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This course is intended to introduce graduate students to the essentials of

modern continuum physics, with a focus on non-equilibrium phenomena in solids

and within a thermodynamic perspective. Special focus is given to emergent

phenomena, where collective many-body systems reveal physical principles that

cannot be inferred from the microscopic physics of a small number of degrees of

freedom. General concepts and principles — such as conservation laws, symmetries,

material frame-indifference, dissipation inequalities and non-equilibrium behaviors,

spatiotemporal symmetry-breaking instabilities and configurational forces — are

emphasized. Examples cover a wide range of physical phenomena and applications

in diverse disciplines. The power of field theory as a mathematical structure

that does not make direct reference to microscopic length scales well below those

of the phenomenon of interest is highlighted. Some basic mathematical tools

and techniques are introduced. The course highlights essential ideas and basic

physical intuition. Together with courses on fluid mechanics and soft condensed mat-

ter, a broad background and understanding of continuum physics will be established.

The course will be given within a framework of 12-13 two-hour lectures and 12-13

two-hour tutorial sessions with a focus on problem-solving. No prior knowledge

of the subject is assumed. Basic knowledge of statistical thermodynamics, vector

calculus, partial differential equations, dynamical systems and complex analysis is

required.

These extended lecture notes (book draft) are self-contained and in principle no

other materials are needed.
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General Principles and Concepts

I. INTRODUCTION: BACKGROUND AND MOTIVATION

We start by considering the course’s title. By ‘non-equilibrium’ we refer to physical phenomena

that cannot be properly treated in the framework of equilibrium thermodynamics. That is, we

refer to phenomena that involve irreversible processes and dissipation. We will, however, make

an effort to adhere as much as possible to thermodynamic formulations (i.e,we will not focus on

purely dynamical systems) and also devote time to reversible phenomena (both because they are

often missing from current physics education and because they set the stage for discussing irre-

versible phenomena). By ‘continuum’ we refer to the scientific approach that treats macroscopic

phenomena without making explicit reference to the discreteness of matter or more generally to

microscopic length and time scales. This also implies that we focus on collective phenomena

that involve spatially extended systems and a macroscopic number of degrees of freedom (atoms,

molecules, grains etc.). We therefore treat materials as continua and use the language of field

theory to describe the phenomena of interest. A crucial concept in this context is that of emer-

gent phenomena, which refers to the fundamental idea that collective many-body systems reveal

laws/behavior that cannot be inferred from microscopic laws of physics and a small number of

degrees of freedom; that is, “More is Different”, adopting the famous title of Philip W. Anderson

(see Science 177, 393 (1972)).

‘Physics’ is surely a bit too broad here, yet it represents the idea that the tools and concepts

that will be discussed have a very broad range of applications in different branches of physics.

In addition, the topics considered can be discussed from various perspectives — such as applied

mathematics, engineering sciences and materials science —, but we will adopt a physicist perspec-

tive. To make ‘physics’ even more specific in the present context, we note that we will mainly focus

on thermal and mechanical phenomena, rather than electrical, magnetic or chemical phenomena.

By ‘thermal’ and ‘mechanical’ — or ‘thermomechanical’ we refer to material phenomena that

involve deformation, material and heat flow and failure, and where the driving forces are thermal

and mechanical in nature. ‘Classical continuum mechanics’ typically refers to ‘solid mechanics’

and ‘fluid mechanics’ from a classical (i.e,non-quantum) physics perspective. In this course we

will mainly focus on solids in the broadest sense of the word.

The word ‘solid’ is not easily defined. The most intricate aspect of such a definition is that it
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involves an observation timescale (at least if we do not consider single crystals). However, for the

purpose of this course, it will be sufficient to define a solid as a material that can support shear

forces over sufficiently long timescales. We therefore do not focus on Newtonian fluids and very

soft materials (though we certainly mention them), both of which are discussed in complementary

courses. Nevertheless, we will discuss solid phenomena such as visco-elasticity and nonlinear

elasticity.

Why should one study the subjects taught in this course? Well, there are many (good) reasons.

Let us mention a few of them. First, macroscopic physics deals with emergent phenomena that

cannot be understood from microscopic laws applied to a small number of constituent elements

(degrees of freedom). That is, macroscopic systems feature new qualitative coarse-grained prop-

erties and dynamics. This is a deep conceptual, to some extent even philosophical, issue that

should be systematically introduced. Second, many of the macroscopic phenomena around us are

both non-equilibrium and thermomechanical in nature. This course offers tools to understand

some of these phenomena. Third, continuum physics phenomena, and solid-related phenomena

in particular, are ubiquitous in many branches of science and therefore understanding them may

be very useful for researchers in a broad range of disciplines. Fourth, the conceptual and math-

ematical tools of non-equilibrium thermodynamics and field theory are extremely useful in many

branches of science, and thus constitute an important part of scientific education. Finally, some

of the issues discussed in this course are related to several outstanding unsolved problems. Hence,

the course will expose students to the beauty and depth of a fundamental and active field of

research. It would be impossible to even scratch the surface of the huge ongoing solid-related

activity. Let us mention a few examples: (i) It has been quite recently recognized that the

mechanics of living matter, cells in particular, plays a central role in biology. For example, it

has been discovered that the stiffness of the substrate on which stem cells grow can significantly

affect their differentiation. (ii) Biomimetics: researchers have realized that natural/biological

systems exhibit superior mechanical properties, and hence aim at mimicking the design principles

of these systems in man-made ones. For example, people have managed to build superior adhe-

sives based on Gecko’s motion on a wall. People have succeeded in synthesizing better composite

materials based on the structures observed in hard tissues, such as cortical bone and dentin. (iii)

The efforts to understand the physics of driven disordered systems (granular materials, molecular

glasses, colloidal suspensions etc.) are deeply related to one of the most outstanding questions in

non-equilibrium statistical physics. (iv) People have recently realized there are intimate relations
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between geometry and mechanics. For example, by controlling the intrinsic metric of materials,

macroscopic shapes can be explained and designed. (v) The rupture of materials and interfaces

has a growing influence on our understanding and control of the world around us. For example,

there are exciting developments in understanding Earthquakes, the failure of interfaces between

two tectonic plates in the Earth’s crust (vi) Developments in understanding the plastic defor-

mation of amorphous and crystalline solids offer deep new insights about strongly nonlinear and

dissipative systems, and open the way to new and exciting applications.

Unfortunately, due to time limitations, the course cannot follow a historical perspective which

highlights the evolution of the developed ideas. These may provide very important scientific,

sociological and psychological insights, especially for research students and young researchers.

Whenever possible, historical notes will be made.
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II. MATHEMATICAL PRELIMINARIES: TENSOR ANALYSIS

The fundamental assumption of continuum physics is that under a wide range of conditions

we can treat materials as continuous in space and time, disregarding their discrete structure and

time-evolution at microscopic length and time scales, respectively. Therefore, we can ascribe

to each point in space-time physical properties that can be described by continuous functions,

i.e,fields. This implies that derivatives are well defined and hence that we can use the powerful

tools of differential calculus. In order to understand what kind of continuous functions, hereafter

termed fields, should be used, we should bear in mind that physical laws must be independent

of the position and orientation of an observer, and the time of observation (note that we restrict

ourselves to classical physics, excluding the theory of relativity). We are concerned here, however,

with the mathematical objects that allow us to formulate this and related principles. Most

generally, we are interested in the language that naturally allows a mathematical formulation of

continuum physical laws. The basic ingredients in this language are tensor fields, which are the

major focus on the opening part of the course.

Tensor fields are characterized, among other things, by their order (sometimes also termed

rank). Zero-order tensors are scalars, for example the temperature field T (x, t) within a body,

where x is a 3-dimensional Euclidean space and t is time. First-order tensors are vectors, for

example the velocity field v(x, t) of a fluid. Why do we need to consider objects that are

higher-order than vectors? The best way to answer this question is through an example.

Consider a material areal element and the force acting on it (if the material areal element is a

surface element, then the force is applied externally and if the material areal element is inside

the bulk material, then the force is exerted by neighboring material). The point is that both the

areal element and the force acting on it are basically vectors, i.e,they both have an orientation

(the orientation of the areal element is usually quantified by the direction of the normal to it).

Therefore, in order to characterize this physical situation one should say that a force in the ith

direction is acting on a material areal element whose normal points in the jth direction. The

resulting object is defined using two vectors, but it is not a vector itself. We need a higher-order

tensor to describe it.

Our main interest here is second-order tensors, which play a major role in continuum physics.

A second-order tensor A can be viewed as a linear operator or a linear function that maps a

vector, say u, to a vector, say v,

v = Au . (2.1)
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Linearity implies that

A(αu+ v) = αAu+Av , (2.2)

for every scalar α and vectors u and v. For brevity, second-order tensors will be usually referred

to simply as tensors (zero-order tensors will be termed scalars, first-order tensors will be termed

vectors and higher than second-order tensors will be explicitly referred to according to their order).

The most natural way to define (or express) tensors in terms of vectors is through the dyadic

(or tensor) product of orthonormal base vectors {ei}

A = Aij ei ⊗ ej , (2.3)

where Einstein summation convention is adopted, {Aij} is a set of numbers and {i, j} run over

space dimensions. For those who feel more comfortable with Dirac’s Bra-Ket notation, the dyadic

product above can be also written as A = Aij |ei><ej|. In general, the dyad u⊗ v is defined as

u⊗ v = uvT , (2.4)

where vectors are assumed to be represented by column vectors and the superscript T denotes

the transpose operation. If {ei} is an orthonormal set of Cartesian base vectors, we have (for

example)

e2 ⊗ e3 = e2e
T
3 =


0

1

0

(
0 0 1

)
=


0 0 0

0 0 1

0 0 0

 . (2.5)

Therefore, second-order tensors can be directly represented by matrices. Thus, tensor algebra

essentially reduces to matrix algebra. It is useful to note that for every three vectors u, v and w

we have

u⊗ vw = (v ·w)u . (2.6)

where · is the usual inner (dot) product of vectors. In the Bra-Ket notation the above simply

reads |u><v|w>. This immediately allows us to rewrite Eq. (2.1) as

viei = v = Au = (Aijei ⊗ ej)(ukek) = Aijuk(ej · ek) ei = Aijujei , (2.7)

which shows that the matrix representation preserves known properties of matrix algebra (vi =

Aijuj). The matrix representation allows us to define additional tensorial operators. For example,
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we can define

tr(A) ≡ ek · (Aijei ⊗ ej) ek = Aij <ek|ei><ej|ek>= Aijδikδjk = Akk , (2.8)

AT = (Aijei ⊗ ej)
T = Aijej ⊗ ei = Ajiei ⊗ ej , (2.9)

AB = (Aijei ⊗ ej)(Bklek ⊗ el) = AijBklδjkei ⊗ el = AijBjlei ⊗ el . (2.10)

We can define the double dot product (or the contraction) of two tensors as

A : B = (Aijei ⊗ ej) : (Bklek ⊗ el) ≡ AijBkl(ei · ek)(ej · el)

= AijBklδikδjl = AijBij = tr(ABT ) . (2.11)

This is a natural way of generating a scalar out of two tensors, which is the tensorial general-

ization of the usual vectorial dot product (hence the name). It plays an important role in the

thermodynamics of deforming bodies. Furthermore, it allows us to project a tensor on a base

dyad

(ei ⊗ ej) :A=(ei ⊗ ej) : (Aklek ⊗ el)=Akl(ei · ek)(ej · el)=Aklδikδjl = Aij , (2.12)

i.e,to extract a component of a tensor.

We can now define the identity tensor as

I = δij(ei ⊗ ej) , (2.13)

which immediately allows to define the inverse of a tensor (when it exists) following

AA−1 = I . (2.14)

The existence of the inverse is guaranteed when detA ̸= 0, where the determinant of a tensor

is defined using the determinant of its matrix representation. Note also that one can decompose

any second-order tensor to a sum of symmetric and skew-symmetric (antisymmetric) parts as

A = Asym +Askew =
1

2
(A+AT ) +

1

2
(A−AT ) . (2.15)

Occasionally, physical constraints render the tensors of interest symmetric, i.e,A=AT . In this

case, we can diagonalize the tensor by formulating the eigenvalue problem

Aai = λiai , (2.16)

where {λi} and {ai} are the eigenvalues (principal values) and the orthonormal eigenvectors

(principal directions), respectively. This problem is analogous to finding the roots of

det(A− λI) = −λ3 + λ2I1(A)− λI2(A) + I3(A) = 0 , (2.17)
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where the principal invariants {Ii(A)} are given by

I1(A) = tr(A), I2(A) =
1

2

[
tr2(A)− tr(A2)

]
, I3(A) = det(A) . (2.18)

Note that the symmetry of A ensures that the eigenvalues are real and that an orthonormal set

of eigenvectors can be constructed. Therefore, we can represent any symmetric tensor as

A = λi ai ⊗ ai , (2.19)

assuming no degeneracy. This is called the spectral decomposition of a symmetric tensor A. It is

very useful because it represents a tensor by 3 real numbers and 3 unit vectors. It also allows us

to define functions of tensors. For example, for positive definite tensors (λi > 0), we can define

ln(A) = ln(λi)ai ⊗ ai , (2.20)
√
A =

√
λi ai ⊗ ai . (2.21)

In general, one can define functions of tensors that are themselves scalars, vectors or tensors.

Consider, for example, a scalar function of a tensor f(A) (e.g., the energy density of a deforming

solid). Consequently, we need to consider tensor calculus. For example, the derivative of f(A)

with respect to A is a tensor which takes the form

∂f

∂A
=

∂f

∂Aij

ei ⊗ ej . (2.22)

The differential of f(A) is a scalar and reads

df =
∂f

∂A
: dA =

∂f

∂Aij

dAij . (2.23)

Consider then a tensorial function of a tensor F (A), which is encountered quite regularly in

continuum physics. Its derivative D is defined as

D=
∂F

∂A
=

∂F

∂Aij

⊗ ei ⊗ ej =
∂Fkl

∂Aij

ek ⊗ el ⊗ ei ⊗ ej ,

=⇒ Dklij =
∂Fkl

∂Aij

, (2.24)

which is a fourth-order tensor.

We will now define some differential operators that either produce tensors or act on tensors.

First, consider a vector field v(x) and define its gradient as

∇v =
∂v

∂x
=

∂v

∂xj
⊗ ej =

∂vi
∂xj

ei ⊗ ej , (2.25)
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which is a second-order tensor. Then, consider the divergence of a tensor

∇·A =
∂A

∂xk
ek =

∂Aij

∂xk
ei ⊗ ejek =

∂Aij

∂xj
ei , (2.26)

which is a vector. The last two objects are extensively used in continuum physics.

The tensorial version of Gauss’ theorem for relating volume integrals to surface integrals reads∫
V

∇·A dV =

∮
S

An dS , (2.27)

where V and S are the volume and the enclosing surface, respectively, and n is the outward unit

normal to the surface. Obviously, the theorem is satisfied for scalars and vectors as well. It would

be useful to recall also Stokes’ theorem for relating line integrals to surface integrals∫
S

(∇×v) · ndS =

∮
l

v ·dl , (2.28)

where S and l are the surface and its bounding curve, respectively, and n is the outward unit

normal to the surface.

Finally, we should ask ourselves how do tensors transform under a coordinate transformation

(from x to x′)

x′ = Qx , (2.29)

where Q is a proper (detQ=1) orthogonal transformation matrix QT =Q−1 (note that it is not

a tensor). In order to understand the transformation properties of the orthonormal base vectors

{ei} we first note that

x′ = Qx =⇒ x = QTx′ =⇒ xi = QT
ijx

′
j = Qjix

′
j . (2.30)

A vector is an object that retains its (geometric) identity under a coordinate transformation. For

example, a general position vector r can be represented using two different base vectors sets {ei}

and {e′
i} as

r = xiei = x′je
′
j . (2.31)

Using Eq. (2.30) we obtain

xiei = (Qjix
′
j)ei = x′j(Qjiei) = x′je

′
j , (2.32)

which implies

e′
i = Qijej . (2.33)
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In order to derive the transformation law for tensors representation we first note that tensors, like

vectors, are objects that retain their (geometric) identity under a coordinate transformation and

therefore we must have

A = Aijei ⊗ ej = A′
ije

′
i ⊗ e′

j . (2.34)

Using Eq. (2.33) we obtain

A = A′
ije

′
i ⊗ e′

j = A′
ijQikek ⊗Qjlel = (A′

ijQikQjl)ek ⊗ el . (2.35)

which implies

Akl = A′
ijQikQjl . (2.36)

This is the transformation law for the components of a tensor and in many textbooks it serves as

a definition of a tensor. Eq. (2.36) can be written in terms of matrix representation as

[A] = QT [A]′Q =⇒ [A]′ = Q[A]QT , (2.37)

where [·] is the matrix representation of a tensor with respect to a set of base vectors. Though

we did not make the explicit distinction between a tensor and its matrix representation earlier, it

is important in the present context; [A] and [A]′ are different representations of the same object,

the tensor A, but not different tensors. An isotropic tensor is a tensor whose representation is

independent of the coordinate system, i.e.,

Aij = A′
ij or [A] = [A]′ . (2.38)

We note in passing that in the present context we do not distinguish between covariant and

contravariant tensors, a distinction that is relevant for non-Cartesian tensors (a Cartesian tensor

is a tensor in three-dimensional Euclidean space for which a coordinate transformation x′=Qx

satisfies ∂x′i/∂xj=∂xj/∂x
′
i).
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III. MOTION, DEFORMATION AND STRESS

Solid materials are deformed under applied driving forces. In order to describe the deformation

of solids, consider a body at a given time, typically in the absence of external driving forces, and

assign to each material point a position vector X with respect to some fixed coordinate system

(i.e., we already use the continuum assumption). For simplicity, set t=0. You can think of X as

the label of each point in the body.

At t > 0 the body experiences some external forcing that deforms it to a state in which each

material point is described by a position vector x. We then define the motion as the following

mapping

x = x(X, t) = φ(X, t) . (3.1)

The vector function φ(·) maps each point in the initial state X to a point in the current state x

at t>0. This immediately implies that X = φ(X, t = 0), i.e., at time t = 0 φ(·) is the identity

vector. The initial state X is usually termed the reference/undeformed configuration and the

current state is termed the current/deformed configuration. We assume that φ(·) is a one-to-one

mapping, i.e,that it can be inverted

X = φ−1(x, t) . (3.2)

The inverse mapping φ−1(·) tells us where a material point, that is currently at x, was at time

t = 0.

Obviously, our goal is to describe the properties and spatiotemporal dynamics of the current

state of the material at t > 0. This can be done either using the X labeling, which is called

the material (Lagrangian) description, or the x positions, which is called the spatial (Eulerian)

description. The choice between these descriptions is a matter of convenience. For a given physical

phenomenon under consideration, one description may be more convenient than the other. We

will discuss this issue later in the course.

A quantity of fundamental importance is the displacement field defined as

U(X, t) = x(X, t)−X . (3.3)

This material description can be converted into a spatial description following

U (X, t) = x(X, t)−X = x−X(x, t) = U(φ−1(x, t), t) = u(x, t) . (3.4)

Note that U and u are different functions of different arguments, though their values are the
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same. The velocity and acceleration fields are defined as

V (X, t) = ∂tU(X, t) = v(x, t) and A(X, t) = ∂ttU(X, t) = a(x, t) . (3.5)

The corresponding spatial descriptions can be easily obtained using φ(·).

The material time derivative D/Dt, which we abbreviate by Dt, is defined as the partial

derivative with respect to time, keeping the Lagrangian coordinate X fixed. For a material field

F(X, t) (scalar or vector. For a tensor, see the discussion of objectivity/frame-indifference later

in the course) we have

DtF(X, t) ≡ (∂tF(X, t))X , (3.6)

where we stress that X is held fixed here. This derivative represents the time rate of change of

a field F , as seen by an observer moving with a particle that was at X at time t = 0. We can

then ask ourselves what happens when we operate with the material derivative on an Eulerian

field f(x, t). Using the definition in Eq. (3.6), we obtain

Df(x, t)

Dt
=

(
∂f(φ(X, t), t)

∂t

)
X=φ−1(x,t)

=

(
∂f(x, t)

∂t

)
x

+

(
∂f(x, t)

∂x

)
t

(
∂φ(X, t)

∂t

)
X=φ−1(x,t)

. (3.7)

The last term in the above expression is the velocity field, cf. Eq. (3.5), implying that

D(· · ·)
Dt

=
∂(· · ·)
∂t

+ vk
∂(· · ·)
∂xk

. (3.8)

The second contribution on the right hand side of the above equation is termed the convective rate

of change and hence the material derivative of an Eulerian field is sometimes called the convective

derivative. Finally, note that since the material derivative of an Eulerian field is just the total

time derivative of the Eulerian field, viewing x(t) as a function of time, it is sometimes denoted

by a superimposed dot, i.e,ḟ(x, t) = Dtf(x, t). If f(x, t) is the velocity field we obtain

Dtv(x, t) = ∂tv(x, t) + v(x, t) · ∇xv(x, t) . (3.9)

The latter nonlinearity is very important in fluid mechanics, though it appears also in the context

of elasto-plasticity. Note that we distinguish between the spatial gradient ∇x and the material

gradient ∇X , which are different differential operators. Fluid flows are usually described using an

Eulerian description. Nevertheless, Lagrangian formulations can be revealing, see for example the

Lagrangian turbulence simulation at: http://www.youtube.com/watch?v=LHIIn72dRPk

http://www.youtube.com/watch?v=LHIIn72dRPk
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In order to discuss the physics of deformation we need to know how material line elements

change their length and orientation. Therefore, we define the deformation gradient tensor F

that maps an infinitesimal line element in the reference configuration dX to an infinitesimal line

element in the deformed configuration

dx = F (X, t)dX . (3.10)

Hence,

F (X, t) = ∇Xφ(X, t) . (3.11)

As will become apparent later in the course, F is not a proper tensor, but rather a two-point

tensor, i.e,a tensor that relates two configurations. We can further define the displacement gradient

tensor as

H(X, t) = ∇XU(X, t) , (3.12)

which implies

F = I +H . (3.13)

Here and elsewhere I is the identity tensor. The deformation gradient tensor F describes both the

rotation and the stretching of a material line element, which also implies that it is not symmetric.

From a basic physics perspective, it is clear that interaction potentials are sensitive to the relative

distance between particles, but not to local rigid rotations. Consequently, we are interested in

separating rotations from stretching, where the latter quantifies the change in length of material

elements. We can, therefore, decompose F as

F = RU = V R , (3.14)

where R is a proper rotation tensor, detR = +1, and U (should not be confused with the

displacement field) and V are the right and left stretch tensors, respectively (which are of course

symmetric). This is the so-called polar decomposition. Note that

RRT = I, U = UT , V = V T , V = RURT . (3.15)

Therefore, U and V have the same eigenvalues (principal stretches), but different eigenvectors

(principal directions). Hence, we can write the spectral decomposition as

V = λi Ni ⊗Ni, (3.16)

U = λi Mi ⊗Mi, (3.17)
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with

λi > 0, Ni ⊗Ni = RMi ⊗RMi . (3.18)

A. Strain measures

At this stage, we are interested in constructing quantities that are based on the stretch tensors

discussed above in order to be able, eventually, to define the energy of deformation. For this

aim, we need to discuss strain measures. Unlike displacements and stretches, which are directly

measurable quantities (whether it always make physical sense and over which timescales, will be

discussed later), strain measures are concepts that are defined as function of the stretches, and

may be conveniently chosen differently in different physical situations. The basic idea is simple;

we would like to come up with a measure of the relative change in length of material line elements.

Consider first the scalar (one-dimensional) case. If the reference length of a material element is

ℓ0 and its deformed length is ℓ = λℓ0, then a simple strain measure is constructed by

g(λ) =
ℓ− ℓ0
ℓ0

= λ− 1 . (3.19)

This definition follows our intuitive notion of strain, i.e,(i) It is a monotonically increasing function

of the stretch λ (ii) It vanishes when λ= 1. It is, however, by no means unique. In fact, every

monotonically increasing function of λ which reduces to the above definition when λ is close

to unity, i.e,satisfies g(1) = 0 and g′(1) = 1, would qualify. These conditions ensure that upon

linearization, all strain measures agree. For example,

g(λ) =

∫ ℓ

ℓ0

dℓ′

ℓ′
= ln

(
ℓ

ℓ0

)
= lnλ , (3.20)

g(λ) =
ℓ2 − ℓ20
2ℓ20

=
1

2

(
λ2 − 1

)
. (3.21)

Obviously, there are infinitely many more. The three possibilities we presented above, however,

are well-motivated from a physical point of view. Before explaining this, we note that the scalar

(one-dimensional) definitions adopted above can be easily generalized to rotationally invariant

tensorial forms as

EB = (λi − 1)Mi ⊗Mi = U − I, (3.22)

EH = (lnλi)Mi ⊗Mi = lnU , (3.23)

E =
1

2
(λ2i − 1)Mi ⊗Mi =

1

2

(
U 2 − I

)
=

1

2

(
F TF − I

)
. (3.24)
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EB is the Biot (extensional) strain tensor. It is the most intuitive strain measure. Its main

disadvantage is that it cannot be directly expressed in terms of the deformation gradient tensor F ,

but rather has to be calculated from it by a polar decomposition. EH is the Hencky (logarithmic)

strain (which is also not expressible in terms of F alone). Its one-dimensional form, Eq. (3.20),

clearly demonstrates that dEH is an incremental strain that measures incremental changes in the

length of material line elements relative to their current length. Finally, E is the Green-Lagrange

(metric) strain. While it is difficult to motivate its one-dimensional form, Eq. (3.21), its tensorial

form has a clear physical meaning. To see this, consider infinitesimal line elements of size dℓ and

dℓ′ in the reference and deformed configurations respectively and construct the following measure

of the change in their length

(dℓ′)2 − (dℓ)2 = dxidxi − dXidXi = FijdXjFikdXk − dXjδjkdXk = (3.25)

2dXj

[
1

2
(FijFik − δjk)

]
dXk = 2dXj

[
1

2

(
F T
jiFik − δjk

)]
dXk ≡ 2dXjEjkdXk .

Therefore,

E =
1

2

(
F TF − I

)
=

1

2
(C − I) =

1

2

(
U 2 − I

)
=

1

2
(H +HT +HTH) , (3.26)

where C≡F TF is the right Cauchy-Green deformation tensor. So E is indeed a material metric

strain tensor. Further note that E is quadratically nonlinear in the displacement gradient H .

The linear part of E

ε ≡ 1

2
(H +HT ) (3.27)

is the linear (infinitesimal) strain tensor, which is not a true strain measure (as it is not rotationally

invariant), but nevertheless is the basic object in the linearized field theory of elasticity (to be

discussed later in the course). We can easily derive the spatial counterpart of E, by having

(dℓ′)2 − (dℓ)2≡2dxjejkdxk, with (prove)

e =
1

2

(
I − F−TF−1

)
=

1

2

(
I − b−1

)
. (3.28)

b≡ FF T is the left Cauchy-Green deformation tensor (also termed the Finger tensor, which is

sometimes denoted by B). e, known as the Euler-Almansi strain tensor, is a spatial metric strain

tensor.

The deformation gradient tensor F maps objects from the undeformed to the deformed con-

figuration. For example, consider a volume element in the deformed configuration (assume F has

already been diagonalized)

dx3 = dx1dx2dx3 = F11dX1F22dX2F33dX3 = J(X, t)dX3 , (3.29)
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where

J(X, t) = detF (X, t) . (3.30)

Consider then a surface element in the undeformed configuration dS = dSN , where dS an

infinitesimal area and N is a unit normal. The corresponding surface element in the deformed

configuration is ds = dsn. To relate these quantities, we consider an arbitrary line element dX

going through dS and express the spanned volume element by a dot product dX3 = dS · dX.

dX maps to dx, which spans a corresponding volume element in the deformed configuration

dx3 = ds · dx. Using Eq. (3.29), the relation ds · F dX=F Tds · dX (i.e,dsiFijdXj=F
T
jidsidXj)

and the fact that dX is an arbitrary line element, we obtain

dS = J−1F Tds . (3.31)

The spatial velocity gradient L(x, t) is defined as

L ≡ ∂v(x, t)

∂x
= Ḟ F−1 . (3.32)

The symmetric part of L, D = 1
2
(L + LT ), is an important quantity called the rate of defor-

mation tensor. The anti-symmetric part of L, W = 1
2
(L−LT ), is called the spin (vorticity) tensor.

B. The concept of stress

As was mentioned at the beginning of this section, material deformation is induced by forces.

In order to describe and quantify forces at the continuum level we need the concept of stress

(sketched earlier in section II to motivate the need for tensors). Consider a surface element

ds in the deformed configuration. It is characterized by an outward normal n and a unit area

ds. The surface element can be a part of the external boundary of the body or a part of an

imaginary internal surface. The force acting on it, either by external agents in the former case

or by neighboring material in the latter case, is denoted by df . We postulate, following Cauchy,

that we can define a traction vector t such that

df = t(x, t,n) ds . (3.33)

Cauchy proved that there exists a unique symmetric second-order tensor σ(x, t) (i.e,σ=σT , the

physical meaning of which will be discussed later) such that

t(x, t,n) = σ(x, t)n . (3.34)
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The spatial tensor σ is called the Cauchy stress. Its physical meaning becomes clear when we

write Eq. (3.34) in components form, ti = σijnj. Therefore, σij is the force per unit area in the

ith direction, acting on a surface element whose outward normal has a component nj in the jth

direction. A corollary of Eq. (3.34)

t(x, t,−n) = −t(x, t,n) , (3.35)

is nothing but Newton’s third law (action and reaction).

As σ is defined in terms of the deformed configuration, which is not known a priori (one

should solve for it using the stresses themselves), σ is not always a useful quantity (it is the

only relevant quantity in the linearized field theory of elasticity, where we do not distinguish

between the deformed and undeformed configurations). To overcome this difficulty, we can define

alternative stress measures that are useful for calculations. In general, we will show later that

thermodynamics allows us to define for any strain measure a work-conjugate stress measure. Here,

we define one such mechanically-motivated stress measure. Let us define a (fictitious) reference

configuration traction vector T (X, t,N ) as

df = t(x, t,n) ds = T (X, t,N ) dS , (3.36)

where N and dS are the reference outward normal and unit area, respectively, whose images in

the deformed configuration are n and ds, respectively. Following Cauchy, there exists a tensor

P (X, t) such that

T (X, t,N ) = P (X, t)N . (3.37)

P (X, t) is called the first Piola-Kirchhoff stress tensor. In fact, it is not a true tensor (it relates

quantities from the deformed and undeformed configuration and hence, like F , is a two-point

tensor) and is not symmetric. Using the above properties, it is straightforward to show that it is

related to the Cauchy stress σ by

P = JσF−T . (3.38)

The concepts of strain and stress will allow us to formulate physical laws, such as conservation

laws and the laws of thermodynamics, and constitutive laws which describe material behaviors,

in the rest of this course.
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IV. EQUATIONS OF MOTION, THE LAWS OF THERMODYNAMICS AND

OBJECTIVITY

A. Conservation laws

We first consider the mass density in the reference configuration ρ0(X, t). The conservation of

mass simply implies that

M =

∫
Ω0

ρ0(X, t)dX3 (4.1)

is time-independent (Ω0 is the region occupied by the body in the reference configuration), i.e.,

DM

Dt
=

D

Dt

∫
Ω0

ρ0(X, t)dX3 =
D

Dt

∫
Ω

ρ(x, t)dx3 = 0 , (4.2)

where Ω is the region occupied by the body in the deformed configuration. The integral form

can be easily transformed into a local form. In the reference (Lagrangian) configuration it simply

reads
Dρ0
Dt

=
∂ρ0(X, t)

∂t
= 0 =⇒ ρ0(X, t) = ρ0(X) . (4.3)

To obtain the local form in the Eulerian description, note that (by the definition of J , cf.,

Eq. (3.29)) ρ0(X)=ρ(x, t)J(X, t) and J̇=J ∇x · v (prove). Therefore,

Dρ0
Dt

=
D

Dt

[
ρ(x, t)J(X, t)

]
= J

Dρ

Dt
+ Jρ∇x · v = 0 , (4.4)

which implies

Dρ(x, t)

Dt
+ ρ(x, t)∇x · v(x, t) = ∂ρ(x, t)

∂t
+∇x ·

(
ρ(x, t)v(x, t)

)
= 0 . (4.5)

This expression of local mass conservation (continuity equation) takes the general form of a local

conservation law
∂(field)

∂t
+∇x · (field flux) = source/sink . (4.6)

Let us now discuss a theorem that will be very useful in formulating and manipulating other

conservation laws. Consider the following 1D integral involving an Eulerian scalar field ψ(x, t)

I(t) =

∫ x2=φ(X2,t)

x1=φ(X1,t)

ψ(x, t)dx . (4.7)

Note that X1,2 are fixed here. Taking the time derivative of I(t) (Leibnitz’s rule) we obtain

İ(t) =

∫ φ(X2,t)

φ(X1,t)

∂tψ(x, t)dx+ ψ
(
φ(X2, t), t

)
∂tφ(X2, t)− ψ

(
φ(X1, t), t

)
∂tφ(X1, t) . (4.8)
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First recall that (generally in 3D)

V (X, t) = ∂tφ(X, t) = v(x, t) . (4.9)

Then note that since X1 and X2 are fixed in the integral we can interpret the time derivative as

a material time derivative D/Dt. Therefore, we can rewrite Eq. (4.8) as

D

Dt

∫ φ(X2,t)

φ(X1,t)

ψ(x, t)dx =

∫ φ(X2,t)

φ(X1,t)

[
∂tψ(x, t) + ∂x

(
ψ(x, t)v(x, t)

)]
dx . (4.10)

The immediate generalization of this result to volume integrals over a time dependent domain Ω

reads
D

Dt

∫
Ω

ψ(x, t)dx3 =

∫
Ω

[
∂tψ(x, t) +∇x ·

(
ψ(x, t)v(x, t)

)]
dx3 . (4.11)

This is the Reynolds’ transport theorem which is very useful in the context of formulating conser-

vation laws. This is the same Osborne Reynolds (1842-1912), who is known for his studies of the

transition from laminar to turbulent fluid flows, and who gave the Reynolds number its name.

Using mass conservation, we obtain (prove)

D

Dt

∫
Ω

ρ(x, t)ψ(x, t)dx3 =

∫
Ω

ρ(x, t)
Dψ(x, t)

Dt
dx3 . (4.12)

This is very useful when we choose ψ(x, t) to be a quantity per unit mass. In particular, setting

ψ=1 we recover the conservation of mass.

Linear momentum balance (Newton’s second law) reads

Ṗ (t) =
D

Dt

∫
Ω0

ρ0(X)V (X, t)dX3 =
D

Dt

∫
Ω

ρ(x, t)v(x, t)dx3 = F (t) , (4.13)

where F (t) is the total force acting on a volume element Ω (do not confuse P with the first

Piola-Kirchhoff stress tensor of Eq. (3.37)). To obtain a local form of this law note that the total

force is obtained by integrating local tractions (surface forces) t(x, t) and body (volume) forces

b(x, t), i.e.,

F (t) =

∫
∂Ω

t(x, t,n)ds+

∫
Ω

b(x, t)dx3 , (4.14)

where ∂Ω is the boundary of the volume element. Use Cauchy’s stress theorem of Eq. (3.34) and

the divergence (Gauss) theorem of Eq. (2.27) to obtain∫
∂Ω

t(x, t,n)ds =

∫
∂Ω

σ(x, t)nds =

∫
Ω

∇x ·σ(x, t)dx3 . (4.15)

Use then Reynold’s transport theorem of Eq. (4.12), with ψ replaced by the spatial velocity field

v, to transform the linear momentum balance of Eq. (4.13) into∫
Ω

[∇x · σ(x, t) + b(x, t)− ρ(x, t)v̇(x, t)] dx3 = 0 . (4.16)
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Since this result is valid for an arbitrary material volume, we obtain the following spatial (Eulerian)

local form of linear momentum conservation

∇x · σ + b = ρ v̇ = ρ (∂tv + v ·∇xv) . (4.17)

Note that this equation does not conform with the structure of a general conservation law in Eq.

(4.6). This can be achieved (prove), yielding

∂(ρv)

∂t
+∇x · (σ − ρv ⊗ v) = b . (4.18)

A similar analysis can be developed for the angular momentum. However, the requirement that

the angular acceleration remains finite implies that angular momentum balance, at the continuum

level, is satisfied if the Cauchy stress tensor σ is symmetric, i.e.,

σ = σT , (4.19)

to be derived in the tutorial. We note that the symmetry of the Cauchy stress tensor emerges from

the conservation of angular momentum if the continuum assumption is valid at all lengthscales.

Real materials, however, may possess intrinsic lengthscales associated with their microstructure

(e.g., grains, fibers and cellular structures). In this case, we need generalized theories which

endow each material point with translational and rotational degrees of freedom, describing the

displacement and rotation of the underlying microstructure. One such theory is known as Cosserat

(micropolar) continuum, which is a continuous collection of particles that behave like rigid bodies.

Under such circumstances one should consider a couple-stress tensor (which has the dimensions

of stress × length) as well, write down an explicit angular momentum balance equation and recall

that the ordinary stress tensor is no longer symmetric.

The local momentum conservation laws can be expressed in Lagrangian forms. For example,

the linear momentum balance, Eq. (4.17), translates into (prove)

∇X · P +B = ρ0V̇ , (4.20)

where P is the first Piola-Kirchhoff stress tensor of Eq. (3.37) and B(X, t) = J(X, t)b(x, t).

This equation is extremely useful because it allows calculations to be done in a fixed undeformed

coordinate system X. It is important to note that one should also transform the boundary

conditions of a given problem from the deformed configuration (where they are physically imposed)

to the underformed configuration.
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