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2D NMR 
Lecture notes by Assaf Tal 

 
1. The Concept of 2D NMR 

 
1.1 The Output 

 
A tool or process can be understood on many 
levels. We'll start by understanding 2D NMR as a 
black box and examining its "input" and "output". 
Imagine a hypothetical J-coupled molecule such as 
the following: 
 

 
 
 
A, B and C resonate at frequencies A, B and C.  
Even if I hadn't denoted them on the spectrum it 
would've been pretty obvious which peak 
corresponds to B (since it's J-coupled twice, and - 
since the J-couplings are not to be assumed 
equivalent, should have 4 peaks, i.e. a quartet). 
Telling A and C would be slightly more difficult 
but not too difficult if I had told you what 
chemical groups they were, so you could use your 
knowledge of where each group should resonate 
more-or-less to tell them apart. 
 This molecule, which we'll call ABC, is fairly 
easy to understand, but imagine more complex 
molecules with more complex spectra. How could 
we easily tell which molecule is coupled to which 
other molecule? The answer lies in 2D NMR. The 
"input" of 2D NMR is a molecule, and the 
"output" is a 2D spectrum, in which cross-peaks 
appear between all pairs of coupled molecules: 
 

 
The peaks on the diagonal are uninteresting and an 
unavoidable artifact, but the cross peaks clearly 
show which molecule is connected to which other 
molecule. What we've just described is known as 
COrrelation SpectroscopY, or COSY, one of the 
earliest 2D NMR experiment which reveals which 
molecules are connected via J coupling. 
 There exist 2D NMR experiments which test 
for any kind of spin-spin interactions. For 
example, one very important experiment which 
tests for NOE cross-relaxation between adjacent 
spins is known as NOESY. Here, cross-peaks will 
stand for pairs of spins which are close to each 
other in space. For example (neglecting J-
splittings): 
 
 

 
The examples so far have been for homonuclear 
experiments, but can be extended easily 
(conceptually easily, that is ... ) to account for 
heteronuclear couplings as well. 
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1.2 An Inefficient 2D Experiment 

 
How could we get the above spectra? Here's a 
simple way. Let's say we have a "magic box", 
calling the "mixing box", the role of which is to let 
the interaction in question evolve while (hopefully) 
preventing all other interactions from happening. 
For example, for COSY, this would let J-coupling 
transfer magnetization between J-coupled nuclei. 
For NOESY, the box would let cross-relaxation 
occur between spatially adjacent nuclei. 
 For the ABC molecule above we would run 
three experiments:  
 
 (Excite A) - (Mixing) - (Acquire) 
 (Excite B) - (Mixing) - (Acquire) 
 (Excite C) - (Mixing) - (Acquire) 
 
Here, excite A refers to applying a selective pulse 
which would excite only A (this is possible, even 
though we haven't covered it in this course). As a 
result, we would only see the results of the mixing 
on the magnetization of A, which, following 
mixing, would be transported to B. Thus, when 
we acquire a signal, we would see the 
magnetization precessing at B and acquire a peak 
at that position. 
 Similarly, in the second experiment, only B 
would be excited and as a result of the mixing 
magnetization will be transferred to A and C, 
which would then appear in the spectrum. Thus, 
each experiment yields a different line in the 2D 
spectrum: 
 

 
This experiment has two major drawbacks: 
1. First, you need to know in advance where the 

peaks are so you can target them with your 

selective pulses. This is a practical but not a 
fundamental flaw. 

2. Each experiment only excites one peak at a 
time, and therefore suffers from a major loss 
of sensitivity. This is a fundamental flaw. 

To overcome issue (#2), we'd like to excite all 
peaks in each experiment. This, however, would 
prevent us from deciphering which peak during 
acquisition (after mixing) came from which peak 
before mixing. For example, if we’d see C, we’d 
have no way of telling whether it came from A or 
B. To fix this, we will expand the basic scheme of 
2D NMR in the next section. 
 
1.3 An Efficient 2D Experiment 

 
 Modern 2D NMR experiments have this general 
outline: 
 

excite – t1 – mixing – t2 (acquire) 
 

In the first step, all spins are excited. In the second 
step, they evolve for a time t1. Then the magic 
mixing box is applied, and finally a signal is 
acquired. Let’s follow a single chemical shift, say 
B in our ABC molecule: after being excited, it 
evolves for a time t1, acquiring a phase due to its 
chemical shift (neglecting J couplings and other 
interactions for simplicity): 
 

1Bi t
xyM e  . 

 
Now mixing occurs, and magnetization is 
transferred to A and C.  
where kA, kC are just two proportionality constants. 
If we were to Fourier transform this signal, we 
would get two peaks at A, C, but they would be 
weighted by the phase term prior to mixing, 1Bi te  . 
The basic scheme is repeated for many equally 
spaced values of t1: 
 
 t1 = 0 
 t1 = t1 

 t1 = 2t1 
 ... 
 t1 = (N1-1)t1 
 
and the results plotted in a matrix: 
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The peaks we see in each experiment are those 
appearing after the mixing. However, they get 
modulated in successive experiments by their 
frequencies before mixing. A Fourier transform 
along the indirect dimension (t1) will reveal the 
frequency before mixing, yielding our 2D 
spectrum. 
 This can be seen mathematically as well: our 
signal in each experiment is comprised from the 
contributions of each of the three peaks (neglecting 
J-coupling and T2 relaxation): 
 

 
 
If we treat t1 as an independent variable, we see 
that a Fourier transform along t1 will yield the 
frequencies before mixing. We saw that a Fourier 
transform turns the time domain data (sampled 
from t=0 to t=) into a spectrum with absorptive 
+ dispersive components: 
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Thus, a 2D Fourier transform will yield, up to 
normalizing constants and neglecting couplings 
before and after mixing: 
 

 
represents peaks on the diagonal, while terms such 
as 
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represent a cross-peak between A and B. 
 These ideas sum up the gist of 2D NMR. We 
now turn to some examples and practical 
considerations. 
 
2. COSY 

 
2.1 The Pulse Sequence 

 
The most famous 2D experiment tests for J-
couplings between pairs of spins. The pulse 
sequence is: 
 
 
 
 
 
 
 
 
For COSY, the mixing is a simple 90x pulse. The 
phases of the pulses don’t turn out to be very 
important, so we’ve picked them to simplify our 
calculations. 
 
2.2 Analysis 

 
We’ll assume a weakly coupled homonuclear spin 
pair. Starting from thermal equilibrium, 

Az BzS S   , the first pulse excites the spins onto 
the xy plane: 
 
 Ax BxS S   . 
 
As before, Ax xS S I  . We are using A and B to 
avoid confusion with the indirect (t1) and direct 
(t2) time evolution subscripts. During t1, the 
system evolves according to both the chemical shift 
and the J-coupling interaction. We first apply the 
chemical shift evolution: 
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Next comes J-coupling during t1: 
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At this point, the second 90 pulse acts in a similar 
manner to that of an INEPT experiment, and 
transfers polarization from A to B or from B to A, 
assuming of course that J0: 
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Now all we have to do is to calculate the time 
evolution of each term and take the trace with Mxy 
to calculate the FID. This is quite a bit of hassle, so 
we’ll try to cut down on the amount of work. First, 
we can neglect all longitudinal (SAz, SBz) terms, as 
well as all terms of the form SAxSBx, SAxSBy, SAySBx, 
SAySBy, since they are non-observable and will not 
become observable during t2. This leaves us with: 
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The experiment will be repeated for many values 
of t1. Formally there is no difference between t1and 
t2: they are both discrete variables with their own 
dwell time and maximum acquisition time.  
 The four terms represent the four groups of 
peaks we will see in the final spectrum: 
 

SAx Magnetization that started out 
in A and did not get 
transferred to B, resulting in a 
diagonal peak at (A, A) 

2SAzSBy Magnetization that started out 
in A but after mixing will 
resonate at B (cross-peak at 
(A, B)) 

SBx Magnetization that started out 
in B and did not get 
transferred to A, resulting in a 
diagonal peak at (B, B) 

2SAySBz Magnetization that started out 

in B but after mixing will 
resonate at A (cross-peak at 
(B, A)) 

 
Naively, we would expect our spectrum to look 
like the toy spectra shown in the beginning:  
 

 
 
While the above naive picture is approximately 
correct, it does not account for some of the finer 
details of the 2D spectrum such as J-splittings and 
other issues which we address next, as we examine 
how the full two-spin spectrum looks like. 
 

2.3 The Spectrum 

 
We also don’t really have to calculate the time 
evolution of the different parts of  because we’ve 
already discussed their appearance when talking 
about INEPT in lecture 5: SAx and SBx will give rise 
to an “in-phase” doublets at A and B, 
respectively; -2SAzSBy and -2SAySBz will give rise to 
out-of-phase doublets at A and B, respectively: 
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The splitting between the peaks is given by J. The 
above four lineshapes will be seen along the “direct 
domain” of the 2D spectrum, after a Fourier 
transform along t2. Along the indirect domain we 
will observe, following a Fourier transform (real 
parts shown in black, imaginary parts in red): 
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These shapes along the indirect domain can be 
deduced by expressing each term using complex 
exponentials and the identities 
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For example: 
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When T2 relaxation is added, each of the terms of 

the form i te   will turn into an absorptive line at 
frequency  in the real part of the spectrum, along 
a dispersive line at  in the imaginary part of the 
spectrum. A minus sign will mirror the lineshape 
about the y-axis, and an i will switch between the 
absorptive and dispersive parts.  
 
The final 2D COSY spectrum will appear as the 
product of the indirect and direct lineshapes: 
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The spectrum has several features of interest: 
1. The 2D spectrum is reflected along zero 

frequency in the indirect domain, a 
2-1 1 -2 

21 



consequence of the cos modulation (as 
opposed to eit) along the t1 domain.  

2. The diagonal peaks correspond to the case 
where magnetization was not transferred and 
are “uninteresting”, since all frequencies have 
a component of the magnetization which they 
don’t transfer. 

3. The lineshapes are quite interesting: instead of 
a single diagonal/cross peak there are four, 
some of which are out of phase. Furthermore, 
each peak in each group of four is distorted. 
This is a direct consequence of what we’ve 
mentioned before: both along the direct and 
indirect domain one obtains lineshapes of the 
form    A iD  . Their products give: 
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Thus, both the real and imaginary parts of the 
lineshape are distorted. We will discuss ways 
of avoiding this distortion in part 4. The real 
and imaginary parts are plotted below: 
 

 

  
 
On the left we see A(1)A(2)-D(1)D(2). On 
the right you see A(1)D(2)+D(1)A(2). 
Although the real part (left) is not very distorted, it 
involves the dispersive components which decay 
very slowly and cause the line to be much broader 
than a puer lorentzian. Compare this to just  
A(1)A(2): 
 

 
 
The imaginary part looks completely unusable.  
 

 
2.4 More Complex Systems 

 
Systems can be more complex in the following 
senses: 
1. Have more spins. 
2. Have more inter-spin couplings. 
3. Have strong J-couplings. 
We discuss each case briefly: 
1. Having more spins is the easiest scenario. The 

evolution of our spin system is linear in the 
spin operators. That is, if we had some other 
spin SC it would be excited and evolve 
irrespective of the other two (A and B). The 
real question is, what happens when a spin has 
more than one J-coupling? This we address in 
#2. 

2. The answer here can be grasped by looking at 
a simple A-B-C system, where a dash 
represents J-coupling. When analyzing spin B 
during t1 we can apply the J-evolution 
between B-A and B-C in any order we choose. 
In either case, following excitation from SBz 
into SBx, we will end up with terms such as 
SBySCz and SBySAz. The mixing pulse will then 
convert these to SBzSCy and SBzSAy, meaning we 
will get resonances at both A and B. Thus 
we will get something along the lines of the 
spectrum we’ve drawn earlier during the 
lecture:  

 



 
 
3. Strong coupling can complicate the COSY 

spectrum. However, even with strong 
coupling, coherences will only “jump” to 
neighbors a single J-coupling bond away.  

 
3. Other 2D Sequences 

 
We briefly outline some important 2D 
experiments and their possible uses. 
 
3.1 HSQC 

 
Heteronuclear Single-Quantum Correlation is a 
2D experiment which forms cross-peaks between 
J-coupled hydrogen and X-nuclei (usually 15N, but 
could be anything really). Most nitrogen atoms in 
nature are 14N (~99.6%), which has a spin of 1 and 
quadrupole moment, making it difficult to observe 
in high resolution liquid state NMR.  What one 
usually does is use bacteria of some sort to express 
a protein of interest after providing an 15N 
enriched substrate. The protein is made out of 
amino acids which have this general structure: 
 

 
 
Amino acids are chained together to form a protein 
via peptide bonds: 
 

 
 

that is, proteins are basically long chains that look 
like NCCNCCNCCNCC etc... To each N, a 
hydrogen H is attached. The N-H bond is called 
an amide bond. When exploring protein NMR, a 
major simplification can be had by understanding 
which of the 1H resonances we see come from the 
backbone of the protein.  
 Let's take as an example the simple protein 
ubiquitin. This is a small protein weighing about 
8.5 kDa, where 1 Dalton is the weight of about a 
single proton (so a water H2O molecule would 
weigh about 18 Da). It generally attaches to other 
proteins which starts a cascade that sends them to 
the cell's recycle bin. Although small, its 1D NMR 
spectrum is still extremely complicated: 
 

 
(Courtesy of Dr. Maayan Gal) 

 
The amide protons resonate in the 6-10 ppm range 
to the left of the water, constitute the protein’s 
backbone, and knowing their spatial positions 
determines the protein’s structure. A 2D HSQC 
spectrum of ubiquitin will look like this: 
 

 
 

(Courtesy of Dr. Maayan Gal) 
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Of course some cross-peaks belong to H-N pairs 
not in the backbone, and a good experimentalist 
will be able to weed those out either by 
examination or by further experiments. An HSQC 
experiment can be used to track how proton 
resonances appear/disappear in the spectrum, 
when, for example, a reactant is added and 
exchange occurs (we’ll talk more about that in the 
next chapter, too). We can also use HSQC to 
determine how structured the protein is. Below, 
1D 1H-NMR (left) and 2D 1H-15N (right) spectra 
are shown for ASC2 (top), PEA-15 (middle) and a 
protein from a macrophage (bottom): 
 

 
 
The dispersed signals of the hydrogens in the top 
and middle spectra indicate a folded protein, while 
the smaller dispersion in the bottom spectrum 
around 8.0-8.5 ppm is a strong indicator of a 
disordered protein in which the backbone is in a 
random coil configuration. The reason the 
chemical shifts bunch around 8-8.5 ppm is that 
disordered proteins perform fast conformational 
changes which affect their local chemical 
environments; the proton chemical shifts then 
tend to average up in the 6-10 ppm range and end 
up around 8 ppm. 

The HSQC experiment looks like this: 
 

 
 
It might look daunting at first but it’s really 
straightforward once you realize that it’s just: 
 
 
 
 
 
 
 
 
 
You start with hydrogen magnetization, which you 
transfer to the nitrogens, let evolve for a time t1 
and then transfer back to the hydrogens for greater 
efficient in detection, with decoupling on the 15N 
channel. The experiment is repeated many times 
for different values of t1. Note also the 180 pulse 
on the hydrogen channel during t1, to refocus the 
unwanted J-coupling evolution. 
 
3.2 NOESY 

 
In NOESY, mixing occurs due to NOE effect: 
magnetization is transferred between spins that are 
close in space (~ 5Å or less). Thus, we get powerful 
distance constraint on our molecule’s structure. 
The NOESY sequence is: 
 
 
 
 
 
 
The first pulse excites the spins (blue line) onto the 
xy-plane: 

  
 

INEPT 
 
INEPT 

1H

15N

180

t1

HSQC gives you the least complicated 
experiment that clearly resolves the various 
proton resonances and gives you a fingerprint 
of the protein. It is the “1D experiment of 
proteins”. 

1H

90 
t1

90 90
m 



Following the t1 period, the spins will all precess 
with their own frequency in the xy plane 
(neglecting J-coupling): 
 

  
 
The second 90 pulse will “store” the spins along 
the z-axis: 
 

  
 
For simplicity, let’s assume m>>T2. As a result, the 
magnetization in the xy-plane will die out before 
the next excitation pulse, leaving us only to worry 
about the longitudinal component: 
 

 
 
During the mixing period, these longitudinal spins 
will relax with a time constant T1, and also 
exchange magnetization with nearby spins with the 
NOE effect. After we excite, we measure the usual 
spectrum along the direct (t2) domain. 

As an example, consider ethyl-benzene: 
 

 
 

 
  7-7.45     ppm 2.63 1.22 

 
and its 2D NOESY spectrum: 
 

 
 
The cross-peaks between H1’ and H2’ are due to 
unfiltered COSY correlations that contaminate the 
NOESY spectrum. The “basic” NOESY 
experiment can be modified to filter out these 
cross-peaks, but we will not address this here. A 
weak through-space cross-peak however appears 
between H1’ and H2, as well as H2’ and H2.  
 
3.3 TOCSY 

 
COSY yields cross-peaks between two spins that 
are directly J-coupled. In a molecule A-B-C-D you 
would only get cross peaks between (A,B), (B,C) 
and (C,D). However, one can also think in terms 
of “J-coupled spin networks”: A,B,C and D are all 
part of the same “network” and are coupled, even 
though via multiple J-coupling “jumps”. TOCSY 
reveals spin networks and creates cross-peaks 
between all spins in a network, as shown in the 
example below of 3-heptanone (aka butyl-ethyl-
ketone): 
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As a standalone experiment it is not as useful, but 
in nD experiments it can be very powerful, as 
discussed below. 
 
4. nD NMR 

 
The concept of 2D NMR can be extended in a 
straightforward way. For example, a 3D NMR 
experiment would reveal cross-peaks (in 3D space) 
between spin triplets. A good example of that is a 
2D NOESY experiment in a protein. Here, a cross 
peak between two protons doesn’t tell us if the two 
protons have come from the same 15N backbone 
protein: 
 

 
 
The solution is to add a third heteronuclear 
dimension for resolving the 15N chemical shift: 
 

 
 
Now the third dimension lets us acquire a separate 
2D NOESY data set for each nitrogen in the 
backbone of the protein, making our distance 
constraint a lot more exact.  
 An example of a 3D experiment is the HNCO, 
in which magnetization is transfered between H to 
N to C, and then back to H (via N) for detection. 
The protein needs to be 13C and 15N labeled for 

this to work. The resonances we end up seeing are 
mostly from the backbone’s CO-N-HN elements: 
 

 
 
This is a good experiment for assigning the carbon 
chemical shifts in the C=O bonds in the backbone 
(i.e. we can use this to spread out the carbon 
chemical shifts). It also provides constaints on 
which carbon chemical shifts are connected to 
which nitrogen chemical shifts, providing us with 
constaints that help determine protein structure. 
 The general structure of a 3D NMR 
experiment is: 
 
 Excite-(t1)-(mixing #1)-(t2)-(mixing #2)-(t3) 
 
where t3 is now the direct time along which we 
acquire our spectrum, and t1 and t2 need each to be 
incremented in steps, each step requiring its own 
experiment: 
 Exp. 1:    t1=0   t2=0 
 Exp. 2:   t1=t   t2=0 
 Exp. 3:   t1=2t   t2=0 
 ... 
 Exp. N:   t1=(N-1)t  t2=0 
 Exp. N+1:   t1=0   t2=t 
 Exp. N+2:   t1=t   t2=t 
 Exp. N+3:   t1=2t   t2=t 
 ... 
 Exp. 2N:   t1=(N-1)t  t2=t 
 Exp. 2N+1: t1=0   t2=2t 
 ... 
 Exp N2:  t1=(N-1)t  t2=(N-1)t 
Here it was assumed the two dimensions share the 
same dwell time t and number of points N, but 
this does not have to be so. 
 

 
 

 



5. Practical Considerations 

 
5.1 Experimental Time 

 
The major drawback of 2D experiments is time! A 
2D experiment will often need as many points 
along the indirect domain as along the direct 
domain, a figure in the hundreds – say, 256. If 
each scan takes 1 seconds as we wait for the 
magnetization to return to thermal equilibrium, 
then a 2D experiment will take  
 

2561 sec ~ 4 mins 
 

Most 2D experiments employ some form of phase 
cycling. A simple HSQC will have a minimum of 
4 scans, bringing this up to: 
 

2564 sec ~ 17 mins 
 

In many experiments, however, the concentration 
of the protein you’re studying is very low, so you 
end up averaging for a long amount of time 
anyway. 

A 3D experiment will require ~ 256 points 
along the third time dimension, and will take 
 

2562564 sec ~ 3 days 
 

without even taking into account additional phase 
cycling for the third dimension! In reality these 
times can be decreased significantly by applying 
advanced sampling methodologies that allow us to 
acquire fewer points. Sometimes if we are 
interesting in a particular frequency along the 
indirect domain we can excite it selectively, 
effectively removing the requirement to sample the 
domain (e.g. if we know the offset of the particular 
15N in a 3D 15N-resolved NOESY experiment).  
However, time remains the most daunting 
challenge nD-NMR is faced with (although in 
practice most of the time of protein structure labs 
is spent trying to synthesize the protein, not 
measuring its properties with NMR!).  
 
5.2 t1-Noise 

 
As experimental times increase, instrument 
instabilities play an ever-increasing role. Tiny 
fluctuations in the main field, temperature and 

other factors will introduce artifacts into the 
spectrum. These will appear along the indirect 
“slow” domain, since the direct domain is read 
almost instantaneously (~ms per point), while the 
indirect domain is read a lot more slowly (~sec per 
point), making it much more susceptible to errors 
that accumulate over time. The classic appearance 
of such errors is in the form of streaks along the 
indirect domain, called t1-noise: 
 

 
 
A simple trick to removing t1 noise is to force our 
spectrum to be symmetrical, since if A and B are 
“connected”, we should get a cross peak at both 
(A, B) and (B, A). Thus, any non-symmetric 
component can be removed. This, however, leads 
to very unsatisfactory results in highly crowded 
spectra. On modern spectrometers this tends to be 
less of an issue it used to be in the past, although it 
still tends to appear to some degree in nD 
dimensional spectra. 
 
5.3 2D Lineshapes 

 
We’ve commented how distorted 2D lineshapes 
arise in COSY due to the appearance of dispersive 
and absorptive components along both the direct 
and indirect domains. This is a consequence of 
only acquiring for times t1,t2>0. Remember than 
the FT of 2/csi t t Te    is given by 
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Another issue is the appearance of a “mirror 
spectra” along the indirect domain, since the signal 
there is modulated as  
 

   1 11
1 2cos A Ai t i t

At e e    . 

 



This is illustrated in the following schematic 
spectrum, in which the grey points represent the 
“true” spectrum from a two-spin system (say, in 
COSY) and the black points represent the mirror 
images (the dashed lines represent the 1=0 and 
2=0 lines): 
 
 
 
 
 
 
 
 
 
 
In the above diagram the mirror images don’t 
interfere with other peaks, but in a real spectrum 
they very well could! To avoid this, we would have 
to (1) double our spectral width SW1 along the 
indirect domain, and (2) shift our spectrum such 
that all frequencies start at >0, and the mirror 
images fall outside the spectrum at <0: 
 
 
 
 
 
 
 
 
 
 
The main cost of this approach is doubling SW1, 
which means halving the dwell time t1 along the 
indirect domain, which means doubling the 
number of acquisitions. This is an unavoidable 
cost. This approach is called TPPI (Time 
Proportional Phase Increments). However, this 
approach does not deal with the distorted 
lineshapes. I also haven’t explained how to shift the 
spectrum along 1, and I’m not going to because 
I’m going to present a better alternative.  
 One suggestion for addressing the lineshape 
issue is to acquire a second dataset which is sine-
modulated along t1. If we had two datasets, with 
signals: 
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We are not writing the relaxation terms along both 
axes out of laziness, but they're there. We now take 
the first spectrum, perform a FT along t2, discard 
the imaginary part, perform a FT along t1 and 
discard the imaginary part again (this is equivalent 
to doing something called a cosine transform along 
both axes): 
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The same sort of dance is repeated with the second 
data set, yielding: 
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Combining the two experiments yields a purely 
absorptive peak: 
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This solves both problems - the mirror peaks and 
the non-absorptive peaks - in one shot (but still 
requires two data sets). But the cost is losing 
sensitivity: we've performed two sets of 
experiments and ended up with the same signal 
intensity as we got from a single experiment. In the 
same amount of time we could have repeated the 
original experiment. So not only do we have to 
spend twice the amount of time, but we also don't 
get any extra signal out of it.  
 How does one acquire a second sine-
modulated data set? This will depend on the 
sequence at hand. For a COSY spectrum, the 
phase of the second pulse is shifted by 90. 
Remember that just before the second pulse, our 
density matrix is: 
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Our calculation assumed the second pulse was a 
90x, leaving us with (after discarding the 
unobservable coherences): 
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Had we applied a 90y instead, we would have 
gotten: 
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Discarding the unobservable terms, we end up 
with: 
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Now we get a sin(t1) term along the indirect 
domain. Here is our sine modulated data set!  
 


