
 

 

Lecture 3 

Spin Dynamics 

Lecture Notes by Assaf Tal 
 
 

The Magnetic Moment: The 

“Basic Unit” Of Magnetism 

The Magnetic Dipole/Moment 
Before talking about magnetic resonance, we need 
to recount a few basic facts about magnetism.  
 Electrodynamics is the field of study that deals 
with magnetic fields (B) and electric fields (E), 
and their interactions with matter. The basic entity 
that creates electric fields is the electric charge. For 
example, the electron has a charge, q, and it creates 

an electric field about it,  2
0

1
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ˆq

rE r , where r 

is a vector extending from the electron to the point 
of observation. The electric field, in turn, can act 
on another electron or charged particle by applying 
a force F=qE.  
 

 
 There is, however, no magnetic charge. The 
“elementary unit of magnetism” is the magnetic 
moment, also called the magnetic dipole. It is 
more complicated than charge because it is a 
vector, meaning it has both magnitude and 
direction. We will ask ourselves two basic 
questions: 
1. What sort of magnetic fields does a magnetic 

moment create? 
2. How does an external magnetic field affect the 

magnetic moment (apply force/torque, etc)? 
We begin by answering the first question: the 
magnetic moment creates magnetic  field lines (to 

which B is parallel) which resemble in shape of an 
apple:  
 
 
  
 
 
 
 
 
 
Mathematically, if we have a magnetic moment m 
at the origin, and if r is a vector pointing from the 
origin to the point of observation, then it will give 
off a dipolar field described by: 
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The magnitude of the generated magnetic field B 
is proportional to the size of the magnetic charge1. 
The direction of the magnetic moment determines 
the direction of the field lines. For example, if we 
tilt the moment, we tilt the lines with it: 
 
 
 
 
 
 
 
 
 
 
 
 
The simplest example of a magnetic moment is the 
refrigerator magnet. We’ll soon meet other, much 
                                                           
1 Magnetic fields are measured in Tesla (T) in the SI 
system of units. Other systems use the Gauss (G). The 
conversion is straightforward: 1 T = 104 G 
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Left: a (stationary) electric charge q will create a radial 
electric field about it. Right: a charge q in an electric field 
will experience a force F=qE.

Number Time. The earth’s magnetic field is 
about 0.5 G = 0.510-4 T. Clinical MRI 
scanners operate at 1.5 T – 3.0 T, and the 
highest human MRI scanner as of early 2015 is 
the 11.75 Tesla human magnet being built in 
the University of Freiburg, Germany.  



smaller and weaker magnetic moments, when we 
discuss the atomic nucleus. 
 
 

 

 
 
Another interesting example is the Earth itself, 
which behaves as if it had a giant magnetic 
moment stuck in its core: 
 

 
 
Magnetic moments are measured in units of 
Joule/Tesla or (equivalently) in Amperemeter2 (1 
J/T = 1 Am2).  
 

 

Magnetic Moments Are Either Intrinsic 
Or Induced 
Magnetic moments are divided into two groups: 
current-induced and intrinsic.  
 

Induced Moments: Basic electromagnetism tells us 
that a current flowing in a closed loop will give off 
a magnetic field. The loop can be macroscopic, like 
a wire, or microscopic, like an electron orbiting the 
nucleus. Far away from the current loop the field 
will look as if it were being generated by a 
magnetic dipole. If the magnetic loop is assumed 
to be planar, the magnetic dipole will be 
perpendicular to the loop, and have a magnitude 
given by 
 

m=IA 
 

where I is the current in the loop and A is the area 
enclosed by the loop: 
 
 
 
 
 
 
 
 
For a general (non-planar) current loop, the 
expression for m is somewhat more complicated, 
but the principle is the same. 
  
Intrinsic Moments: It also appears that the 
fundamental particles - the proton, neutron and 
electron – carry intrinsic magnetic moments. That 
is, they “give off” a magnetic field as if a magnetic 
dipole were fixed to them, without having any 
current associated with them.  

The angular momentum of elementary 
particles is measured in units of a fundamental 
constant known as Planck’s constant (divided by 
2),     341.05 10 J sec . 
 

Number Time. A typical refrigerator magnet 
might have a macroscopic magnetic moment of 
about 0.1 J/T. The tiny proton has an intrinsic 
magnetic moment equal to about 1.410-26 J/T.  

Your refrigerator magnet 
has a permanent magnetic moment

A 
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 Electron Neutron Proton 
Charge 
(Coulombs) 

-1.610-19 0 1.610-19 

Mass (kg) 9.110-31 1.610-27 1.610-27 

Magnetic 
moment 
(J/T), 2S 

9.2610-24 -0.9610-26 1.410-26 

Magnetic 
moment 
(B) 

-1.0 Irrelevant Irrelevant 

Magnetic 
moment 
(N) 

Irrelevant -1.91 2.79 

Spin, S (in 
units of  ) 

1/2 1/2 1/2 

Gyromagne
tic ratio,  
(radHz/T) 

2.81010 -2.91107 4.257107 

 
The Bohr magneton, B, is just a quantity that 
makes it easy to talk about electron magnetism. It’s 
not used often in nuclear magnetism, though: 
 

24
2 9.27 10

e

e J
B m T    . 

 
A similar quantity, the nuclear magneton, N, is 
used more often in nuclear magnetism, although 
we won’t be making direct use of it in these lecture 
notes: 
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The phenomenon of intrinsic magnetic moments 
is directly related to another fundamental property 
of these particles called spin, and one speaks of a 
"nuclear spin" or an "electron spin". This is 
intrinsic angular momentum possessed by all 
electrons, protons and neutrons. Semi-classically, 
we can think of the proton or electron as a rotating 
ball of charge. The rotating charge can be thought 
of as loops of current, which give off a magnetic 
moment. In reality this picture is wrong, and you 
should always keep in mind spin is an intrinsic, 
somewhat weird quantum mechanical property; 
for example, the neutron has no charge and yet has 
a spin magnetic moment.  
 The semi-classical picture gets one thing right: 
the angular momentum and magnetic moment of 
the spinning sphere are parallel: 
 

m S . 
 
The constant of proportionality is known as the 
gyromagnetic ratio, and is given in units of  
 

  Coulomb Hz

kg Tesla
   . 

 
A word of caution about units: some books or 
tables quote  in units of radMHz/T. For 
example, =242.576 radMHz/T for the 
hydrogen nucleus.  Always be mindful of the units 
being used. Remember that, if we multiply  by 
2, we will sometimes need to divide another 
quantity by 2 along the way. A simple example is 
that of the magnetic moment of the proton: 
 

 
(1/2)h for proton42.576 MHz/T

       (has 2 )     (no 2 )




  m S . 

 
Equivalently, 
 


 


   1/22 42.576 MHz/T
   (no 2 )     (has 2 )




  m S


. 

 
In the second form, I moved the 2 factor from h 
to . The end result is the same, but now we must 
remember to specify the angular momentum in 
units without radians.  
 All electrons have an intrinsic magnetic 
moment, but that is not true for all nuclei, as we 
will see in the next section. 

The Nuclear Magnetic Moment Is 
Determined By The Nucleus’s 
Composition (Protons + Neutrons) 
The nucleus is made up of protons and neutrons. 
The chemical name of an atom – carbon, 
hydrogen, phosphorous and so on – is determined 
by the number of protons it has. This will 
ultimately determine how many electrons it has 
and, therefore, its “chemistry”. However, since 
neutrons are electrically neutral, their number 
might vary without changing the atom’s 
“chemistry”. Two such atoms are called isotopes. 
For example, shown here are two isotopes of 
carbon: 



 
 
 Proton and neutron spins tend to pair up anti-
parallel due to the Pauli exclusion principle, in a 
manner similar to that of the electronic model of 
the atom, where levels fill up from lowest energy 
and up. This is quite surprising when you consider 
how strongly coupled the nucleons are, but it 
works. This reasoning works fairly well. For 
example, it predicts that nuclei with an equal 
number of protons and neutrons should have 0 
nuclear spin. This works well for 12C, 16O, but not 
for 2H, as shown by the next table:  
 

 
 
It also predicts nuclei with an “extra” neutron or 
proton should have spin-½. This works for 13C, 
1H, 31P, 19F, but not for 17O. The breakdown of 
the pairing occurs before some nuclei have 
asymmetric nuclear charge distributions. These 
lead in some cases to favorable energy 
configurations with non-paired nucleons. Nuclei 
with spin>½ have asymmetric charge distribution  
and are known as quadrupolar nuclei, which we 
won’t discuss in this course. 

Nuclei With Low Natural Abundance 
Have “Low MRI Visibility” 
It is very important to take into account the 
natural abundance of each isotope in determining 

how large its signal will be. The natural abundance 
tells us if we take N atoms of an element then, on 
average, what percentage of each isotope we will 
get.  
 Nuclei with low or very low natural abudance 
will be difficult to detect, simply because there are 
very few such nulei around. For example, 13C has a 
natural abundance of about 1% and 12C has a 
natural abundance of about2 99%. In a sample 
containing 100 carbon atoms, only about 1 will be 
a 13C nucleus and the rest will be 12C. Since only 
13C has a nuclear spin it will be the only one giving 
off a signal.  

Natural abundance should be kept in mind  
also on the molecular level. Molecules are made 
out of atoms, connected between them by 
chemical bonds. The most important molecule in 
MRI is without a doubt water: 

 
A  “typical” water molecule actually comes in 
many isotopic flavors. Here are two examples: 
 

 
 
On the left is the most common variant by far. 
Oxygen-16 has no spin (its 8 protons pair up 
destructively, as do its 8 neutrons), and 1H has 
spin ½. Because of symmetry, the two hydrogen 
atoms are equivalent, in the sense that they behave 
as one spin-1/2 entity with double the magnetic 
moment. The variant on the right is very rare, and 
has markedly different NMR properties (17O has 
spin 5/2, and Deuterium has spin 1). Deviations 
from the “regular” H2O are so rare, that their 
contribution to any experiment are negligible, as 
shown in the following table. Natural abundances 
are calculated by multiplying the natural 
abundances of the individual components 

                                                           
2 Carbon has other isotopes but they do not occur 
naturally in nature and have zero natural abundance. 

O

H H 

16O

1H 1H

17O 

2H 2H
Two isotopes of H2O. The left is the most commonly 
found in nature. The one on the right is much more 
rare. 

Neutron Proton Electron

Two cartoon representations of 12C (left), which 
has no nuclear spin, and 13C (right), which has a 
nuclear spin of 1/2. 

12C 13C 



(assuming statistical independence, which is an 
excellent assumption):  
 
Oxygen Hydrogen Hydrogen Nat. Ab. (%) 
16O 1H 1H 99.74 
16O 1H 2H 9.9710-3  
16O 2H 1H 9.9710-3 
16O 2H 2H 9.9810-7 
17O 1H 1H 3.9910-2 
17O 1H 2H 3.9910-6 
17O 2H 1H 3.9910-6 
17O 2H 2H 410-10 
18O 1H 1H 1.9910-1 
18O 1H 2H 1.9910-5 
18O 2H 1H 1.9910-5 
18O 2H 2H 210-9 
 
Thus, when we speak of water we’re really 
neglecting all isotopic variants except for 
16O-1H-1H.  

MRI Uses The Interaction Of 

Magnetic Moments With 

Magnetic Fields 

Just as electric charges give off electric fields and 
are affected by them, magnetic moments give off  
magnetic fields and are affected by them. This will 
turn out to be important since, as we’ll see, we 
ourselves can create magnetic fields and pick them 
up using suitably constructed coils.  
 

 
 

We’ve already noted that a moment will give off a 
dipole field. We therefore have three additional 
question we’d like to address in this lecture: 
1. How do magnetic fields affect magnetic 

moments? The answer to that will come in the 
form of a set of equations known as the Bloch 
Equations, which will have a surprisingly 
simple solution. 

2. How can we pick up magnetic fields using 
coils? Here, the answer will be by a process 
known as induction, by which time changing 
magnetic fields induce a voltage – and hence a 
current – in a coil of wire. The basic law of 
induction is known as Faraday’s law.  

3. How can we generate magnetic fields, thereby 
affecting the evolution of magnetic moments? 
The answer here will come in the form of 
Ampere’s Law: current passed through a piece 
of wire or a coil will generate a magnetic field. 
The spatial distribution of the field will 
depend on the wire’s shape, while its time 
characteristics will depend on the current as a 
function of time. 

Magnetic Fields Cause Magnetic 
Moments To Precess: The Bloch 
Equations 

How do magnetic fields affect magnetic moments? 
This is a question in basic electromagnetism, from 
which we will merely borrow the answer: as long as 
the wavelengths involved are long enough, which is 
the case for MRI, then: 

1. m feels a force given by   F m B  
2. m feels a torque given by  τ m B  

The force F turns out to be completely negligible 
in-vivo. As for the torque, 
 

 d d

dt dt
     

m S
τ m B  

 
This equation is known as the Bloch Equation 
(BE). It is actually three separate equations: 
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Through 
Coils, I 

Magnetic 
Field, B 

Magnetic 
Moment, m 

Faraday’s  
Law 

Dipole  
Field 

Bloch  
Eqs. 

Ampere’s  
Law 



These are three coupled first order linear 
differential equations. As far as differential 
equations they are considered very easy from a 
numerical point of view, but for a general 
magnetic field they have no analytical solution. 
However, if the magnetic field is constant, their 
solution is quite straightforward, and I will quote 
here without proof. It is so important and 
fundamental that I’ll put it in a textbox: 
 

 
 
Let’s break this down slowly. First, a precession is 
a motion by which m traces out a cone around B, 
while keeping their angle  fixed: 

 
  
The sense of the rotation is determined using the 
left hand rule: take your left hand and curl it with 
the thumb pointing along the field B. The way 
your fingers curl will tell you in which sense the 
magnetization is executing its precession. Finally, 
the angular velocity of the precession is fixed and 
given by =|B| (a negative  will reverse the sense 
of the rotation).  
 Since precession is really just a rotation of m 
about B, we can describe it mathematically using 
rotations. For example, if B is pointing along the 
z-axis, then m will simply rotate about the z-axis. A 
left-handed rotation matrix about z by an angle  
is: 
 

 
 

  
 
 

  
 
 

cos sin 0
sin cos 0
0 0 1

R . 

 
For a constant field, =t=Bt. If at time t=0 m 
points along the x-axis, so  
 

 
 
 

    
 
 

0

1
0 0

0
tm m  

 
then, for times t0,  
 

   
   
   

 
 



 
 






  
     
  
  
 
 

  
 
 

0

cos sin 0 1
sin cos 0 0

0 0 1 0

cos
sin

0

t R Bt

Bt Bt
Bt Bt

Bt

Bt
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 Conceptually, a non-constant magnetic field 
B(t) can be broken down into very short time 
segments, t. For short enough segments, B will be 
constant in each segment and we can predict its 
effect as a precession by some small amount 
around a fixed axis (which might change its 
orientation between time segments). Practically 
this might prove difficult for most cases, and will 
require a numerical solution. 

Spins Can Be Manipulated With 
Magnetic Fields: Ampere’s Law 
An MRI machine is basically just a collection of 
coils. We current is passed through a coil it 
generates a magnetic field, and it is through these 
magnetic fields that we control the nuclear 
magnetic moments and produce an image. There 
are three major coil groups in the magnet: 
 

 

Main magnet coil (A), gradient coil (B) and 
body (RF) coil (C) inside a typical MRI scanner.

A spin m in a time-constant magnetic field B
will precess around the field B at an angular 
velocity =|B| according to the left hand 
rule. 

B 

m 

 

In precessional motion, the tip of m traces out the 
dashed circle around B, while keeping  fixed. 



MRI-Generated Fields 

The Main Field 
A large cylindrical coil is wound along the patient’s 
body. This coil is cooled with liquid helium and is 
superconducting, and can therefore carry large 
amounts of current without melting. Clinical 
scanners go up to 3 Tesla, which is about 60,000 
times the Earth’s magnetic field, which is 0.5 
Gauss (1 T = 104 G). However, research scanners 
have already surpassed 10 T, although these are 
very expensive to build. The main field is usually 
called B0 and its direction is taken to coincide with 
the z-axis: 
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 
   
 
 

B . 

 

 
 

The RF coils  
The radiofrequency (RF) coils are capable of 
generating arbitrarily shaped, albeit weak (around 
10 T at most) field at the radiofrequency range. 
More precisely: 
 

 
    
    

cos

sin
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



 
 
 
 
 
 

B . 

 
We can shape the amplitude, BRF(t), and the phase, 
RF(t), and create in theory any shape, although 
modern hardware limits our abilities somewhat (as 
noted earlier, peak BRF(t) is around 10 T, and 

RFd

dt

 ~radiofrequency range, usually tens or 
hundreds of MHz).  
 

The Gradient Coils  
The gradient coils generate a linear, spatially 
varying magnetic field. So far, the RF and main 
fields have been spatially homogeneous, at least 
ideally. It is the gradient field that will enable us to 
image the sample. How precisely that will happen 
remains to be seen. For now, it suffices that we 
write down the general shape of the gradient field: 
 

 
 

0

, 0grad t

t

 
 

  
  

B r

G r

. 

 
Note we can “shape” the gradient field by shaping 
G(t), by shaping the current passing through the 
gradient coils. However, they are built to always be 
linear in position, r. 
 

 
 
It is important to understand visually what sort of 
fields the different gradient coils generate. The 
following illustration focuses on the case of a 
constant gradient: 
 

 
 

Effective field in the rotating frame for the cases of no 
gradient (left), z-gradient (middle) and x-gradient (right). 

No gradient z-gradient x-gradient
G=0 ˆGG z  ˆGG x
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 
 

  
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0
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 
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 
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 
 

  
 
 

B

z=0
z

x

x=0

Number Time. The maximal gradient field 
strength is on the order of 10 mT/m, meaning 
over the human head (~ 0.2 m) one can create 
an additional z-field of about 
100.2 mT ~ 1 mT.  

Number Time. For a clinical MRI scanner, 
B0=3T. A proton nucleus (=242.57 
kHz/mT) will precess at a frequency of 

0 / 2 127 MHzB    , while a carbon 
nucleus (=210.705 kHz/mT) will precess at 
about 0 / 2 32 MHzB     about the main 
B0 field. This precession frequency is called the 
Larmor Frequency. 



In all cases the gradient field superimposes a field 
pointing along the z-axis!  
 We can also turn on several gradient coils at 
once, generating a field which is a linear 
combination of the individual fields. For example, 
if we turn on both the x- and z-gradient fields at 
equal magnitude, the field will become 
 

 
eff

0
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G G x z

  
  
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      

G B . 

 
This is a linearly increasing field along an axis 
pointing along the direction of G: 
 

 
 

Putting It All Together 
The general, combined laboratory-generated 
magnetic field felt by a microscopic spin is 
therefore:  
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Microscopic Fields 
The magnetic moments themselves create 
magnetic fields which affect each other. These will 
be treated in a short while.  

Signal Reception 

Time Varying Magnetic Fields Can Be 
Picked Up With A Coil: Faraday’s Law 
The magnetic flux through a coil equals the 
integral of the normal component of the magnetic 
field through the surface of a coil: 
 

 
 
Mathematically, this amounts to a surface integral 
over the surface enclosed by the loop: 
 

   dB S . 

 
Intuitively, this is the “amount of magnetic field 
lines crossing the coil.” For example, if we had a 
constant magnetic field B normal to the coil, and 
the coil had area A, the magnetic flux through it 
would be AB. If B were to make an angle  with 
the normal to the coil’s surface, the flux would be 
reduced to ABcos(): 
 

 
 
Another example: consider placing a coil around a 
magnetic moment. In one orientation there would 
be no flux through the coil, while if we were to 
rotate the coil by 90 the flux would be maximal: 
 

 

Mixed gradient: G=(G,0,G)
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Flux: AB Flux: ABcos() 

No flux Maximal flux 



The importance of flux comes from Faraday’s law: 
 

 
 
Note that the amount of flux () itself has no 
direct bearing on the generated voltage, and even if 
 is large it might not generate any current if it is 
static.  
 This law underlies much of modern electricity 
and electronics, since it provides a mechanism for 
turning one type of energy into another. An 
example is the microphone: some microphones, 
known as dynamic microphones, are comprised of 
a diaphragm connected to a bar magnet, around 
which a coil is tightly wound. As sound waves 
oscillate the diaphragm they also physically move 
the magnet which changes the magnetic field’s flux 
through the coil as a function of time. These 
oscillations are therefore reproduced in the 
electrical signal induced in the coil and recorded 
on tape (or, in modern hardware, on the 
computer): 
 

 
  In our case, a precessing magnetic moment will 
create a precessing dipolar field around it – that is, 
a time-varying magnetic field. The dipolar field 
will rotate at the same angular velocity as the spin. 
A current will then be generated in a suitably-
positioned coil, known as a receiver coil. Any 
receiver coil can also create a magnetic RF field by 
putting an oscillating current through it, making it 
a transmitter coil. Thus, any coil can be used for 
both reception and transmission (but not 
simultaneously). 

The Law Of Reciprocity: A Good 
Transmitter Is A Good Receiver 
Calculating the signal explicitly using Faraday’s 
law is tricky, so we will make use of a very neat 
trick known as the principle of reciprocity, by 
which the efficiency of a coil as a receiver is 
proportional to its efficiency as a transmitter.  

When two coils are put next to each other, 
they will not only induce fluxes through 
themselves, but also in each other in what’s known 
as mutual inductance 

 

 
When you think about it, this is similar to the 
problem of signal reception in MRI. First, we can 
model the microscopic nuclear magnetic moment 
using an infinitesimal loop of current, since we 
remarked such a loop will create a magnetic 
moment m=(area)(current): 

 
 
There is no requirement for the moment’s loop to 
be co-planar with the receiver coil, nor do we 
assume the receiver coil is planar (it’s just easier for 
me to draw a planar one!). Any current Im through 
the moment’s coil will create a magnetic moment 
given by 
 

 ˆm m mA Im n  
 

Receiver coil Effective magnetic 
moment loop, 
with area Am, 
normal nm. 

A time varying flux (t) through a coil will 
generate a voltage given by: 
 


 

d
v

dt
 

(Faraday’s Law) 

Bar magnet 

Coil 
Wires with induced 
electrical-audio signal 

Sound wave 

(1) Current is 
applied to coil #1 

(3) Flux is created 
through coil 

(2) A magnetic 
field is created 



The signal reception question can be formulated as 
follows:  
 

 
 
We already know the answer (Faraday’s law), but 
what we’re going to prove now is that there is a 
simple way to calculate it that depends on the field 
created by the receiver coil itself  
 

   rec rec
d

v
dt
m

B r , 

 
where Brec(r) means the field created by the receiver 
coil at the position of the magnetic moment, r, 
when we pass a unit current through the receiver 
(which is the opposite of what happens in 
reception!). What this says is that the voltage 
induced in the receiver coil is proportional to the 
strength of the field created by the receiver coil if 
we use it as a transmitter. In other words, a good 
transmitter is a good receiver! We prove this 
assertion below, although you can skip the proof. 
The above expression can be extended to a spatial 
distribution of moments by integrating over space: 
 

   
body

,
rec rec

d t
v dV

dt
  

M r
B r  

 
Proof. Let’s go back to the two coils in the first 
diagram. The voltage induced in coil #2 is, by 
Faraday’s law: 
 

 
    12

2 1 2coil 2
,

d d
v t d

dt dt
B r S . 

 
The field B1(r,t) is the field created by passing a 
current I1(t) through coil #1. Since it is always 
proportional to the current, we can write 
 

     1 1 1,t I tB r B r  
 
B1(r) is the magnetic field created through coil #2 
when unit current is passed through coil #1. So: 
 

   
    121

2 1 2coil 2

dI td
v d

dt dt
B r S . 

 
The quantity  
 

  21 1 2coil 2
L dB r S  

 
is called the mutual inductance and depends only 
on the geometry of the coils, so we can write: 
 

  1
2 21

dI
v L

dt
. 

 
One can reverse the situation and pass a 

current through coil 2, inducing a voltage in coil 1: 
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The principle of reciprocity states the mutual 
inductances are the same: 
 

 12 21 mutualL L L . 
 

This can be proved from first principles using 
Maxwell’s equations which govern 
electromagnetism, although we won’t try to prove 
it here.  

Based on the previous discussion, the voltage in 
the receiver coil can be written as: 
 

  m
rec mutual

dI
v L

dt
. 

 
It’s difficult to calculate L12 because this means we 
need to know the field created by the moment at 
each point through the coil. However, it’s easy 
(well, easier ... ) to calculate L21 – that is, the field 
induced at the position of the moment by passing 
a current through the receiver coil: 
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Thus: 
 

Given a time dependent magnetic moment 
m(t), what voltage vrec will be induced in the 
receiver coil? 
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MRI Happens In The Near Field 
It is very important to keep in mind that almost all 
of the phenomena we will discuss in this course 
happen in the near field. This is a term used to 
describe distances that are small compared to the 
wavelengths involved. In general, any oscillating 
moment in free space with an angular frequency 
=2 would create electromagnetic waves with a 
wavelength 
 

c


  

 
In a vacuum we have 8 m

sec3 10c   , and for a 
hydrogen at 3T we have 0 127 MHzB   , 
implying 
 

2.4 m  . 
 

Detection at distances <<  are said to be in the 
near field, which is precisely the case with MRI, in 
which the coils are placed as closely as possible to 
the subject.  
 The consequences of operating in the near field 
are subtle and we've made some hidden 
assumptions along the way, some of which you 
might have spotted: 
1. We've assumed a magnetic moment creates a 

dipolar magnetic field B(r) which changes  
immediately when we rotate the moment. 
This neglects the fact that field changes 
propagate at the speed of light (in a vacuum), 
which is permissible in the near field. 
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2. Detection is driven by Faraday's law by 

magnetic flux through receiver coils. In the far 
field, detection occurs usually by having 
electromagnetic radiation picked up by 
causing electrons in an antenna to oscillate. 

3. We've assumed our detector picks up a signal 
from the entire body (as far as Brec(r)0).  

 

   
body

,
rec rec

d t
v dV

dt
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The speed of light through a medium such as 
human tissue differs from that in vacuum, and is 
given by 
 

r r

c c
v

n  
   

 
where c is the speed of light in vacuum, n the 
index of refraction, and r, r the (frequency 
dependent) relative permittivity and permeability 
of the medium. This makes wavelengths shorter 
and the near-field criterion more difficult to fulfill: 
 

r r

c c
n


   

  . 

 
For clinical field strengths (1.5 T and 3 T) this 
remains a reasonable-to-excellent approximation, 
depending on tissue type, but for ultra high field 
imaging (7 T and above) this assumption breaks 
down and correspondingly artifacts can be seen in 
the image. The following table shows some 
approximate values for these quantities at 1.5, 3 
and 7 Tesla: 
 



Material r r Field 
(T) 

 (m) 

Vacuum 1 1 1.5 4.7 
 1 1 3 2.3 
 1 1 7 1.0 
Grey 
matter 

97 1 1.5 0.48 

 74 1 3 0.27 
 60 1 7  0.13 
White 
matter 

68 1 1.5 0.57 

 53 1 3 0.32 
 44 1 7.0  0.15 
Blood 86 1 1.5  0.51 
 73 1 3 0.27 
 65 1 7 0.12 
Fat 6 1 1.5 1.92 
 5.9 1 3 0.97 
 5.6 1 7 0.43 
 
It should be noted that r is not truly unity but 
very close, such that 1r   for all practical 

purposes. The true value of r  however cannot be 
neglected when calculating susceptibility artifacts 
(which we will not take upon ourselves in this 
course), since magnetic resonance is very sensitive 
to even small distortions in the main magnetic 
field. 
 Another effect that must be taken into account 
is the conductance of the body's tissues: an 
electromagnetic field with frequency  will get 
absorbed in any conductor with conductance  (in 
ohmsmeter) after traveling for a distance given by 
the skin depth:   
 

0

1

r


 

  

 

A Constant Magnetic Field 

Polarizes The Spins: 

Nuclear Paramagnetism 

The Energy Of A Magnetic Moment In 
A Magnetic Field Is Minimal When 
Parallel To The Field 

We have so far looked at single isolated spins. We 
now move on to describing large statistical 
ensembles of spins.  
 If you take a compass, which is nothing more 
than a magnetized iron needle, having a magnetic 
moment itself, it will align itself along the earth’s 
magnetic field. This illustrates an important point 
of interest which we’ll make use of: magnetic 
moments tend to align themselves along the 
magnetic field they are in when in equilibrium, in 
which they minimize the moment’s energy: 

 

 cosE mB     m B . 

 
where  is the angle between m and B. This 
phenomena is known as paramagnetism. 

The energy E is at its minimum when m and B 
are parallel, and maximal when they are parallel: 
 

 
A fundamental principle of statistical mechanics 
states that systems tend to minimize their energy, 
which explains why the compass needle aligns 
along B. However, one should be mindful that 
whether or not a macroscopic magnetic moment 
will actually align is dependent on competing 
interactions. For example, thermal motion might 
tend to randomize a magnetic moment’s direction. 
Question: why do microscopic spins precess about 
the magnetic field, instead of align along it? 
Answer: Aligning along the field is a macroscopic 
behavior that is brought about by friction (in the 
cases of a needle, the friction is caused by the 

B E=mB E=0 E=-mB 

Magnetic 
field

Magnetic 
moments 



needle’s mount). An idealized microscopic spin in 
free space does not experience frictional sources.  

Bulk Magnetization: We Always Think 
In Terms Of Large Groups Of Spins 
In an MRI machine one cannot study single spins 
or single molecules, due to the low sensitivity of 
magnetic resonance. A typical voxel is ~ mm3, and 
it often contains many many spins. MRI therefore 
studies the properties of nuclear spins in bulk.  

Suppose you have N molecules in a volume V, 
each having a magnetic moment mi. Recall that the 
moments are all vectors, so we can imaging a 
vector “attached” to each atom. In general, without 
the large external field of the MRI machine, they 
would all point in different directions: 

 
The bulk magnetization M of the volume V is 
defined as the (vector!) sum over all elements in 
the volume: 
 

 bulk

1


N

i
i

M m  

 

It is  bulkM  that MRI studies.  In the above 

example,  bulkM =0 because the spins cancel out 
each other: 
 

 
 
Upon the application of an external field, the spins 
tend to align along the field – although thermal 
motion will prevent them from doing so 

completely. A “snapshot” of the spins in the 
presence of an external field might look like this: 
 

 
 
Let us define the bulk magnetization per unit 
volume, M(r), such that if we take a small volume 
V around the point r then    bulkV M r M : 
 

 
 
We will use the capital letters M, M(bulk) to denote 
the macroscopic bulk magnetism properties, as 
opposed to m which we will reserve for 
microscopic moments.  
 What volume V should we use? On the one 
hand, we want enough spins in V to make it 
statistically meaningful – that is, we want the 
variance of our fluctuations to be small as possible. 
Put another way, we want M to vary smoothly if 
we start shifting our volume of interest around. 
 
 Volume of Water  Number of spins 
 Liter = 103 cm3  1025 
 cm3     1022 
 mm3     1019 
 m3     1010 
 (10 nm)3    104 
 nm3     10 
 
So it seems smaller than a box with sides 10 nm is 
shaky. 
 On the other hand, is there an upper limit on 
V? A natural choice might be a voxel (~ mm3), 
but there is a lot of variance inside a voxel. 

Schematic representation
of an ensemble of 
microscopic  magnetic 
moments. Each circle 
represents the magnetic 
moment of, say,  a water 
molecule 
 

B0 

The mi 

M(bulk) 

Imaged 
object 

r

M(r)V 

V 



Sometimes to understand the signal originating 
from a single voxel we need to think in terms of 
what happens inside the voxel because there is a lot 
happening inside that mm3. So, in general, we 
stick to the smallest V we can take (say, 
(10 nm)3). 
 From now on when we talk about the 
magnetization vector we will take it to mean the 
bulk (macroscopic) magnetization vector per unit 
volume, unless specifically noted otherwise. At 
times I will remark how the macroscopic picture 
ties in with the microscopic one. 

Equilibrium Magnetization 
We now come to the very important problem of 
calculating the bulk magnetic moment of a sample 
placed in a constant magnetic field (such as the 3 
Tesla field of an MRI scanner) at thermal 
equilibrium. 
 At thermal equilibrium, the probability of the 
system being in a state with energy E is given by 
Bolztmann's distribution: 
 

  1 /Pr E kT
Z

E e  
 

where Z is a constant number independent of the 
energy or kT, given by: 
 

1 // ... nE kTE kTZ e e   , 
 
where the system has N states having energies 
E1,…,EN. The probability of being in state i is: 
 

  1 /Pr iE kT
Z

i e  
 

Note that our definition of Z implies that:  
 

     1 2 1Pr Pr ... Pr N     
 

or 
 

11 1 1// ... NE kTE kT
Z Z

e e    . 
 

This is the only point in our lectures where we’ll 
use the quantum-mechanical nature of spin. 
Quantum mechanics tells us a spin S in a field B0 
has 2S+1 energy levels: 
 

0 1nE n B n S S S     , , , , . 
 
We now ask: what is the average magnetic moment 
of (one) such spin at thermal equilibrium? By 
symmetry, we expect 0x ym m   in thermal 

equilibrium. For the z-component, 
 

     0

S S
n Bn

z n n Z kT
n S n S

m m E 

 

     Pr exp
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If we knew that, then for N non-interacting spins 
at equilibrium, 
 

 bulk    ˆzN mM z , 
 

which would be our equilibrium magnetic 
moment. So we really just need to compute <mz>. 
Our assumption of non-interacting spins is a bit 
suspect, since the nuclear spins “talk” via dipolar 
coupling, but one can prove using quantum 
mechanics this holds even in the presence of 
dipolar and other interactions.  
 The expression for 

zm  can be simplified 

considerably if we remember that, for a<<1:  
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In our case, at room temperature (homework!),  
 

 0 1 for all 
n B

n S S
kT
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
, , , 

 
so we can simplify: 
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Using the algebraic identity  
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yields: 
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and, for N spins, 
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The above equation gives the macroscopic 
magnetic moment for N spins, but one could 
equally talk about magnetic moment per unit 
volume by dividing both sides by the volume, V. 
Then N would turn into the number density of 
spins, also known as the proton density when 
dealing with protons (number of nuclei per unit 
volume): 
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Spin Interactions Lead To 

Relaxation Phenomena  

Spins Are Subjected To Microscopic 
Fluctuating Magnetic Fields Due To 
Their Thermal Motion 
Each microscopic nuclear magnetic moment m 
“sees” a magnetic field made up of two 
components: the macroscopic field generated by 
the coils in the lab, and the microscopic fields 
given off by its surroundings. For example, the 
dipolar field generated by one nuclear spin in a 

molecule will be felt by other nuclear spins in the 
same molecule.  

 
 
It’s very important to realize that the orientation of 
the nuclear magnetic moment has nothing to do 
with the molecular orientation: if you rotate the 
molecule by 90, the nuclear moment will not 
change, since it’s not related to the nuclear charge 
or mass distribution; it “lives” in its own space and 
“talks” to the environment only through the 
magnetic fields it feels and emits: 
 

 
 

Since most of the water molecules in the body 
are in the liquid state in the extra and intracellular 
matrices3 –All molecules rotate and tumble around 
very rapidly. A small water molecule might 

                                                           
3 This is actually not entirely correct, since water 
molecules often get “stuck” to cell membranes or 
confined in tight spaces. We will look more into this in 
later lectures.  

Upon rotation of the molecule, the spins (black arrows) 
do not change their orientation. Consequently, the 
spin feels a different magnetic field, in both magnitude 
and direction.  

Number Time. 1 mL of water will weigh 
about 1 gram and have about 510-9 moles of 
water (which has a molecular weight of about 
18 gr/mol), or about N=61022 atoms. At room 
temperature (kT~410-21 m2kgs-1) and a field 
of B0=3 Tesla, we have (=242.576 kHz/mT, 
S=1/2), M0≈10-8 J/T. 

Shown here is the magnetic field (red arrow) felt by one 
spin  due to the dipolar field of the other spin in an 
H2O molecule. 



perform a rotation on picosecond timescales, while 
larger molecules would rotate more slowly. This 
molecular rotation leads, by the arguments just laid 
out, to fluctuating microscopic fields.  

Fluctuating Microscopic Fields Lead To 
Decoherence (T2) And Return to 
Thermal Equilibrium (T1) 
The magnetic field felt by a microscopic nuclear 
magnetic moment can be subdivided into two 
parts, macroscopic and microscopic: 
 

      macro microt t tB B B , 
 

where the macroscopic fields are those generated 
by the laboratory coils and controlled by the 

scientist, and the microscopic fields are those 
fluctuating fields created by other spins in the 
molecule, electrons, and so forth. Consequently, 
the Bloch equations which describe the spin’s 
precession become: 
 

          macro micro
d

t t
dt
m

m B m B m B . 

 
Now assume we have N magnetic moments, m1, 
m2, ..., mN, each experiencing its own unique 
microscopic field, but all experiencing the same 
macroscopic one: 
 

1.5 T 3 T 7 T Tissue Type Nuc. Mol. 
T1 T2 T1 T2 T1 T2 

Gray Matterb 1H H2O 1188  69 95  8 1820  114 99  7 2132  103  
White Matterb 1H H2O 656  16 72  4 1084  45 69  3 1220  36  
Cerebrospinal 
Fluidb 

1H H2O 4070  65    4425  137  

Bloodb 1H H2O 1540  23 290  30 1932  85 275  50 2587  283  
Kidney Cortexa 1H H2O 966  58 87  4 1142  154 76  4   
Kidney 
Medulaa 

1H H2O 1412  58 85  11 1545  142 81  8   

Livera 1H H2O 586  39 46  6 809  71 34  4   
Cartilage, 0 d 1H H2O 1024  70 30  4 1168  18 27  3   
Cartilage, 55 d 1H H2O 1038  67 44  5 1156  10 43  2   
Bone marrow 
(L4 vertebra)a 

1H H2O 549  52 49  8 586  73 49  4   

Prostatea 1H H2O 1317  85 88  0 1597  42 74  4   
Subcutaneous 
fata 

1H Fat 343  37 58  4 382  13 68  4   

NAA CH3 
(GM)c 

1H NAA 1270  50  1470  80 269  7   

NAA CH3 
(WM)c 

1H NAA 1360  60  1400  150 374  9   

Typical T1 and T2 relaxation times from the literature, in milliseconds, in humans. The  sign indicates standard 
deviation of the cohort examined. Note that variations may occur within a particular tissue (e.g. cortical vs. deep gray 
matter), and that numbers provided from different papers might originate from different regions within the same 
tissue. Also, some skepticism should be practiced when using values obtained for flowing/pulsating media, such as the 
cerebrospinal fluid. 
a  From: Bazelaire et. al., Radiology 230(3):652-659 (2004) 
b  T1 values at 1.5 T and 7 T taken from Rooney et. al., Magn. Reson. Med. 57:308-318 (2007).  

T1, T2 values at 3 T taken from Rooney et. al., Magn. Reson. Med. 57:308-318 (2007) and Stanisz et. al., Magn 
Reson Med 54:507-512 (2005). 

c  T2 values at 3T taken from Kirov et. al., Magn. Reson. Med. 60:790-795 (2008). 
 T1 values at 1.5T and 3T from Ethofer et. al., Magn Reson Med 50:1296-1301 (2003) 
d From: Stanisz et. al., Magn Reson Med 54:507-512 (2005). 
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We now sum over multiple microscopic spins: 
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Since Bmacro is common to all summed terms, and 
since the derivative of the sum equals the sum of 
the derivatives, we can substitute the microscopic 
moments by the macroscopic one, 1

N
n n M m  

and obtain:  
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The last term on the RHS represents the effects of 
the fluctuating fields and is intractable really. 
Physically speaking, these fluctuating magnetic 
fields are the source of (1) decoherence (i.e. loss of 
signal) and (2) thermalization (return to thermal 
equilibrium). Luckily, phenomenologically these 
effects can be respectively embodied by two 
constants, T2 and T1, respectively, which can be 
integrated into the Bloch equations using simple 
terms: 
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We will omit the subscript macro and take the 
magnetic field appearing in the Bloch equations to 
signify only the macroscopic (lab-generated) 
magnetic field.  
 M0 is the thermal equilibrium value of the 
magnetization, as can be seen by turning “off” the 
macroscopic RF and gradient fields, setting the 
time derivatives to 0 and solving: 
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A table of some T1 and T2 values has been 
compiled above. We note that for most tissues, T1 
is on the order of a second, while T2 is on the 
order of 100 ms. Furthermore, T1 tends to increase 
with increasing field strength, while T2 tends to 
decrease. The field-dependence of T1 and T2 will 
await a further chapter which will discuss T1 and 
T2 as sources of contrast. 

T2 Leads To Decoherence 
To gain a better understanding of the sort of effect 
T2 has on the spins, let us set the macroscopic 
laboratory field to 0 and examine the time 
evolution of the magnetization.  
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One interesting this is that the transverse (x, y) and 
longitudinal (z) components of the magnetization 
become decoupled: Mz does not feature in the 
equations for Mx and My, and Mx and My do not 
appear in the equation for Mz. 
 The equations for Mx and My have simple 
solutions: 
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This means that, whatever magnetization we start 
out with, it will decay with a time constant T2 to 
zero: 
 



 
 
This is called decoherence, and represents the 
physical fact that, unless something specific is 
done, the spins will point in all possible directions 
perpendicular to the MRI’s static B0 field, since 
there is no reason – energetic preference – for them 
to align in any single particular direction. The time 
T2 can be thought of the time it takes Mx (or My) 
to drop to 1/e~37% of its initial value. 

T1 Leads To Thermal Equilibrium 
At thermal equilibrium the spins align themselves 
along the external B0 field. This is brought about 
by T1 relaxation. The solution to the equation 
involving Mz is: 
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We see that, for t>>T1, 
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Thus, whatever longitudinal magnetization we 
start out from at t=0, it will converge back to its 
thermal equilibrium value M0: 

 
 

B0 Inhomogeneity Leads To Additional 
Transverse Decay (T2') 
An MRI magnet is built to yield a homogeneous 
field over a volume roughly the size of the human 
head. The ability of NMR and MRI to discern 
changes of ~Hz to the proton frequency means 
severe constraints are placed on the homogeneity. 
Indeed, a change of a single Hz would correspond 
to a change in the main field given by 
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This is an incredibly difficult demand on the 
hardware: we need it to be homogeneous to about 
0.01 ppm over a head-sized volume! The main 
coil's imperfections make it impossible to achieve. 
To approximate this requirement, special passive 
shims - pieces of iron - are added to the magnet to 
"shape" the main field. 
 Even if a perfect magnet is constructed, once 
we put in a sample, be it a human or an inanimate 
object, the main field will get distorted and its 
homogeneity would get ruined. Microscopically, 
human tissue is diamagnetic. This means an 
external field such as B0 will induce magnetic 
moments in matter (of course the moments will 
induce a magnetic field which will create further 
moments which will induce further fields ... so the 
full solution must be self-consistent). The 
additional moment-induced field distorts the main 
field. The phenomenon is known as magnetic 
susceptibility. 
 The effect of these inhomogeneities can be 
quite intricate, but they always lead to a decay of 
the signal. We'll delve into specific models later 
on, but for now we'll just state that on a small scale 
- on the order of a voxel or smaller - it can usually 
be modeled by swapping T2 by a shorter time, T2*: 
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In almost all realistic cases, T2* can be written 
down as a sum of two contributions: the 
microscopic decay and decay effects due to 
inhomogeneity: 
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