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This course is intended to introduce graduate students to the essentials of

modern continuum physics, with a focus on non-equilibrium phenomena in solids

and within a thermodynamic perspective. Special focus is given to emergent

phenomena, where collective many-body systems reveal physical principles that

cannot be inferred from the microscopic physics of a small number of degrees of

freedom. General concepts and principles — such as conservation laws, symmetries,

material frame-indifference, dissipation inequalities and non-equilibrium behaviors,

spatiotemporal symmetry-breaking instabilities and configurational forces — are

emphasized. Examples cover a wide range of physical phenomena and applications

in diverse disciplines. The power of field theory as a mathematical structure

that does not make direct reference to microscopic length scales well below those

of the phenomenon of interest is highlighted. Some basic mathematical tools

and techniques are introduced. The course highlights essential ideas and basic

physical intuition. Together with courses on fluid mechanics and soft condensed mat-

ter, a broad background and understanding of continuum physics will be established.

The course will be given within a framework of 12-13 two-hour lectures and 12-13

two-hour tutorial sessions with a focus on problem-solving. No prior knowledge

of the subject is assumed. Basic knowledge of statistical thermodynamics, vector

calculus, partial differential equations, dynamical systems and complex analysis is

required.

These extended lecture notes (book draft) are self-contained and in principle no

other materials are needed.
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General Principles and Concepts

I. INTRODUCTION: BACKGROUND AND MOTIVATION

We start by considering the course’s title. By ‘non-equilibrium’ we refer to physical phenomena

that cannot be properly treated in the framework of equilibrium thermodynamics. That is, we

refer to phenomena that involve irreversible processes and dissipation. We will, however, make

an effort to adhere as much as possible to thermodynamic formulations (i.e,we will not focus on

purely dynamical systems) and also devote time to reversible phenomena (both because they are

often missing from current physics education and because they set the stage for discussing irre-

versible phenomena). By ‘continuum’ we refer to the scientific approach that treats macroscopic

phenomena without making explicit reference to the discreteness of matter or more generally to

microscopic length and time scales. This also implies that we focus on collective phenomena

that involve spatially extended systems and a macroscopic number of degrees of freedom (atoms,

molecules, grains etc.). We therefore treat materials as continua and use the language of field

theory to describe the phenomena of interest. A crucial concept in this context is that of emer-

gent phenomena, which refers to the fundamental idea that collective many-body systems reveal

laws/behavior that cannot be inferred from microscopic laws of physics and a small number of

degrees of freedom; that is, “More is Different”, adopting the famous title of Philip W. Anderson

(see Science 177, 393 (1972)).

‘Physics’ is surely a bit too broad here, yet it represents the idea that the tools and concepts

that will be discussed have a very broad range of applications in different branches of physics.

In addition, the topics considered can be discussed from various perspectives — such as applied

mathematics, engineering sciences and materials science —, but we will adopt a physicist perspec-

tive. To make ‘physics’ even more specific in the present context, we note that we will mainly focus

on thermal and mechanical phenomena, rather than electrical, magnetic or chemical phenomena.

By ‘thermal’ and ‘mechanical’ — or ‘thermomechanical’ we refer to material phenomena that

involve deformation, material and heat flow and failure, and where the driving forces are thermal

and mechanical in nature. ‘Classical continuum mechanics’ typically refers to ‘solid mechanics’

and ‘fluid mechanics’ from a classical (i.e,non-quantum) physics perspective. In this course we

will mainly focus on solids in the broadest sense of the word.

The word ‘solid’ is not easily defined. The most intricate aspect of such a definition is that it
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involves an observation timescale (at least if we do not consider single crystals). However, for the

purpose of this course, it will be sufficient to define a solid as a material that can support shear

forces over sufficiently long timescales. We therefore do not focus on Newtonian fluids and very

soft materials (though we certainly mention them), both of which are discussed in complementary

courses. Nevertheless, we will discuss solid phenomena such as visco-elasticity and nonlinear

elasticity.

Why should one study the subjects taught in this course? Well, there are many (good) reasons.

Let us mention a few of them. First, macroscopic physics deals with emergent phenomena that

cannot be understood from microscopic laws applied to a small number of constituent elements

(degrees of freedom). That is, macroscopic systems feature new qualitative coarse-grained prop-

erties and dynamics. This is a deep conceptual, to some extent even philosophical, issue that

should be systematically introduced. Second, many of the macroscopic phenomena around us are

both non-equilibrium and thermomechanical in nature. This course offers tools to understand

some of these phenomena. Third, continuum physics phenomena, and solid-related phenomena

in particular, are ubiquitous in many branches of science and therefore understanding them may

be very useful for researchers in a broad range of disciplines. Fourth, the conceptual and math-

ematical tools of non-equilibrium thermodynamics and field theory are extremely useful in many

branches of science, and thus constitute an important part of scientific education. Finally, some

of the issues discussed in this course are related to several outstanding unsolved problems. Hence,

the course will expose students to the beauty and depth of a fundamental and active field of

research. It would be impossible to even scratch the surface of the huge ongoing solid-related

activity. Let us mention a few examples: (i) It has been quite recently recognized that the

mechanics of living matter, cells in particular, plays a central role in biology. For example, it

has been discovered that the stiffness of the substrate on which stem cells grow can significantly

affect their differentiation. (ii) Biomimetics: researchers have realized that natural/biological

systems exhibit superior mechanical properties, and hence aim at mimicking the design principles

of these systems in man-made ones. For example, people have managed to build superior adhe-

sives based on Gecko’s motion on a wall. People have succeeded in synthesizing better composite

materials based on the structures observed in hard tissues, such as cortical bone and dentin. (iii)

The efforts to understand the physics of driven disordered systems (granular materials, molecular

glasses, colloidal suspensions etc.) are deeply related to one of the most outstanding questions in

non-equilibrium statistical physics. (iv) People have recently realized there are intimate relations
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between geometry and mechanics. For example, by controlling the intrinsic metric of materials,

macroscopic shapes can be explained and designed. (v) The rupture of materials and interfaces

has a growing influence on our understanding and control of the world around us. For example,

there are exciting developments in understanding Earthquakes, the failure of interfaces between

two tectonic plates in the Earth’s crust (vi) Developments in understanding the plastic defor-

mation of amorphous and crystalline solids offer deep new insights about strongly nonlinear and

dissipative systems, and open the way to new and exciting applications.

Unfortunately, due to time limitations, the course cannot follow a historical perspective which

highlights the evolution of the developed ideas. These may provide very important scientific,

sociological and psychological insights, especially for research students and young researchers.

Whenever possible, historical notes will be made.
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II. MATHEMATICAL PRELIMINARIES: TENSOR ANALYSIS

The fundamental assumption of continuum physics is that under a wide range of conditions

we can treat materials as continuous in space and time, disregarding their discrete structure and

time-evolution at microscopic length and time scales, respectively. Therefore, we can ascribe

to each point in space-time physical properties that can be described by continuous functions,

i.e,fields. This implies that derivatives are well defined and hence that we can use the powerful

tools of differential calculus. In order to understand what kind of continuous functions, hereafter

termed fields, should be used, we should bear in mind that physical laws must be independent

of the position and orientation of an observer, and the time of observation (note that we restrict

ourselves to classical physics, excluding the theory of relativity). We are concerned here, however,

with the mathematical objects that allow us to formulate this and related principles. Most

generally, we are interested in the language that naturally allows a mathematical formulation of

continuum physical laws. The basic ingredients in this language are tensor fields, which are the

major focus on the opening part of the course.

Tensor fields are characterized, among other things, by their order (sometimes also termed

rank). Zero-order tensors are scalars, for example the temperature field T (x, t) within a body,

where x is a 3-dimensional Euclidean space and t is time. First-order tensors are vectors, for

example the velocity field v(x, t) of a fluid. Why do we need to consider objects that are

higher-order than vectors? The best way to answer this question is through an example.

Consider a material areal element and the force acting on it (if the material areal element is a

surface element, then the force is applied externally and if the material areal element is inside

the bulk material, then the force is exerted by neighboring material). The point is that both the

areal element and the force acting on it are basically vectors, i.e,they both have an orientation

(the orientation of the areal element is usually quantified by the direction of the normal to it).

Therefore, in order to characterize this physical situation one should say that a force in the ith

direction is acting on a material areal element whose normal points in the jth direction. The

resulting object is defined using two vectors, but it is not a vector itself. We need a higher-order

tensor to describe it.

Our main interest here is second-order tensors, which play a major role in continuum physics.

A second-order tensor A can be viewed as a linear operator or a linear function that maps a

vector, say u, to a vector, say v,

v = Au . (2.1)
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Linearity implies that

A(αu+ v) = αAu+Av , (2.2)

for every scalar α and vectors u and v. For brevity, second-order tensors will be usually referred

to simply as tensors (zero-order tensors will be termed scalars, first-order tensors will be termed

vectors and higher than second-order tensors will be explicitly referred to according to their order).

The most natural way to define (or express) tensors in terms of vectors is through the dyadic

(or tensor) product of orthonormal base vectors {ei}

A = Aij ei ⊗ ej , (2.3)

where Einstein summation convention is adopted, {Aij} is a set of numbers and {i, j} run over

space dimensions. For those who feel more comfortable with Dirac’s Bra-Ket notation, the dyadic

product above can be also written as A = Aij |ei><ej|. In general, the dyad u⊗ v is defined as

u⊗ v = uvT , (2.4)

where vectors are assumed to be represented by column vectors and the superscript T denotes

the transpose operation. If {ei} is an orthonormal set of Cartesian base vectors, we have (for

example)

e2 ⊗ e3 = e2e
T
3 =


0

1

0

(
0 0 1

)
=


0 0 0

0 0 1

0 0 0

 . (2.5)

Therefore, second-order tensors can be directly represented by matrices. Thus, tensor algebra

essentially reduces to matrix algebra. It is useful to note that for every three vectors u, v and w

we have

u⊗ vw = (v ·w)u . (2.6)

where · is the usual inner (dot) product of vectors. In the Bra-Ket notation the above simply

reads |u><v|w>. This immediately allows us to rewrite Eq. (2.1) as

viei = v = Au = (Aijei ⊗ ej)(ukek) = Aijuk(ej · ek) ei = Aijujei , (2.7)

which shows that the matrix representation preserves known properties of matrix algebra (vi =

Aijuj). The matrix representation allows us to define additional tensorial operators. For example,
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we can define

tr(A) ≡ ek · (Aijei ⊗ ej) ek = Aij <ek|ei><ej|ek>= Aijδikδjk = Akk , (2.8)

AT = (Aijei ⊗ ej)
T = Aijej ⊗ ei = Ajiei ⊗ ej , (2.9)

AB = (Aijei ⊗ ej)(Bklek ⊗ el) = AijBklδjkei ⊗ el = AijBjlei ⊗ el . (2.10)

We can define the double dot product (or the contraction) of two tensors as

A : B = (Aijei ⊗ ej) : (Bklek ⊗ el) ≡ AijBkl(ei · ek)(ej · el)

= AijBklδikδjl = AijBij = tr(ABT ) . (2.11)

This is a natural way of generating a scalar out of two tensors, which is the tensorial general-

ization of the usual vectorial dot product (hence the name). It plays an important role in the

thermodynamics of deforming bodies. Furthermore, it allows us to project a tensor on a base

dyad

(ei ⊗ ej) :A=(ei ⊗ ej) : (Aklek ⊗ el)=Akl(ei · ek)(ej · el)=Aklδikδjl = Aij , (2.12)

i.e,to extract a component of a tensor.

We can now define the identity tensor as

I = δij(ei ⊗ ej) , (2.13)

which immediately allows to define the inverse of a tensor (when it exists) following

AA−1 = I . (2.14)

The existence of the inverse is guaranteed when detA ̸= 0, where the determinant of a tensor

is defined using the determinant of its matrix representation. Note also that one can decompose

any second-order tensor to a sum of symmetric and skew-symmetric (antisymmetric) parts as

A = Asym +Askew =
1

2
(A+AT ) +

1

2
(A−AT ) . (2.15)

Occasionally, physical constraints render the tensors of interest symmetric, i.e,A=AT . In this

case, we can diagonalize the tensor by formulating the eigenvalue problem

Aai = λiai , (2.16)

where {λi} and {ai} are the eigenvalues (principal values) and the orthonormal eigenvectors

(principal directions), respectively. This problem is analogous to finding the roots of

det(A− λI) = −λ3 + λ2I1(A)− λI2(A) + I3(A) = 0 , (2.17)
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where the principal invariants {Ii(A)} are given by

I1(A) = tr(A), I2(A) =
1

2

[
tr2(A)− tr(A2)

]
, I3(A) = det(A) . (2.18)

Note that the symmetry of A ensures that the eigenvalues are real and that an orthonormal set

of eigenvectors can be constructed. Therefore, we can represent any symmetric tensor as

A = λi ai ⊗ ai , (2.19)

assuming no degeneracy. This is called the spectral decomposition of a symmetric tensor A. It is

very useful because it represents a tensor by 3 real numbers and 3 unit vectors. It also allows us

to define functions of tensors. For example, for positive definite tensors (λi > 0), we can define

ln(A) = ln(λi)ai ⊗ ai , (2.20)
√
A =

√
λi ai ⊗ ai . (2.21)

In general, one can define functions of tensors that are themselves scalars, vectors or tensors.

Consider, for example, a scalar function of a tensor f(A) (e.g., the energy density of a deforming

solid). Consequently, we need to consider tensor calculus. For example, the derivative of f(A)

with respect to A is a tensor which takes the form

∂f

∂A
=

∂f

∂Aij

ei ⊗ ej . (2.22)

The differential of f(A) is a scalar and reads

df =
∂f

∂A
: dA =

∂f

∂Aij

dAij . (2.23)

Consider then a tensorial function of a tensor F (A), which is encountered quite regularly in

continuum physics. Its derivative D is defined as

D=
∂F

∂A
=

∂F

∂Aij

⊗ ei ⊗ ej =
∂Fkl

∂Aij

ek ⊗ el ⊗ ei ⊗ ej ,

=⇒ Dklij =
∂Fkl

∂Aij

, (2.24)

which is a fourth-order tensor.

We will now define some differential operators that either produce tensors or act on tensors.

First, consider a vector field v(x) and define its gradient as

∇v =
∂v

∂x
=

∂v

∂xj

⊗ ej =
∂vi
∂xj

ei ⊗ ej , (2.25)
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which is a second-order tensor. Then, consider the divergence of a tensor

∇·A =
∂A

∂xk

ek =
∂Aij

∂xk

ei ⊗ ejek =
∂Aij

∂xj

ei , (2.26)

which is a vector. The last two objects are extensively used in continuum physics.

The tensorial version of Gauss’ theorem for relating volume integrals to surface integrals reads∫
V

∇·A dV =

∮
S

An dS , (2.27)

where V and S are the volume and the enclosing surface, respectively, and n is the outward unit

normal to the surface. Obviously, the theorem is satisfied for scalars and vectors as well. It would

be useful to recall also Stokes’ theorem for relating line integrals to surface integrals∫
S

(∇×v) · ndS =

∮
l

v ·dl , (2.28)

where S and l are the surface and its bounding curve, respectively, and n is the outward unit

normal to the surface.

Finally, we should ask ourselves how do tensors transform under a coordinate transformation

(from x to x′)

x′ = Qx , (2.29)

where Q is a proper (detQ=1) orthogonal transformation matrix QT =Q−1 (note that it is not

a tensor). In order to understand the transformation properties of the orthonormal base vectors

{ei} we first note that

x′ = Qx =⇒ x = QTx′ =⇒ xi = QT
ijx

′
j = Qjix

′
j . (2.30)

A vector is an object that retains its (geometric) identity under a coordinate transformation. For

example, a general position vector r can be represented using two different base vectors sets {ei}

and {e′
i} as

r = xiei = x′
je

′
j . (2.31)

Using Eq. (2.30) we obtain

xiei = (Qjix
′
j)ei = x′

j(Qjiei) = x′
je

′
j , (2.32)

which implies

e′
i = Qijej . (2.33)
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In order to derive the transformation law for tensors representation we first note that tensors, like

vectors, are objects that retain their (geometric) identity under a coordinate transformation and

therefore we must have

A = Aijei ⊗ ej = A′
ije

′
i ⊗ e′

j . (2.34)

Using Eq. (2.33) we obtain

A = A′
ije

′
i ⊗ e′

j = A′
ijQikek ⊗Qjlel = (A′

ijQikQjl)ek ⊗ el . (2.35)

which implies

Akl = A′
ijQikQjl . (2.36)

This is the transformation law for the components of a tensor and in many textbooks it serves as

a definition of a tensor. Eq. (2.36) can be written in terms of matrix representation as

[A] = QT [A]′Q =⇒ [A]′ = Q[A]QT , (2.37)

where [·] is the matrix representation of a tensor with respect to a set of base vectors. Though

we did not make the explicit distinction between a tensor and its matrix representation earlier, it

is important in the present context; [A] and [A]′ are different representations of the same object,

the tensor A, but not different tensors. An isotropic tensor is a tensor whose representation is

independent of the coordinate system, i.e.,

Aij = A′
ij or [A] = [A]′ . (2.38)

We note in passing that in the present context we do not distinguish between covariant and

contravariant tensors, a distinction that is relevant for non-Cartesian tensors (a Cartesian tensor

is a tensor in three-dimensional Euclidean space for which a coordinate transformation x′=Qx

satisfies ∂x′
i/∂xj=∂xj/∂x

′
i).
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III. MOTION, DEFORMATION AND STRESS

Solid materials are deformed under applied driving forces. In order to describe the deformation

of solids, consider a body at a given time and assign to each material point a position vector X

with respect to some fixed coordinate system (i.e., we already use the continuum assumption).

For simplicity, set t=0. At t>0 the body experiences some external forcing that deforms it to a

state in which each material point is described by a position vector x. We then define the motion

as the following mapping

x = x(X, t) = φ(X, t) . (3.1)

The vector function φ(·) maps each point in the initial state X to a point in the current state x

at t > 0. This immediately implies that X = φ(X, t = 0), i.e,at time t = 0 φ(·) is the identity

vector. The initial state X is usually termed the reference/undeformed configuration and the

current state is termed the deformed configuration. We assume that φ(·) is a one-to-one mapping,

i.e,that it can be inverted

X = φ−1(x, t) . (3.2)

The inverse mapping φ−1(·) tells us where a material point, that is currently at x, was at time

t = 0. It is important to note that we can describe physical quantities either by X, which is called

the material (Lagrangian) description, or by x, which is called the spatial (Eulerian) description.

The choice between these descriptions is a matter of convenience. For a given physical phenomenon

under consideration, one description may be more convenient than the other. We will discuss this

issue later in the course.

A quantity of fundamental importance is the displacement field defined as

U(X, t) = x(X, t)−X . (3.3)

This material description can be converted into a spatial description following

U(X, t) = x(X, t)−X = x−X(x, t) = U(φ−1(x, t), t) = u(x, t) . (3.4)

Note that U and u are different functions of different arguments, though their values are the

same. The velocity and acceleration fields are defined as

V (X, t) = ∂tU(X, t) = v(x, t) and A(X, t) = ∂ttU (X, t) = a(x, t) . (3.5)

The corresponding spatial descriptions can be easily obtained using φ(·).
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The material time derivative D/Dt, which we abbreviate by Dt, is defined as the partial

derivative with respect to time, keeping the Lagrangian coordinate X fixed. For a material field

F(X, t) (scalar or vector. For a tensor, see the discussion of objectivity/frame-indifference later

in the course) we have

DtF(X, t) ≡ (∂tF(X, t))X , (3.6)

where we stress that X is held fixed here. This derivative represents the time rate of change of

a field F , as seen by an observer moving with a particle that was at X at time t = 0. We can

then ask ourselves what happens when we operate with the material derivative on an Eulerian

field f(x, t). Using the definition in Eq. (3.6), we obtain

Df(x, t)

Dt
=

(
∂f(φ(X, t), t)

∂t

)
X=φ−1(x,t)

=

(
∂f(x, t)

∂t

)
x

+

(
∂f(x, t)

∂x

)
t

(
∂φ(X, t)

∂t

)
X=φ−1(x,t)

. (3.7)

The last term in the above expression is the velocity field, cf. Eq. (3.5), implying that

D(· · ·)
Dt

=
∂(· · ·)
∂t

+ vk
∂(· · ·)
∂xk

. (3.8)

The second contribution on the right hand side of the above equation is termed the convective rate

of change and hence the material derivative of an Eulerian field is sometimes called the convective

derivative. Finally, note that since the material derivative of an Eulerian field is just the total

time derivative of the Eulerian field, viewing x(t) as a function of time, it is sometimes denoted

by a superimposed dot, i.e,ḟ(x, t) = Dtf(x, t). If f(x, t) is the velocity field we obtain

Dtv(x, t) = ∂tv(x, t) + v(x, t) · ∇xv(x, t) . (3.9)

The latter nonlinearity is very important in fluid mechanics, though it appears also in the context

of elasto-plasticity. Note that we distinguish between the spatial gradient ∇x and the material

gradient ∇X , which are different differential operators. Fluid flows are usually described using an

Eulerian description. Nevertheless, Lagrangian formulations can be revealing, see for example the

Lagrangian turbulence simulation at: http://www.youtube.com/watch?v=LHIIn72dRPk

In order to discuss the physics of deformation we need to know how material line elements

change their length and orientation. Therefore, we define the deformation gradient tensor F

that maps an infinitesimal line element in the reference configuration dX to an infinitesimal line

element in the deformed configuration

dx = F (X, t)dX . (3.10)

http://www.youtube.com/watch?v=LHIIn72dRPk
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Hence,

F (X, t) = ∇Xφ(X, t) . (3.11)

As will become apparent later in the course, F is not a proper tensor, but rather a two-point

tensor, i.e,a tensor that relates two configurations. We can further define the displacement gradient

tensor as

H(X, t) = ∇XU(X, t) , (3.12)

which implies

F = I +H . (3.13)

Here and elsewhere I is the identity tensor. The deformation gradient tensor F describes both the

rotation and the stretching of a material line element, which also implies that it is not symmetric.

From a basic physics perspective, it is clear that interaction potentials are sensitive to the relative

distance between particles, but not to local rigid rotations. Consequently, we are interested in

separating rotations from stretching, where the latter quantifies the change in length of material

elements. We can, therefore, decompose F as

F = RU = V R , (3.14)

where R is a proper rotation tensor, detR = +1, and U (should not be confused with the

displacement field) and V are the right and left stretch tensors, respectively (which are of course

symmetric). This is the so-called polar decomposition. Note that

RRT = I, U = UT , V = V T , V = RURT . (3.15)

Therefore, U and V have the same eigenvalues (principal stretches), but different eigenvectors

(principal directions). Hence, we can write the spectral decomposition as

V = λi Ni ⊗Ni, (3.16)

U = λi Mi ⊗Mi, (3.17)

with

λi > 0, Ni ⊗Ni = RMi ⊗RMi . (3.18)
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