compare in
Fig. 2 the temperature dependence of the logarithm of
the quantum reaction rate constants for both our QME
methods with the exact results of Topaler and Makri
[4] and the centroid method of Shi and Geva [9]. For
weak friction (yre1 = 0.05 and 71 = 0.1), the agreement
with the exact results is excellent for both NM-QME and
QME-CM. For stronger friction, the NM-QME cannot re-
produce the low-temperature behavior and the rates are
strongly overestimated. However the QME-CM gives ex-
cellent agreement with the exact results over the entire
temperature range, even for moderately strong friction
(vree = 0.5). Clearly, the collective mode representa-
tion has extended the applicability of the QME to signif-
icantly higher friction.

Comparing to centroid results of Shi and Geva, we note
that although this version (marked as k¢;g [9]) is a futher
improvement of the centroid molecular dynamics method
[8] and gives a good estimate of the high-friction rate

constants at very low temperature, in the weak friction
regime the rates are still underestimated.

Before we turn to comparison of the transmission co-
efficient as a function of friction, we make two remarks.
First, we remind the reader that the transmission co-
efficient is a ratio of the quantum rate constant to the
classical TST value k = k/krst. However, there is some
ambiguity in what is meant by kgt in the literature on
quantum rate constants. Therefore, when comparing to
the results of different methods one needs to pay atten-
tion to the definition of krsr used, as it may slightly
affect the resulting values of k. As we plan to compare
with the results of three calculations: Topaler and Makri
[4], Liao and Pollak [10] and Shi and Geva [9], we review
here the definition of krsT used in each of these works.

The definition of krsT is

1 kT g,

wo 7BE
krsy = —— B2 n 0 —BEs
ST = onn 7 ¢ o€

Note that the last equality is approximate, as the ratio on
the LHS in general has a small temperature dependence
while the ratio on the RHS does not. The exact for krst
(the LHS) was used in [4] while the approximate form
(the RHS) was used by [10] and by us, below, for both
NM-QME and QME-CM.

The definition of kgt in [9], Eq.(24), is different:

ETST _ 1 (6(s)ph(s))
o m (1 —h(s))’

where s is the reaction coordinate, p is the momentum,
h(s) is the Heaviside function and the averaging is over
the classical many-body Boltzmann distribution.

The second comment is related to the spectral density
used in the calculations. The exact results of Topaler
and Makri [4] are obtained with the Ohmic spectral den-
sity with exponential cut-off (3.9). We used this spec-
tral density in our NM-QME calculations. However, as
was already mentioned in Sect III B, we could not use it
for the QME-CM method as it does not allow analytic
inversion of the Laplace transform of the new bath fric-
tion kernel. Instead, we used the Drude spectral density
(3.10), which has a longer high-frequency tail. It is not
clear a priori that the resulting rates will be the same,
although the difference is not expected to be large. In
the temperature dependence of the rates (Fig.2) the log-
arithmic scale emphasizes the orders of magnitude, not
the specific numbers. It is not so for the transmission
coefficient, which is a much more sensitive measure. In
Fig.3 we compare the transmission coeflicients calculated
using the two different spectral densities. These calcula-
tions were done with the NM-QME method, since it is
compatible with any form of the spectral density. ;From
Fig. 3 it is evident that at high temperatures (T=300K)
the difference amounts to a downward shift by about 0.05
in the whole range of frictions we used. At lower tem-
peratures, the difference has a more complicated behav-
ior: basically the Drude spectral density gives a larger &
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FIG. 3: The quantum transmission coefficient as a function
of dimensionless friction at T=300K for NM-QME for two
spectral densities: Drude (solid line with circles) and Ohmic
with exponential cut-off (dashed line with triangles).
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FIG. 4: The quantum transmission coefficient as a function
of dimensionless friction at T=300K. The results are shown
for exact [4], centroid kg;g [9], MQCLT [10], NM-QME and
QME-CM, as denoted in the legend.

than the Ohmic spectral density for weak friction and a
smaller & for strong friction. The value of the difference
is however of the same order of magnitude as for high
temperature. We will bear this in mind when analyzing
K as a function of friction.

In Fig.4, the weak friction part of the ~y.e-dependence
of the transmission coefficient is shown for T=300K.
The MQCLT results demonstrate an excellent agreement
with the exact results in this region. For weak friction
(e < 0.1) NM-QME shows very good accuracy too.
However, for stronger friction, the results are less accu-
rate and it fails to reproduce the turnover correctly. The
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FIG. 5: The logarithm of the quantum transmission coeffi-
cient as a function of dimensionless friction at T=100K. The
results are shown for exact [4], centroid k&g [9], MQCLT [10]
and QME-CM, as denoted in the legend.

correct behavior is recovered in QME-CM. The transmis-
sion coefficient is slightly lower than the exact results,
but recall that this is expected since we used the Drude
spectral density which gives lower values of k at this tem-
perature. We therefore consider the agreement between
the exact and QME-CM results to be quite satisfactory.
The centroid results are also slightly lower that the exact
ones, but the turnover is correctly reproduced.

For lower temperature (T=100K; Fig. 5) the turnover
was shifted to vanishingly small 7. The MCQLT

11

and centroid results frame the exact results from above
and from below. As we already mentioned, NM-QME
strongly overestimates the rates at low temperatures, so
we do not show it in this figure. However, for QME-
CM the agreement is again remarkable. Althought we
consider the closeness of the points to the exact ones for
0.1 < e < 0.3 as accidential, the general behavior
is fully reproduced. Recalling that at this temperatures
the Drude spectral density pushes rates up for weak fric-
tion and down for stronger friction, we have an excelent
agreement, demonstrating that the tunneling effects are
fully accounted for in this method.

For even stronger friction 7.e > 0.5 the rates are un-
derestimated and futher work is needed to extend the
range of applicability of the method to stronger friction.

VI. CONCLUSIONS

In conclusion, we have calculated quantum reaction
rates using the non-Markovian QME and its collective
mode formulation. In the very weak fricton limit both
methods give excellent agreement with the exact results
in the whole temperature range. The QME-CM version
extends the range of applicability of the method to mod-
erate friction v, < 0.5 and correctly reproduces the fric-
tion dependence at both high and low temperatures.
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