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This course is intended to introduce graduate students to the essentials of
modern continuum physics, with a focus on non-equilibrium phenomena in solids
and within a thermodynamic perspective. Special focus is given to emergent
phenomena, where collective many-body systems reveal physical principles that
cannot be inferred from the microscopic physics of a small number of degrees of
freedom. General concepts and principles — such as conservation laws, symmetries,
material frame-indifference, dissipation inequalities and non-equilibrium behaviors,
spatiotemporal symmetry-breaking instabilities and configurational forces — are
emphasized. Examples cover a wide range of physical phenomena and applications
in diverse disciplines. The power of field theory as a mathematical structure
that does not make direct reference to microscopic length scales well below those
of the phenomenon of interest is highlighted. Some basic mathematical tools
and techniques are introduced. The course highlights essential ideas and basic
physical intuition. Together with courses on fluid mechanics and soft condensed mat-

ter, a broad background and understanding of continuum physics will be established.

The course will be given within a framework of 12-13 two-hour lectures and 12-13
two-hour tutorial sessions with a focus on problem-solving. No prior knowledge
of the subject is assumed. Basic knowledge of statistical thermodynamics, vector
calculus, partial differential equations, dynamical systems and complex analysis is

required.

These extended lecture notes (book draft) are self-contained and in principle no

other materials are needed.
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General Principles and Concepts

I. INTRODUCTION: BACKGROUND AND MOTIVATION

We start by considering the course’s title. By ‘non-equilibrium’ we refer to physical phenomena
that cannot be properly treated in the framework of equilibrium thermodynamics. That is, we
refer to phenomena that involve irreversible processes and dissipation. We will, however, make
an effort to adhere as much as possible to thermodynamic formulations (i.e,we will not focus on
purely dynamical systems) and also devote time to reversible phenomena (both because they are
often missing from current physics education and because they set the stage for discussing irre-
versible phenomena). By ‘continuum’ we refer to the scientific approach that treats macroscopic
phenomena without making explicit reference to the discreteness of matter or more generally to
microscopic length and time scales. This also implies that we focus on collective phenomena
that involve spatially extended systems and a macroscopic number of degrees of freedom (atoms,
molecules, grains etc.). We therefore treat materials as continua and use the language of field
theory to describe the phenomena of interest. A crucial concept in this context is that of emer-
gent phenomena, which refers to the fundamental idea that collective many-body systems reveal
laws/behavior that cannot be inferred from microscopic laws of physics and a small number of
degrees of freedom; that is, “More is Different”, adopting the famous title of Philip W. Anderson
(see Science 177, 393 (1972)).

‘Physics’ is surely a bit too broad here, yet it represents the idea that the tools and concepts
that will be discussed have a very broad range of applications in different branches of physics.
In addition, the topics considered can be discussed from various perspectives — such as applied
mathematics, engineering sciences and materials science —, but we will adopt a physicist perspec-
tive. To make ‘physics’ even more specific in the present context, we note that we will mainly focus
on thermal and mechanical phenomena, rather than electrical, magnetic or chemical phenomena.
By ‘thermal’ and ‘mechanical’ — or ‘thermomechanical’ we refer to material phenomena that
involve deformation, material and heat flow and failure, and where the driving forces are thermal
and mechanical in nature. ‘Classical continuum mechanics’ typically refers to ‘solid mechanics’
and ‘fluid mechanics’ from a classical (i.e,non-quantum) physics perspective. In this course we
will mainly focus on solids in the broadest sense of the word.

The word ‘solid’ is not easily defined. The most intricate aspect of such a definition is that it



involves an observation timescale (at least if we do not consider single crystals). However, for the
purpose of this course, it will be sufficient to define a solid as a material that can support shear
forces over sufficiently long timescales. We therefore do not focus on Newtonian fluids and very
soft materials (though we certainly mention them), both of which are discussed in complementary
courses. Nevertheless, we will discuss solid phenomena such as visco-elasticity and nonlinear

elasticity.

Why should one study the subjects taught in this course? Well, there are many (good) reasons.
Let us mention a few of them. First, macroscopic physics deals with emergent phenomena that
cannot be understood from microscopic laws applied to a small number of constituent elements
(degrees of freedom). That is, macroscopic systems feature new qualitative coarse-grained prop-
erties and dynamics. This is a deep conceptual, to some extent even philosophical, issue that
should be systematically introduced. Second, many of the macroscopic phenomena around us are
both non-equilibrium and thermomechanical in nature. This course offers tools to understand
some of these phenomena. Third, continuum physics phenomena, and solid-related phenomena
in particular, are ubiquitous in many branches of science and therefore understanding them may
be very useful for researchers in a broad range of disciplines. Fourth, the conceptual and math-
ematical tools of non-equilibrium thermodynamics and field theory are extremely useful in many
branches of science, and thus constitute an important part of scientific education. Finally, some
of the issues discussed in this course are related to several outstanding unsolved problems. Hence,
the course will expose students to the beauty and depth of a fundamental and active field of
research. It would be impossible to even scratch the surface of the huge ongoing solid-related
activity. Let us mention a few examples: (i) It has been quite recently recognized that the
mechanics of living matter, cells in particular, plays a central role in biology. For example, it
has been discovered that the stiffness of the substrate on which stem cells grow can significantly
affect their differentiation. (ii) Biomimetics: researchers have realized that natural/biological
systems exhibit superior mechanical properties, and hence aim at mimicking the design principles
of these systems in man-made ones. For example, people have managed to build superior adhe-
sives based on Gecko’s motion on a wall. People have succeeded in synthesizing better composite
materials based on the structures observed in hard tissues, such as cortical bone and dentin. (iii)
The efforts to understand the physics of driven disordered systems (granular materials, molecular
glasses, colloidal suspensions etc.) are deeply related to one of the most outstanding questions in

non-equilibrium statistical physics. (iv) People have recently realized there are intimate relations



between geometry and mechanics. For example, by controlling the intrinsic metric of materials,
macroscopic shapes can be explained and designed. (v) The rupture of materials and interfaces
has a growing influence on our understanding and control of the world around us. For example,
there are exciting developments in understanding Earthquakes, the failure of interfaces between
two tectonic plates in the Earth’s crust (vi) Developments in understanding the plastic defor-
mation of amorphous and crystalline solids offer deep new insights about strongly nonlinear and
dissipative systems, and open the way to new and exciting applications.

Unfortunately, due to time limitations, the course cannot follow a historical perspective which
highlights the evolution of the developed ideas. These may provide very important scientific,
sociological and psychological insights, especially for research students and young researchers.

Whenever possible, historical notes will be made.



II. MATHEMATICAL PRELIMINARIES: TENSOR ANALYSIS

The fundamental assumption of continuum physics is that under a wide range of conditions
we can treat materials as continuous in space and time, disregarding their discrete structure and
time-evolution at microscopic length and time scales, respectively. Therefore, we can ascribe
to each point in space-time physical properties that can be described by continuous functions,
i.e,fields. This implies that derivatives are well defined and hence that we can use the powerful
tools of differential calculus. In order to understand what kind of continuous functions, hereafter
termed fields, should be used, we should bear in mind that physical laws must be independent
of the position and orientation of an observer, and the time of observation (note that we restrict
ourselves to classical physics, excluding the theory of relativity). We are concerned here, however,
with the mathematical objects that allow us to formulate this and related principles. Most
generally, we are interested in the language that naturally allows a mathematical formulation of
continuum physical laws. The basic ingredients in this language are tensor fields, which are the
major focus on the opening part of the course.

Tensor fields are characterized, among other things, by their order (sometimes also termed
rank). Zero-order tensors are scalars, for example the temperature field T'(x,t) within a body,
where x is a 3-dimensional Euclidean space and t is time. First-order tensors are wectors, for
example the velocity field v(x,t) of a fluid. Why do we need to consider objects that are
higher-order than vectors? The best way to answer this question is through an example.
Consider a material areal element and the force acting on it (if the material areal element is a
surface element, then the force is applied externally and if the material areal element is inside
the bulk material, then the force is exerted by neighboring material). The point is that both the
areal element and the force acting on it are basically vectors, i.e,they both have an orientation
(the orientation of the areal element is usually quantified by the direction of the normal to it).
Therefore, in order to characterize this physical situation one should say that a force in the ith
direction is acting on a material areal element whose normal points in the jth direction. The
resulting object is defined using two vectors, but it is not a vector itself. We need a higher-order
tensor to describe it.

Our main interest here is second-order tensors, which play a major role in continuum physics.
A second-order tensor A can be viewed as a linear operator or a linear function that maps a

vector, say u, to a vector, say v,

v=Au. (2.1)



Linearity implies that
A(au +v) = cAu + Av (2.2)

for every scalar v and vectors w and v. For brevity, second-order tensors will be usually referred
to simply as tensors (zero-order tensors will be termed scalars, first-order tensors will be termed
vectors and higher than second-order tensors will be explicitly referred to according to their order).

The most natural way to define (or express) tensors in terms of vectors is through the dyadic

(or tensor) product of orthonormal base vectors {e;}
A= Aij e X €;, (23)

where Einstein summation convention is adopted, {A4;;} is a set of numbers and {7, j} run over
space dimensions. For those who feel more comfortable with Dirac’s Bra-Ket notation, the dyadic

product above can be also written as A = A;; |e; ><e;|. In general, the dyad u ® v is defined as
uRv=uv’ (2.4)

where vectors are assumed to be represented by column vectors and the superscript 1" denotes

the transpose operation. If {e;} is an orthonormal set of Cartesian base vectors, we have (for

example)
0 000
e;®es =exe; = | 1 (O 0 1> =[(001] . (2.5)
0 000

Therefore, second-order tensors can be directly represented by matrices. Thus, tensor algebra
essentially reduces to matrix algebra. It is useful to note that for every three vectors uw, v and w

we have
uRuw = (vw)u . (2.6)

where - is the usual inner (dot) product of vectors. In the Bra-Ket notation the above simply

reads |u><wv|w>. This immediately allows us to rewrite Eq. (2.1) as
Vi€ — UV = A’LL = (Al-jei X ej)(ukek) = Aijuk(ej . ek) e, = Aijujei s (27)

which shows that the matrix representation preserves known properties of matrix algebra (v; =

A;juj). The matrix representation allows us to define additional tensorial operators. For example,



we can define

tI‘(A) = e (Aijel- X ej) e, = Aij <ek\ei><ej|ek>: Amélkéjk = Akk , (28)
AT = (Aijei X ej)T = Aijej X e, = Ajiei X €;, (29)
AB = (Aijei & ej)(Bklek X 61) = AijBkléjkei X e = Aiijlei X e . (210)

We can define the double dot product (or the contraction) of two tensors as
A:B= (Aijei & ej) . (Bklek &® el) = AijBkl(ei . ek)(ej : el)
= AijBkl(Sik@-l = AijBij = tI‘(A BT) . (211)
This is a natural way of generating a scalar out of two tensors, which is the tensorial general-
ization of the usual vectorial dot product (hence the name). It plays an important role in the
thermodynamics of deforming bodies. Furthermore, it allows us to project a tensor on a base
dyad
(ei X ej) : A: (ei X ej) : (Aklek (039 el) :Akl(e,; . ek)(ej . el) :Akldikéjl = Aij s (212)

i.e,to extract a component of a tensor.

We can now define the identity tensor as
I=4¢,(e;®e€j), (2.13)
which immediately allows to define the inverse of a tensor (when it exists) following
AA T =T. (2.14)

The existence of the inverse is guaranteed when det A # 0, where the determinant of a tensor
is defined using the determinant of its matrix representation. Note also that one can decompose

any second-order tensor to a sum of symmetric and skew-symmetric (antisymmetric) parts as

A=Ayn+Agen =-(A+ AT+ (A AT). (2.15)

1 1
2 2
Occasionally, physical constraints render the tensors of interest symmetric, i.e,A=AT. In this

case, we can diagonalize the tensor by formulating the eigenvalue problem
ACI,Z' = )\iai 5 (216)

where {)\;} and {a;} are the eigenvalues (principal values) and the orthonormal eigenvectors

(principal directions), respectively. This problem is analogous to finding the roots of

det(A — M) = =\ + N[} (A) — M(A) + I3(A) =0, (2.17)
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where the principal invariants {I;(A)} are given by

I(A) = tr(A), pry_%[u%A)—th%}, I;(A) = det(A) . (2.18)

Note that the symmetry of A ensures that the eigenvalues are real and that an orthonormal set

of eigenvectors can be constructed. Therefore, we can represent any symmetric tensor as
A= )\Z a;, ®a;, (219)

assuming no degeneracy. This is called the spectral decomposition of a symmetric tensor A. It is
very useful because it represents a tensor by 3 real numbers and 3 unit vectors. It also allows us

to define functions of tensors. For example, for positive definite tensors (A; > 0), we can define

In(A) =In(\)a; ®a; , (2.20)
VA= \a®a;. (2.21)

In general, one can define functions of tensors that are themselves scalars, vectors or tensors.
Consider, for example, a scalar function of a tensor f(A) (e.g., the energy density of a deforming
solid). Consequently, we need to consider tensor calculus. For example, the derivative of f(A)

with respect to A is a tensor which takes the form

af of
A , . 2.22
0A 8141] €i® € ( )
The differential of f(A) is a scalar and reads
_OF a4 91

Consider then a tensorial function of a tensor F(A), which is encountered quite regularly in

continuum physics. Its derivative D is defined as

_OF_OF o ve= e gemene,
TO0A T 94, T 7 T oA, Fo Tt T ey
OFy
Dyij = =—— 2.24
= klij aA” ( )

which is a fourth-order tensor.
We will now define some differential operators that either produce tensors or act on tensors.

First, consider a vector field v(x) and define its gradient as

v 0 v,
8 T =i e, (2.25)

VU N % N 8xj 833]‘
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which is a second-order tensor. Then, consider the divergence of a tensor
0A 0A;; 0A;;
V-A= —e; ®eje, = —"e; (2.26)
B A
which is a vector. The last two objects are extensively used in continuum physics.

The tensorial version of Gauss’ theorem for relating volume integrals to surface integrals reads

/V~AdV :%AndS, (2.27)
\%4 S

where V and S are the volume and the enclosing surface, respectively, and n is the outward unit
normal to the surface. Obviously, the theorem is satisfied for scalars and vectors as well. It would
be useful to recall also Stokes’ theorem for relating line integrals to surface integrals

/S(va)-nds = j{v-dl , (2.28)

!
where S and [ are the surface and its bounding curve, respectively, and n is the outward unit
normal to the surface.

Finally, we should ask ourselves how do tensors transform under a coordinate transformation

(from x to x’)
' =Qx , (2.29)

where @ is a proper (det @=1) orthogonal transformation matrix Q7 =Q~! (note that it is not
a tensor). In order to understand the transformation properties of the orthonormal base vectors

{e;} we first note that
r=Qr—=x=Q"2x =z, = Qz;x; = jSx;- ) (2.30)

A vector is an object that retains its (geometric) identity under a coordinate transformation. For
example, a general position vector 7 can be represented using two different base vectors sets {e;}

and {e.} as

~
~

<
<

Using Eq. (2.30) we obtain

~

ri€e; = (jS-l";)ei = -T;(jSei) = x;e- 5 (2.32)

<

which implies

e = Que; . (2.33)
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In order to derive the transformation law for tensors representation we first note that tensors, like
vectors, are objects that retain their (geometric) identity under a coordinate transformation and

therefore we must have

A=Aje®e =Aje Q€. (2.34)
Using Eq. (2.33) we obtain
A= Aje;®e; = Al;Que, ® Qe = (A;;QinQj)er @ e . (2.35)
which implies
Ayt = ALQuQn - (2.36)

This is the transformation law for the components of a tensor and in many textbooks it serves as

a definition of a tensor. Eq. (2.36) can be written in terms of matrix representation as
[A] = Q'[A]Q = [A] = Q[A]Q" (2.37)

where [-] is the matrix representation of a tensor with respect to a set of base vectors. Though
we did not make the explicit distinction between a tensor and its matrix representation earlier, it
is important in the present context; [A] and [A]" are different representations of the same object,
the tensor A, but not different tensors. An isotropic tensor is a tensor whose representation is

independent of the coordinate system, i.e.,

We note in passing that in the present context we do not distinguish between covariant and
contravariant tensors, a distinction that is relevant for non-Cartesian tensors (a Cartesian tensor

is a tensor in three-dimensional Euclidean space for which a coordinate transformation ' = Qx

satisfies Ox}/0x;=0x;/0x}).
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III. MOTION, DEFORMATION AND STRESS

Solid materials are deformed under applied driving forces. In order to describe the deformation
of solids, consider a body at a given time, typically in the absence of external driving forces, and
assign to each material point a position vector X with respect to some fixed coordinate system
(i.e., we already use the continuum assumption). For simplicity, set t=0. You can think of X as
the label of each point in the body.

At t >0 the body experiences some external forcing that deforms it to a state in which each
material point is described by a position vector . We then define the motion as the following
mapping

r=z(X,t)=p(X,t). (3.1)

The vector function ¢(-) maps each point in the initial state X to a point in the current state x
at t>0. This immediately implies that X = (X ,t = 0), i.e., at time ¢t = 0 ¢(+) is the identity
vector. The initial state X is usually termed the reference/undeformed configuration and the
current state is termed the current/deformed configuration. We assume that ¢(-) is a one-to-one
mapping, i.e,that it can be inverted

X = Hx,t) . (3.2)

The inverse mapping ¢ () tells us where a material point, that is currently at @, was at time
t=0.

Obviously, our goal is to describe the properties and spatiotemporal dynamics of the current
state of the material at ¢ > 0. This can be done either using the X labeling, which is called
the material (Lagrangian) description, or the a positions, which is called the spatial (Eulerian)
description. The choice between these descriptions is a matter of convenience. For a given physical
phenomenon under consideration, one description may be more convenient than the other. We
will discuss this issue later in the course.

A quantity of fundamental importance is the displacement field defined as
UX,t)=z(X,t)— X . (3.3)
This material description can be converted into a spatial description following
UX,t)=z(X,t) - X =z X(x,t) =U(p '(x,1),t) = u(x,t) . (3.4)

Note that U and w are different functions of different arguments, though their values are the
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same. The velocity and acceleration fields are defined as
V(X,t)=0U(X,t) =v(x,t) and A(X,t)=0,U(X,t)=a(x,t). (3.5)

The corresponding spatial descriptions can be easily obtained using ¢(-).

The material time derivative D/Dt, which we abbreviate by Dy, is defined as the partial
derivative with respect to time, keeping the Lagrangian coordinate X fixed. For a material field
F(X,t) (scalar or vector. For a tensor, see the discussion of objectivity /frame-indifference later
in the course) we have

DF(X,t) = (O.F(X,1)x , (3.6)

where we stress that X is held fixed here. This derivative represents the time rate of change of
a field F, as seen by an observer moving with a particle that was at X at time t = 0. We can
then ask ourselves what happens when we operate with the material derivative on an Eulerian

field f(x,t). Using the definition in Eq. (3.6), we obtain
Df(@,t) <8f(so(X,t),t)>
X=p1 (=)

Dt ot

() ) (Lo

The last term in the above expression is the velocity field, cf. Eq. (3.5), implying that

DG 0 0
Dt~ ot % on (3.8)

The second contribution on the right hand side of the above equation is termed the convective rate
of change and hence the material derivative of an Eulerian field is sometimes called the convective
deriwative. Finally, note that since the material derivative of an Eulerian field is just the total
time derivative of the Eulerian field, viewing x(¢) as a function of time, it is sometimes denoted

by a superimposed dot, i.e,f(a:, t) = Dy f(zx,t). If f(x,t) is the velocity field we obtain
Dw(x,t) = Ow(x,t) +v(x,t) - Vyv(x,t) . (3.9)

The latter nonlinearity is very important in fluid mechanics, though it appears also in the context
of elasto-plasticity. Note that we distinguish between the spatial gradient V, and the material
gradient Vx , which are different differential operators. Fluid flows are usually described using an
Eulerian description. Nevertheless, Lagrangian formulations can be revealing, see for example the

Lagrangian turbulence simulation at: http://www.youtube.com/watch?v=LHIIn72dRPk


http://www.youtube.com/watch?v=LHIIn72dRPk
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In order to discuss the physics of deformation we need to know how material line elements
change their length and orientation. Therefore, we define the deformation gradient tensor F
that maps an infinitesimal line element in the reference configuration dX to an infinitesimal line

element in the deformed configuration
de = F(X,t)dX . (3.10)
Hence,
F(X,t)=Vxp(X,t). (3.11)

As will become apparent later in the course, F' is not a proper tensor, but rather a two-point
tensor, i.e,a tensor that relates two configurations. We can further define the displacement gradient

tensor as
H(X,t)=VxU(X,t), (3.12)
which implies
F=I+H. (3.13)
Here and elsewhere I is the identity tensor. The deformation gradient tensor F' describes both the
rotation and the stretching of a material line element, which also implies that it is not symmetric.
From a basic physics perspective, it is clear that interaction potentials are sensitive to the relative
distance between particles, but not to local rigid rotations. Consequently, we are interested in

separating rotations from stretching, where the latter quantifies the change in length of material

elements. We can, therefore, decompose F' as
F=RU=VR, (3.14)

where R is a proper rotation tensor, det R = +1, and U (should not be confused with the
displacement field) and V' are the right and left stretch tensors, respectively (which are of course

symmetric). This is the so-called polar decomposition. Note that
RR"=1, U=U" Vv=VvV! V=RUR". (3.15)

Therefore, U and V have the same eigenvalues (principal stretches), but different eigenvectors

(principal directions). Hence, we can write the spectral decomposition as

V =AN;® N, (3.16)
U=\ M, ® M, (3.17)
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A. Strain measures

At this stage, we are interested in constructing quantities that are based on the stretch tensors
discussed above in order to be able, eventually, to define the energy of deformation. For this
aim, we need to discuss strain measures. Unlike displacements and stretches, which are directly
measurable quantities (whether it always make physical sense and over which timescales, will be
discussed later), strain measures are concepts that are defined as function of the stretches, and
may be conveniently chosen differently in different physical situations. The basic idea is simple;
we would like to come up with a measure of the relative change in length of material line elements.
Consider first the scalar (one-dimensional) case. If the reference length of a material element is
{y and its deformed length is £ = Ay, then a simple strain measure is constructed by

-1

=A—1. 1
=) (3.19)

g(A)

This definition follows our intuitive notion of strain, i.e,(i) It is a monotonically increasing function
of the stretch A (ii) It vanishes when A =1. It is, however, by no means unique. In fact, every
monotonically increasing function of A which reduces to the above definition when A is close
to unity, i.esatisfies g(1) =0 and ¢'(1) =1, would qualify. These conditions ensure that upon

linearization, all strain measures agree. For example,

4 /
g(\) = e =1In £ =InA\, (3.20)
0w U ly
-2 1,

Obviously, there are infinitely many more. The three possibilities we presented above, however,
are well-motivated from a physical point of view. Before explaining this, we note that the scalar
(one-dimensional) definitions adopted above can be easily generalized to rotationally invariant

tensorial forms as

Ey=(In\)M;® M; =InU, (3.23)

E:%@g_nm@®m5:%aﬂ—1): (FTF-1) . (3.24)

DN | —
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Ey is the Biot (extensional) strain tensor. It is the most intuitive strain measure. Its main
disadvantage is that it cannot be directly expressed in terms of the deformation gradient tensor F',
but rather has to be calculated from it by a polar decomposition. Ey is the Hencky (logarithmic)
strain (which is also not expressible in terms of F' alone). Its one-dimensional form, Eq. (3.20),
clearly demonstrates that dEy is an incremental strain that measures incremental changes in the
length of material line elements relative to their current length. Finally, E is the Green-Lagrange
(metric) strain. While it is difficult to motivate its one-dimensional form, Eq. (3.21), its tensorial
form has a clear physical meaning. To see this, consider infinitesimal line elements of size d¢ and
d¢’ in the reference and deformed configurations respectively and construct the following measure

of the change in their length
1 1
2dX; {5 (FijFy — 5jk)} dXy = 2dX; {5 (Fl F — 5jk)} dXy = 2dX;Ejd Xy, .

Therefore,

_lprr_pn-
E_Q(FF I)=

(C—1)= % (U?—1) = %(H+HT+HTH), (3.26)

1
2
where C=FTF is the right Cauchy-Green deformation tensor. So E is indeed a material metric
strain tensor. Further note that FE is quadratically nonlinear in the displacement gradient H.
The linear part of E

e=-(H+H" (3.27)

2

is the linear (infinitesimal) strain tensor, which is not a true strain measure (as it is not rotationally
invariant), but nevertheless is the basic object in the linearized field theory of elasticity (to be
discussed later in the course). We can easily derive the spatial counterpart of E, by having
(dt')? — (dl)?=2dzjejrdxy, with (prove)

e= % (I-F'F') = % (I-b") . (3.28)

b= FF7 is the left Cauchy-Green deformation tensor (also termed the Finger tensor, which is
sometimes denoted by B). e, known as the Euler-Almansi strain tensor, is a spatial metric strain
tensor.

The deformation gradient tensor F' maps objects from the undeformed to the deformed con-
figuration. For example, consider a volume element in the deformed configuration (assume F' has

already been diagonalized)

daz3 = dxldl‘gdl’g = FnXmFQQdXQFgngg = J(X,t)ng s (329)
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where

J(X,t) =det F(X,t) . (3.30)

Consider then a surface element in the undeformed configuration dS = dS N, where dS an
infinitesimal area and IN is a unit normal. The corresponding surface element in the deformed
configuration is ds = dsmn. To relate these quantities, we consider an arbitrary line element dX
going through dS and express the spanned volume element by a dot product dX? = dS - dX.
dX maps to dx, which spans a corresponding volume element in the deformed configuration
dx® = ds - dz. Using Eq. (3.29), the relation ds - FdX =F"ds - dX (i.eds;Fi;dX;=F};ds;dX})

and the fact that dX is an arbitrary line element, we obtain
dS =J 'F'ds . (3.31)

The spatial velocity gradient L(x,t) is defined as

_ 81}(3:,25) _ -1
L=""—""=FF". (3.32)

The symmetric part of L, D = %(L + L7), is an important quantity called the rate of defor-

mation tensor. The anti-symmetric part of L, W = 2(L—L7), is called the spin (vorticity) tensor.

B. The concept of stress

As was mentioned at the beginning of this section, material deformation is induced by forces.
In order to describe and quantify forces at the continuum level we need the concept of stress
(sketched earlier in section II to motivate the need for tensors). Consider a surface element
ds in the deformed configuration. It is characterized by an outward normal n and a unit area
ds. The surface element can be a part of the external boundary of the body or a part of an
imaginary internal surface. The force acting on it, either by external agents in the former case
or by neighboring material in the latter case, is denoted by df. We postulate, following Cauchy;,

that we can define a traction vector t such that
df =t(xz,t,n)ds . (3.33)

Cauchy proved that there exists a unique symmetric second-order tensor o(z,t) (i.e,o0=0c’, the

physical meaning of which will be discussed later) such that

tx,t,n) =0o(x,t)n . (3.34)
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The spatial tensor o is called the Cauchy stress. Its physical meaning becomes clear when we
write Eq. (3.34) in components form, ¢; = o;;n;. Therefore, 0;; is the force per unit area in the
ith direction, acting on a surface element whose outward normal has a component n; in the jth

direction. A corollary of Eq. (3.34)
t(x,t,—n) =—t(xz,t,n), (3.35)

is nothing but Newton’s third law (action and reaction).

As o is defined in terms of the deformed configuration, which is not known a priori (one
should solve for it using the stresses themselves), o is not always a useful quantity (it is the
only relevant quantity in the linearized field theory of elasticity, where we do not distinguish
between the deformed and undeformed configurations). To overcome this difficulty, we can define
alternative stress measures that are useful for calculations. In general, we will show later that
thermodynamics allows us to define for any strain measure a work-conjugate stress measure. Here,
we define one such mechanically-motivated stress measure. Let us define a (fictitious) reference

configuration traction vector T'(X,t, N) as
df =t(x,t,n)ds =T(X,t,N)dS , (3.36)

where IN and dS are the reference outward normal and unit area, respectively, whose images in
the deformed configuration are n and ds, respectively. Following Cauchy, there exists a tensor
P(X,t) such that

T(X,t,N)=P(X,t)N . (3.37)

P(X,t) is called the first Piola-Kirchhoff stress tensor. In fact, it is not a true tensor (it relates
quantities from the deformed and undeformed configuration and hence, like F', is a two-point
tensor) and is not symmetric. Using the above properties, it is straightforward to show that it is

related to the Cauchy stress o by
P=JoF . (3.38)

The concepts of strain and stress will allow us to formulate physical laws, such as conservation
laws and the laws of thermodynamics, and constitutive laws which describe material behaviors,

in the rest of this course.
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IV. EQUATIONS OF MOTION, THE LAWS OF THERMODYNAMICS AND
OBJECTIVITY

A. Conservation laws

We first consider the mass density in the reference configuration po(X,t). The conservation of
mass simply implies that

M= [ po(X,t)dX? (4.1)
Qo

is time-independent (g is the region occupied by the body in the reference configuration), i.e.,

DM D D
= X, 1)dX? = = t)da® =0 4.2

where € is the region occupied by the body in the deformed configuration. The integral form
can be easily transformed into a local form. In the reference (Lagrangian) configuration it simply
reads

Dpo _ 9po(X, 1)

- g 0 = po(X,t) = po(X) . (4.3)

To obtain the local form in the Eulerian description, note that (by the definition of J, cf.,
Eq. (3.29)) po(X)=p(x,t)J(X,t) and J=J V- v (prove). Therefore,

D D D
D = pi @I 0] = I+ Ve =0, (4.4)
which implies
D
—pg?t) + p(a, 1)V - (@, t) = 8/)(5;’15) + V- (pla, to(@,1)) =0 (4.5)

This expression of local mass conservation (continuity equation) takes the general form of a local

conservation law
J(field)
ot

Let us now discuss a theorem that will be very useful in formulating and manipulating other

+ V, - (field flux) = source/sink . (4.6)

conservation laws. Consider the following 1D integral involving an Eulerian scalar field ¢ (x,t)

za=p(Xa,t)

1) = / o, t)de (4.7)
Z‘lzgo(Xht)

Note that X, o are fixed here. Taking the time derivative of I(t) (Leibnitz’s rule) we obtain

= [ " e s+ 0 (0 0,0) 0006 6) — (X0, 0) e X0t) . (48)

(Xl 7t)
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First recall that (generally in 3D)
VX, 1) = Oep(X 1) = vl 1) (49)

Then note that since X; and X, are fixed in the integral we can interpret the time derivative as

a material time derivative D/Dt. Therefore, we can rewrite Eq. (4.8) as

() = /

<p(X1,t)

D [e(X2) o(X2,t)

- [atw(x, t) + 0, (¢<x, t)o(a, t))] dz . (4.10)
Dt Jo(xin)
The immediate generalization of this result to volume integrals over a time dependent domain {2

reads

%/Qz/}(w,t)da:?’ :/Q [@zﬁ(m,t) +Vw~(1p(w,t)v(:c,t))] dx® . (4.11)
This is the Reynolds’ transport theorem which is very useful in the context of formulating conser-
vation laws. This is the same Osborne Reynolds (1842-1912), who is known for his studies of the
transition from laminar to turbulent fluid flows, and who gave the Reynolds number its name.

Using mass conservation, we obtain (prove)

D%/Qp(m,t)qp(m,t)dm?’:/p(m,t)%‘:’t)dm?’. (4.12)

Q

This is very useful when we choose ¥ (x,t) to be a quantity per unit mass. In particular, setting
=1 we recover the conservation of mass.

Linear momentum balance (Newton’s second law) reads

P(t) - % [ (XXX’ - % /Qp(w,t)v(;c,t)de _F(t) (4.13)

where F'(t) is the total force acting on a volume element €2 (do not confuse P with the first
Piola-Kirchhoff stress tensor of Eq. (3.37)). To obtain a local form of this law note that the total
force is obtained by integrating local tractions (surface forces) t(x,t) and body (volume) forces
b(xz,t), ie.,

Ft) = /6 tlatom)ds + / b(z, t)da" | (4.14)

Q
where 0f) is the boundary of the volume element. Use Cauchy’s stress theorem of Eq. (3.34) and

the divergence (Gauss) theorem of Eq. (2.27) to obtain

Aﬂt(w,t,n)ds:/mo-(a:,t)nds:/Qvfc-o-(gg,t)dag?’- (4.15)

Use then Reynold’s transport theorem of Eq. (4.12), with 1 replaced by the spatial velocity field

v, to transform the linear momentum balance of Eq. (4.13) into

/Q Ve o(x,t) + b(x,t) — p(x, t)v(x,t)] dx* = 0 . (4.16)
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Since this result is valid for an arbitrary material volume, we obtain the following spatial (Eulerian)

local form of linear momentum conservation
Ve o +b=p0=p(0v+v-Vuv) . (4.17)

Note that this equation does not conform with the structure of a general conservation law in Eq.
(4.6). This can be achieved (prove), yielding

A(pw)
ot

+Vz (oc—pvev)=>. (4.18)

A similar analysis can be developed for the angular momentum. However, the requirement that
the angular acceleration remains finite implies that angular momentum balance, at the continuum

level, is satisfied if the Cauchy stress tensor o is symmetric, i.e.,
o=0o", (4.19)

to be derived in the tutorial. We note that the symmetry of the Cauchy stress tensor emerges from
the conservation of angular momentum if the continuum assumption is valid at all lengthscales.
Real materials, however, may possess intrinsic lengthscales associated with their microstructure
(e.g., grains, fibers and cellular structures). In this case, we need generalized theories which
endow each material point with translational and rotational degrees of freedom, describing the
displacement and rotation of the underlying microstructure. One such theory is known as Cosserat
(micropolar) continuum, which is a continuous collection of particles that behave like rigid bodies.
Under such circumstances one should consider a couple-stress tensor (which has the dimensions
of stress x length) as well, write down an explicit angular momentum balance equation and recall
that the ordinary stress tensor is no longer symmetric.

The local momentum conservation laws can be expressed in Lagrangian forms. For example,

the linear momentum balance, Eq. (4.17), translates into (prove)

where P is the first Piola-Kirchhoff stress tensor of Eq. (3.37) and B(X,t) = J(X,t)b(x,1).
This equation is extremely useful because it allows calculations to be done in a fixed undeformed
coordinate system X. It is important to note that one should also transform the boundary
conditions of a given problem from the deformed configuration (where they are physically imposed)

to the underformed configuration.
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