
Non-Equilibrium Continuum Physics TA session #8

TA: Michael Aldam 11.06.2019

Linear Elasticity III - Conformal mapping, Beam theory

This TA completes the 4 week series on linear elasticity. We believe that the problems
we’ll be solving today, together with the thermo-elastic problem of the previous TA, really
capture a lot of the tools used to tackle real problems, and also provide an insight into the
beauty and complexity of even such a simple linear theory. Next week we’ll be moving
forward to non-linear elasticity, so don’t get too comfortable.

1 Complex representation of scalar elasticity

We study a case of scalar elasticity, where u = uz(x, y)ez. The strains are

εyz =
1

2
(∂yuz + ∂zuy) =

1

2
∂yuz , (1)

εxz =
1

2
(∂xuz + ∂zux) =

1

2
∂xuz , (2)

εxx = εyy = εzz = εxy = 0 . (3)

We have seen in class that ∇2uz = 0, that is, uz is a harmonic function. This means that
we can write uz as

uz = 2<(φ) = φ(z) + φ(z), z = x+ iy , (4)

where φ is an analytic complex function. We will use the Cauchy-Riemman equations,
that tell us that

∂xφ = −i∂yφ = φ′ , (5)

∂xφ = ∂xφ = i∂yφ = φ
′
, (6)

and therefore the stresses are

σxz = µ∂xuz = µ
(
∂xφ+ ∂xφ

)
= µ

(
φ′ + φ

′
)

= 2µ<(φ′) ,

σyz = µ∂yuz = µ
(
∂yφ+ ∂yφ

)
= iµ

(
φ′ − φ′

)
= −2µ=(φ′) ,

⇒ 2µφ′ = σxz − iσyz ,

(7)

and all other components vanish.
If our domain contains a free boundary, given by a curve that is parameterized by

x(s), y(s) with s being arc-length parametrization, then the normal to the boundary is
given by n = (∂sy,−∂sx). On the boundary we thus have

0 = σzxnx + σzyny

= µ
[(
∂xφ+ ∂xφ

)
∂sy −

(
∂yφ+ ∂yφ

)
∂sx
]

= µ
[(
−i∂yφ+ i∂yφ

)
∂sy −

(
i∂xφ− i∂xφ

)
∂sx
]

= −iµ
[(

∂φ

∂y

∂y

∂s
+
∂φ

∂x

∂x

∂s

)
−
(
∂φ

∂y

∂y

∂s
+
∂φ

∂x

∂x

∂s

)]
= −µ

(
∂φ

∂s
− ∂φ

∂s

)
= 2µ

∂=(φ)

∂s
,

(8)
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so on the boundary =(φ) is constant. Since φ is only given up to an additive constant,
we can choose =(φ) = 0, or, in other words, φ = φ on the boundary. We see that solving
for the displacement field is equivalent to finding an analytic function whose imaginary
part is constant on the boundary.

2 Conformal mapping: Inglis crack
(Refernce: Marder & Fineberg, Physics Reports 1999)

Complex treatment of 2D elasticity is very useful because Laplace’s equation is confor-
mally invariant, so one can use conformal mappings to deform the region over which we
need to solve the equation into a more convenient geometry. Here we’ll see an appli-
cation of this method, which is called the Inglis (mode III) problem. In 1913 Charles
Inglis solved the general problem of an elliptic hole in an infinite plate subject to distant
loading. His solution turned out to be one of the cornerstones of fracture mechanics, and
was later used and generalized by the works of Griffith, Irwin, and others.

So let’s look at an infinite plane with an elliptic hole, subject to antiplane shear
σyz=σ∞ at y → ±∞. As working with ellipses is unpleasant, we want to find a conformal
mapping that maps the region outside the ellipse to a region outside a circle. Luckily,
such a mapping is well known, and is given by

z = f(ω) = R
(
ω +

ρ

ω

)
, (9)

ω = f−1(z) =
z

2R
+

√( z

2R

)2

− ρ . (10)

f maps the unit circle in the ω-plane to an ellipse with axes R(1 ± ρ) in the z-plane.
0≤ρ≤1 is a parameter that measures the ellipse’s eccentricity1 - when ρ = 0 the ellipse
is a circle, while for ρ = 1 it is a 1D crack of length 4R. The conformal mapping is shown
in Fig. (1).

The crux of the conformal mapping technique is that while in the real coordinates
the geometry is elliptic (and thus complicated), in the ω-plane the domain is a circle
(simple!), and therefore we want to reformulate the problem in terms of ω. That is, we
want to describe φ as a function of ω, by the mapping φ(ω) = φ(ω(z)).

On the hole’s boundary, which is the unit circle in ω-plane, we have

φ(ω) = φ(ω) = φ(ω) = φ(1/ω) , (11)

because on the unit circle ω = 1/ω. The property (11) can be analytically extended to
all the ω-plane.

What are the singularities of φ? Outside the hole, it must be completely regular,
except at infinity where it diverges as φ ∼ z. This is because Eq. (7) tells us that far
from the hole we have ∂zφ ∝ σ/µ, and therefore we conclude that

φ ≈ −iσ∞
µ
z ≈ −iσ∞

µ
Rω, for ω, z →∞ . (12)

1 Note that ρ isn’t the eccentricity as usually defined in geometry, which is e =
2
√
ρ

ρ+1 .
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Figure 1: The conformal mapping. Polar lines (top row) and the Cartesian lines (bottom
row) are shown. Note that, after the mapping, the lines remain perpendicular.

Using the analytical continuation of Eq. (11), we get that

φ(1/ω) ≈ −iσ∞
µ
Rω, for ω →∞ , (13)

or equivalently,

φ(ω) ≈ i
σ∞R

µω
, for ω → 0 , (14)

and there are no other singularities inside the unit circle. Having determined all the
possible singularities of φ, it is determined up to an additive constant. It must be

φ(ω) = i
σ∞R

µ

(
1

ω
− ω

)
. (15)

As discussed above, another way of finding φ is to find a function whose imaginary
part vanishes on the boundary on the hole, i.e. on the unit circle. The function i (1/ω − ω)
fits this requirement, therefore, it is exactly the function we’re looking for, up to a mul-
tiplicative factor which we have obtained from the external BC.

We can now calculate the displacement field in the “real” coordinate z by joining Eqs.
(15) and (10):

uz = 2<

{
−iσ∞R

µ

(
ζ +

√
ζ2 − ρ− 1

ζ +
√
ζ2 − ρ

)}
, where ζ ≡ z

2R
. (16)

What is the stress at the tip of the ellipse? We can differentiate uz(z) of Eq. (16)
explicitly, but this gives a nasty expression that is very difficult to understand. It is
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simpler to use the conformal property of the mapping:

∂zφ(z) = ∂zφ(ω(z)) = φ′(ω)
∂ω

∂z
,

φ′(ω) = −iσ∞R
µ

(
1 +

1

ω2

)
,

∂ω

∂z
=

(
∂z

∂w

)−1

=
1

f ′(ω)
,

f ′(ω) = R(1− ρ

ω2
) ,

φ′(z) =
−iσ∞R

µ

(
1 + 1

ω2

)
R(1− ρ

ω2 )
= −iσ∞

µ

ω(z)2 + 1

ω(z)2 − ρ
.

(17)

Note that in the last equation ω is a function of z.
Now let’s examine the solution. One thing we would like to know is where in space

is the stress maximal. Clearly, φ′ diverges for w = ±√ρ, but remember that ρ < 1 and
our domain is outside the unit circle, so this point is inside the hole. Some trivial algebra
shows that the φ′ is maximal for ω=±1, which are, not surprisingly, the closest points
outside the unit circle to ±ρ. When ω = ±1 we have z = ±R(1 + ρ) - these are the
horizontal tips of the ellipse. The stresses there are

σxz − iσyz = µφ′ = −σ∞
2i

1− ρ
⇒

σxz = 0 , σyz =
2σ∞
1− ρ

.
(18)

The case ρ = 0 gives σyz = 2σ∞, in accordance with what was done in class. In the
opposite extremity, ρ → 1, the stress field diverges (but the displacement doesn’t). We
see that the stress at the tip decreases with the radius there. An interesting consequence
of this is that in order to arrest a crack from propagating, one can drill a hole at its tip
(!). This will reduce the radius of curvature at the tip and weaken the singularity.

The limiting case ρ → 1 is of particular interest, as it describes a 1-dimensional cut
in the material. It is known in the literature as Mode III crack. The power with which
σzy diverges in the case ρ = 1 can be easily obtained. In this case we have

φ = −iRσ∞
µ

√
z2

R2
− 4 . (19)

Plugging in z = 2R (1 + δ) (where δ ∈ C) and keeping the leading order in δ gives

φ = −i2
√

2Rσ∞
µ

√
δ +O

(
δ3/2
)
⇒

σyz ∼
σ∞√
2
√
δ
.

(20)

The fact that near the crack tip the stress field diverges as the square root of the distance
from the crack tip, and that the displacement field is regular, is of general applicability,
and is true for static cracks in all loading configurations. The square-root divergence is
a consequence of the branch-cut at the crack surface.
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3 Euler-Bernoulli Beam Theory

We saw earlier in the course how we can reduce the theory of elasticity to 2D. This
significantly simplifies the equations and makes everything more tractable. If we have a
1D system, we can do even better. The theory of 1D elastic systems is elegantly dealt with
by the Euler-Bernoulli beam theory. It was a long standing problem that was attacked
by Galileo and Leonardo, and finally solved by Euler and Bernoulli around 1750. It is
considered a corner-stone in civil engineering (and was used in the structural design of
the Eiffel tower!).

The general purpose is to describe the deformation of a beam by a single curve γ(s)
in 3D (“elastic line”), and write an effective balance equation that takes care of all the
deformation details by using the curve’s curvature, torsion, and so on. There are two
ways to go about it. The first is to use symmetry considerations to write down a 1D
constitutive law. The problem is that we are left with unknown parameters, but the
physics is clear. The second option is to “integrate out” the details of the cross-section
deformation.

3.1 Short derivation

Here’s a way to derive the equation in a short way, following our philosophy of continuum
physics. For simplicity we will assume that the deformation is limited to a plane. This
is not necessary, but it greatly simplifies everything. Consider then a beam under a
small deflection. Choose x to be the direction of the rod’s axis, and let it deform in the
xz-plane, as shown in Fig. 2.

Figure 2: Description of a beam’s plane deflection.

The kinetic energy of the rod is given by

Ek =

∫
1

2
λ (ẇ)2 dx , (21)

where λ is the linear mass density. The potential energy is a bit more subtle. It clearly
cannot depend on w explicitly but only on its derivatives, because it should be invariant
under w → w + const. How about w′? For a free rod, still no, because we can rotate
a flat rod to have a non zero slope. On the other hand, if the rod is under tension T ,
the potential energy density is 1

2
Tw′(x)2, just as is the case for a stretched string2. Is

this term enough? Yes, if the resistance arises only from the tension, like in a string. If

2 As this is shown in undergrad level courses I won’t repeat it here, but you can find the derivation
here.
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we want to consider a solid rod, which has some stiffness resisting bending, we need to
consider the next derivative, w′′. We know that the energy should be invariant under
w → −w, so we conclude that the energy density, at least to lower order, should be
1
2
κ(w′′)2, where κ is some (possibly space-dependent) material parameter of dimensions

energy × length. As we expect this rigidity to be proportional to the elastic modulus of
the material, we may write κ=EI, where E is the Young’s modulus and I is a parameter
of dimensions length4. If there are external forces there’s an extra term to the potential
energy f extw, so the potential energy is

Ep ≈
[∫

1

2
Tw′(x)2 +

1

2
EI(x) (w′′)

2 − f extw
]
dx . (22)

We can then write the Lagrangian

L =

∫
(Ek − Ep)dx , (23)

and apply the Euler-Lagrange equations3 to it. The result is

λ
∂2w

∂t2
= − ∂2

∂x2

(
EI

∂2w

∂x2

)
+ T

∂2w

∂x2
+ f extz . (24)

Notice that we have no a priori way of knowing what I(x) will be, but the 1D physics
can be understood without knowing it. A systematic integration of the cross section will
give us the value of I, as will be shown in Subsec. 3.3.

3.2 Examples

The Euler-Bernoulli theory makes seemingly complicated problems very easy to solve.
You might not appreciate that yet because you didn’t yet solve many problems in elas-
ticity, but I will try to impress you by showing quite a few examples in quite a short
time.

3.2.1 Buckling

Buckling is the phenomenon when a beam that is subject to axial compression fails via
large lateral deflection (see Fig 3). Obviously, it has enormous implications for structural
engineering. Euler-Bernoulli equations give a good prediction for the onset of instability.

In this scenario the deformation is dominated by a constant compressive force P =
−T 4, and external forces vanish in the bulk. That is, we have f ext = 0, ẅ = 0, and
Eq. (54) reads

EIw′′′′ + Pw′′ =
∂2

∂x2
(EIw′′ + Pw) = 0 . (25)

3 Notice that we have a second derivative in the Lagrangian, so the E-L equations are a bit different
than the usual form. You can see details here.

4 I changed the notation from T to P because now the force is compressive, and that means T < 0.
Clearly, this is just for notational convenience, and has no real meaning.
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Figure 3: Buckling

We still need to specify the boundary conditions at the ends of the rod. For example,
let us take pinned boundary conditions, w = w′′ = 0 (described in Fig 3). Note that
Eq. (25) always admits the solution w = 0, which we already know - this is simple
uniaxaial compression. However, another possible solution to this equation is

w(x) = A sin

(
x

√
P

EI

)
, (26)

which exists only if half the wavelength the wavelength π
√
EI/P divides L. That is, if P

is smaller than Pc=π2EI/L2, the beam will not buckle and will deform by simple uniaxial
compression. When P surpasses this value, the uniaxial solution becomes unstable and
the beam will buckle with a finite amplitude. This is called Euler buckling, and is a
textbook engineering estimate for strength of columns. Experiments show that this is a
good estimate when the aspect ratio of the column is very large (> 10). The value of Pc
depends on the boundary conditions at the ends of the rod - you can do the exercise for
clamped edges yourselves.

Note also an interesting point: when P is negative, i.e. T is positive, the beam is
under tension rather than compression and buckled solutions do not exist. This is of
course very intuitive - you know that sticks do not buckle when you stretch them! - but
it’s nice to see how it comes out so cleanly from the algebra.

The loss of stability can also be seen by performing a formal stability analysis, as
discussed with Eran. Consider the Dynamical equation

λẅ + EIw′′′′ + Pw′′ = 0 , (27)

and consider the solution eikx+Λt. As the beam is finite, k takes on discrete values5

k=πn/L, leading to the characteristic equation

π4EIn4 + λL4Λ2 − π2L2n2P = 0⇒ Λ = ±π |n|
√
L2P − π2EIn2

√
λL2

. (28)

In general, a condition for stability is that for all values of k, < [Λ] ≤ 0. In our case,
Λ is either purely real or purely imaginary. This, combined with the fact that we have

5 We are assuming the physical solution is the imaginary part, so it agrees with the BC.
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positive and negative solutions, means that we are stable if for all values on n the term
in the

√
is negative, so

L2P − π2EIn2 < 0 ∀n ∈ Z⇒ P <
π2EI

L2
, (29)

just as discussed above.

3.2.2 Static deformation of beams

Let’s calculate the static deformation of a horizontal beam of length L that is clamped
at its edges and is subject to gravity (panel a in Fig. (4)).

(a) (b)

Figure 4: Two setups of beam deformation under gravity.

Just imagine the pain in the neck it would be to fully solve the 3D problem! Anyhow,
in this case we have

f ext(x) = −λgẑ , (30)

and ẅ = 0, T = 0. Eq. (54) thus reads

EI
∂4w(x)

∂x4
= −λg , w

(
±L

2

)
= w′

(
±L

2

)
= 0 . (31)

The solution of (31) is clearly a 4th-order polynomial in x, with the leading term − 1
4!
λg
EI
x4.

We also know that this polynomial has roots of order 2 at x = ±L/2. This leaves no
choice but the solution

w(x) = − 1

4!

λg

EI

[
x2 −

(
L

2

)2
]2

. (32)

In a similar way, let’s try to calculate the profile of a beam that is supported at its
middle (panel b in Fig. 4). This corresponds to the equation

EIw′′′′ = −λg + Lgλδ(x) , (33)

where δ term represents the point force exerted by the support. Eqs. (47) and (49) tell
us that w′′ is proportional to the internal torque and w′′′ to the force in the beam. At
the endpoints both of these vanish, so the boundary conditions are

w′′
(
±L

2

)
= w′′′

(
±L

2

)
= 0 . (34)

One can then trivially integrate Eq. (33) and plug in the boundary conditions to solve
for the coefficients of the resulting polynomial. The algebra is completely trivial but
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nonetheless annoying. One can also exploit the symmetry of the problem and solve the
problem only for one half of the beam, where the equation is

EIw′′′′ = −λg , w′(0) = w′′(L/2) = w′′′(L/2) = 0 . (35)

The solution, up to an additive constant, must be

w = − λg

4!EI
x2(x2 + Ax+B) . (36)

The constants A,B are easily obtained from the boundary conditions at x = L/2, the
result being

w = − gλ

24EI
x2

(
x2 − 2Lx+

3

2
L2

)
, (37)

and the deflection at x = L/2 equals ∆z = − λg
128EI

L4. Did you expect the deflection to
scale as L4? Note that we have an odd term in what is supposed to be an even function.
How do you explain this?

3.2.3 Waves

The dynamic Euler Bernoulli equation is basically a wave equation:

λ
∂2w

∂t2
= − ∂2

∂x2

(
EI

∂2w

∂x2

)
+ T

∂2w

∂x2
. (38)

Note that a standard wave equation for a stretched wire is recovered if we forget about
the EIw′′′′ term, that is, if we care only about tension and neglect the bending rigidity.
This is exactly the physical assumption that you made when you modeled a stretched
wire in your first-year physics course!

If EI is constant, we can guess a solution of the form w = Aeikx+iωt, and get the
dispersion relation

ω2 =
EI

λ
k4 +

T

λ
k2 . (39)

You see that for large k’s bending is dominant, and for small k’s tension takes over.

3.3 Detailed derivation

Here I try to distill a semi-heuristic derivation of the equations, which is a bit simplistic,
but all the physics is in there. For a detailed derivation, see Landau& Lifschitz #7 §18,
or Timoshenko & Godier chap. 12.

3.3.1 Force Balance

Let’s look at a small portion of the rod, as shown in Fig. 2. We will allow only small
deformations, i.e. small w and ∂xw. Let’s denote the total force on a cross-section by
F (`) and the total torque by M (`). They are given by

Fi =

∫
σixdS , (40)

Mi =

∫
Eijkσjx(~r − ~r0)kdS , (41)
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where ~r0 is the cross section’s center of mass, E is the Levi-Civita tensor, and dS is a
surface element perpendicular to `. Force balance on a beam element clearly implies

∂F

∂`
+ f ext = 0 , (42)

where f ext is the external force density on the rod. If the external forces do not have
an axial component, Eq. (42) reduces to F = const. The total torque on an element of
length d` is given by

M(x+ d`)−M(x)− F (x+ d`)× d~̀ .

Moment balance thus reads
∂M

∂`
= F × ~t , (43)

where ~t is a unit tangent vector which is equal, to first order, to ~t ≈ (1, 0, w′). Differen-
tiating Eq. (43) gives

∂2M

∂`2
=
∂F

∂`
× ~t+ F × ∂~t

∂`
. (44)

3.3.2 Relation between force and deformation

We have derived the basic macroscopic force-balance equation. Now, the goal is to relate
F and M to the details of the beam’s deformation. The length of a line element dL0 in
the axial direction, which is situated at height z relative to the mid-line (see Fig. 2), is
changed by the deformation to be dL = R−z

R
dL0, where R is the local radius of curvature.

We therefore have

εxx ≈
dL− dL0

dL0

= − z
R
, (45)

σxx ≈ −E
z

R
. (46)

If the rod is almost parallel to the x axis, and the deformation of the mid-line is given
by z = w(x), then we can approximate to first order in ∂xw that R−1 ≈ ∂xxw and ∂l ≈ ∂x.
The torque is therefore

My(x) =

∫
−zσxxdS = −

∫
E
z2

R
dS = −EI

R
≈ −EI ∂

2w

∂x2
, (47)

with the definition

I =

∫
z2dS , (48)

I is called the second moment of area. I depends on the geometry of the cross section in
a similar way to the moment of inertia. If the deformation is not restricted to a single
plane, I should be treated as a tensorial quantity, in much the same way the moment of
inertia shows its tensorial character when rotation is not confined to a plane. We will not
bother ourselves with these complications.

Also, the product EI is sometimes called bending rigidity, or bending stiffness. It has
dimensions of energy × length. If the cross-section of the body is not uniform, I may be
x dependent.
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The vertical force applied by one element on its neighbor is obtained by combining
Eqs. (43) and (47):

Fz(x) =
∂

∂x

(
EI

∂2w

∂x2

)
. (49)

3.3.3 Closing up

We now have all the necessary components. Say the beam is under axial tensile force T
(the stress is T/A where A is the cross-section area). The F is then given by

~F =

(
−T, 0, ∂

∂x

(
EI

∂2w

∂x2

))
. (50)

We assume also that f ext is in the z direction, i.e. has no axial component and is limited
to the xz plane that is under consideration. The tangent t̂ is given by

t̂ = (1, 0, w′) , (51)

the norm of which is 1 to linear order. Plugging the last two equations into (44) we get

M ′′ =
(
0, 0,−f ext

)
× (1, 0, w′) +

(
−T, 0, ∂

∂x
(EIw′′)

)
× (0, 0, w′′)

=
(
0, f ext + Tw′′, 0

)
.

(52)

In addition, we know that M has only a y component, and the left-hand-side of (44)
reads

M ′′ = − ∂2

∂x2

(
EI

∂2w

∂x2

)
. (53)

We therefore conclude that

− ∂2

∂x2

(
EI

∂2w

∂x2

)
+ T

∂2w

∂x2
+ f extz = 0 . (54)

Usually this equation is written with T = 0 and is then called the Euler-Bernoulli beam
equation.

Physically, we can interpret it (when T = 0) as ∂xFz = f extz . That is, the external
forces balance out exactly the forces caused by internal deformation. If we don’t assume
static equilibrium, we can add inertia:

λ
∂2w

∂t2
= − ∂2

∂x2

(
EI

∂2w

∂x2

)
+ T

∂2w

∂x2
+ f extz , (55)

where λ is the linear mass density. This is identical to Eq. (24). The only difference is
that now we know I from a more basic theory.

Note that this theory does not take into account the angular momentum balance
caused by rotation. This correction is included in an extension of the theory called the
Timoshenko Beam theory.

11



3.4 A short note about the analogy with splines

If you have a collection of data and you want to draw a line through all the points (“a
guide to the eye...”), but you don’t have a clue about what to do between data points,
what do you do? If you’re a good scientist then you simply don’t draw anything. But if
you’re not (and the first sign of that is that you’re using Excel), then you’ll ask Excel to
draw something and it will draw a spline.

What is a spline? A spline on a data set is a piecewise 3rd order polynomial that
passes through all the data points, is continuous, and has a continuous derivative. It
needs to be 3rd order because you need four parameters for each segment (between data
points) - two values and two derivatives.

Note that if you were to constrain an elastic beam to pass through your data points,
this is exactly what it would do!
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