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1. Noise 

 
1.1 Characterizing Noise 
 
Noise is a random signal that gets added to all of 
our measurements. In 1D it looks like this: 
 

 
 

while in 2D it looks like the “snow” on your TV 
screen: 
 

 
 
Noise is unavoidable. It comes from resistive 
elements in our system: the electronics, and even 
the patient who has some finite resistance. 
Microscopically speaking, it is because of the 
thermal fluctuations of our system: in the 
electronics and of the spins in the patient. 

A noise signal, n(t), cannot be represented by 
an analytical function. To characterize noise, we 
need to speak in statistical terms. The two most 
important characteristics are the mean (also known 
as the average) and the variance of the noise.  They 
are denoted by <n> and <n2>, respectively, and are 
illustrated below: 

 
 
 
 
 

 
 
 

 
 

 
 
 
 In “well behaved” systems, the mean of the 

noise is 0; it sometimes gets added and sometimes 
gets subtracted from our signal at random. When 
<n> is non-zero the signal is said to be “biased”. 
Bias is easy to detect and remove, so we won’t 
focus on it here, and will assume the mean of our 
noise is 0.  

The variance of our noise is basically its “size”. 
When the variance of the noise becomes as large as 
the signal being measured, it becomes extremely 
hard to discern the two. Ideally, we would like to 
make the variance as small as possible. In practice, 
we often settle for making it “small enough”; that 
is, small enough with respect to the signal we’re 
looking at, so as to make the features that interest 
us discernable. This chapter will mostly be devoted 
to ways of making the noise’s variance “small 
enough”.  

 
1.2 Signal to Noise Ratio (SNR) 

 
As noted before, noise gets added to every signal 
we measure.  
 

 
 
 
 
 
 
 
 

 

 

 

The signal to noise ratio of the noisy signal is 
defined as: 
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If the signal changes considerably from point to 
point, so will the SNR. In other words, the SNR is 
a function of position (if we’re dealing with 
images) or time (if we’re dealing with time signals). 
For example, take a look at this function: 
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Now we add some random noise to it: 
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The SNR of the first few “steps” is much lower 
than the SNR of the last few “steps”.  
 A low SNR means the noise is “big” and will 
make it hard for us to determine the magnitude of 
the signal accurately, or even see the signal. A high 
SNR means the noise is “small”. 
 Measuring the SNR in practice can be tricky. 
The best thing to do is to find some region in your 
signal/image where you know there’s only noise, 
and to use it to estimate your noise’s variance. 
 

1.3 Adding Noise 

 
Suppose you have several noisy, independent 
random signals, with the same variance, and you 
add them together. What will be the variance of 
the sum? Let’s do a little experiment. Here are four 
random signals: 
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and here is their sum: 
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You can observe visually that the variance of each 
individual noisy signal is about 0.5, and the 
variance of the sum is about 1. So, while we’ve 
added 4 random signals, we didn’t increase the 
variance by a factor of 4. In fact, we’ve increased it 
only by a factor of 4 2 . This is a general fact 
about random signals: 
 
 Adding N random signals, each having the 
 same variance, X, will yield a random signal 
 with variance NX . 
 
I will not prove this fact in these notes. Intuitively, 
though, expecting an increase by a factor of N is 
unreasonable, because the noise sometimes adds 
constructively and sometimes destructively. This 
leads to a corollary: 
 
 Adding N measurements improves the SNR 
 by a factor of N . 
 
This is because the signal multiplies by N, the 
noise’s variance by N , and their ratio by N : 
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This is sometimes also called signal averaging. 

 
 
1.4 Noise in MRI 

 
A well known theorem from statistical mechanics 
(the so-called Nyquist theorem) states that, the 
variance in the voltage in an electronic system is 
given by 
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where Joules23
Kelvink 1.38 10   is Boltzmann’s 

constant, T is the temperature of the system (in 
Kelvin), R is the its resistance (in Ohms) and   
is the range of frequencies we’re observing. For a 
typical 1D MRI experiment, where we acquire in 
the presence of a gradient Gread, readG FOV   : 
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What is R? There are two sources of resistance in 
an MRI experiment: 

 The RF coils (Rc). 
 The patient (Rp). 

Both the coils and the patient are conductors, to a 
degree. When a magnetic field infringes upon a 
conductor it dissipates partially as heat. We are 
basically made out of water, which is a conductor. 
When a magnetic field tries to penetrate a 
conductor it creates “eddy currents” as it dissipates 
slowly. This is known as the skin effect.  The 
currents induced in the patient then induce 
currents in the coils that are picked up as noise. 
This is called patient loading. It turns out that for 
high fields (~1 Tesla and above in practice), 
patient loading is more important than the 
intrinsic hardware noise.  
 Calculating a patient’s resistance is difficult and 
usually not very constructive, so we will simply 
treat it as a constant. The only important fact is 
that it is (approximately) proportional to the 
square of the main field: 2

0B . So 
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where C is some constant, whose value will be 
assumed unknown. It can be calculated, but it will 
not serve our purpose (which is inferring how 
changing the experimental parameters will affect 
the SNR). To sum up: 
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Note I’ve added the “read” subscript, to emphasize 
that the range of frequencies we observe during 
acquisition is determined by the read gradient 
(and not, say, the slice selection or phase-encoding 
gradients). 
 
 
1.5 Fourier Transforming Noise 

 
The MRI signal is measured in k-space and 
consequently Fourier transformed to yield an 
image. The Fourier transform of noise is just ... 
more noise.   
 

      
 
Don’t forget our FT is discrete: it’s carried over a 
finite number of points. Because every point in the 
original (k-space) function affects every point in 
the Fourier (image) space, this means the noise at 
some point r in our image is added up from all 
points in k-space. If we have a total of N points in 
k-space, then the variance of the noise in image 
space will increase as N .  However, the discrete 
Fourier transform also has a factor of 1/N in its 
definition. Without going into the technical 
details, here is the bottom line that’s relevant for 
us: 
 
 Fourier transforming noise over a discrete  
 set having N points decreases its variance  

by N . 
 
This works in 2D and 3D as well. For a 2D grid 
having Nx points along the kx axis and Ny points 
along the ky axis, the noise’s variance will decrease 
by a factor x yN N . 

 
2. SNR In MRI 

 
2.1 Relative SNR 
 
Being able to calculate the absolute SNR might be 
interesting theoretically but quite formidable, 

because the noise will ultimately depend on the 
hardware, patient, and image. Rather, one looks at 
how the SNR changes as we change the imaging 
parameters: the resolution, voxel size, FOV, 
acquisition time, gradients, B0 (not really a 
parameter, but still interesting), etc.  This is 
precisely what this section is all about. 
 
2.2 Signal 
 
We’ve spent the last section talking about noise, 
but haven’t said anything about signals. We’ve 
remarked how the finite sampling in k-space (kmax) 
causes blurring in the signal, so the signal at point 
r is actually an average of the signal in a voxel 
around it: 
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where V is the size of the voxel. Remember the  
0 in front is there because of Faraday’s law (the 
signal is proportional to the time derivative of the 
magnetization, which is proportional to 0. See 
chapter 2, section 3.2). 
 
2.2 SNR In 3D Imaging 
 
Here is a 3D GRE sequence: 
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1. Collected Nx, Ny and Nz points along the 
kx, ky, kz axes. 

2. Have a voxel size V=xyz (note the 
voxel doesn’t have to be a cube, i.e., x 
isn’t necessarly equal to y or z, etc). 

3. Because we’re reading along the x-axis, 
we have a bandwidth of x xG FOV   . 

4. The readout time along x is Ts (see 
sequence above). 

5. We acquire the same image Nacq times 
(for signal averaging). 

Then 
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Using 
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we get 
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The SNR of a 3D scan (assuming read 
is along the x-axis) 

 
This is also valid for 3D spin-echo imaging. 
 
2.3 SNR In 2D Imaging 
 
2D imaging is just like 3D imaging, with one 
omission: you don’t sample along the 3rd 
dimension. Rather, you use a slice-selective 
gradient. Let’s take the slice-selective direction to 
be z, with x & y being the read & phase axes, 
respectively. This means that we need to omit Nz 
from the above expression, because we’re not 
Fourier-transforming over that direction. 
Furthermore, note that V, the voxel’s volume, 
has a thickness equal to the slice’s thickness along 
the z-axis (let’s call it naturally z): 
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Thus: 
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In terms of SNR, 3D imaging is superior to 2D 
imaging. Should we always use 3D? That depends. 
3D often requires more scans to achieve the same 
slice thickness, to avoid aliasing (you need smaller 
k’s to cover the entire FOV along the 3rd axis; in 
2D imaging, you don’t care about aliasing because 
you’re selectively exciting a slice and imaging all of 
it). Another problem is “ringing” artifacts having 
to do with the Fourier reconstruction. As a rule of 
thumb, for “thick” slices (a few mm and above), 
you should go for 2D imaging. For “thin” ones (~ 
mm and thinner), go for 3D.  

There are also other, phenomenon-specific 
reasons for going 2D; in MR “time-of-flight” 
angiography sequences, for example, slowly 
flowing blood yields better contrast in slice-
selective, rather than 3D, imaging. 
 
 
2.4 SNR Dependence on B0 
 
One thing the above equations don’t show is the 
dependence of the SNR on B0. Recall that, for 
high fields (which interest us), 
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while 
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(one 0 comes from M0, the other comes from the 
Faraday’s law: the signal we acquire is proportional 
to the time derivative of Mxy~ei0t.) Hence: 
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The SNR should increase linearly with the field. In 
practice, this is only approximate.  


