
Victor S. L'vov 

Wave Turbulence Under 
Parametric Excitation 
Applications to Magnets 

8 Secondary Parametric Wave Turbulence . . . . . . . . . . . . . . . . . .  
8.1 Instability of Ground State and Auto-Oscillations . . . . .  

8.1.1 Properties and Nature of Spin Wave Oscillations 
8.1.2 Numerical Simulation of Auto-Oscillation 

in the S-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.1.3 Conditions for Excitation of Auto-Oscillations . . 

8.2 Route to Chaos in Dynamic Systems . . . .  .'. . . . . . . . . . . .  
8.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.2.2 Elementary Concepts of Theory of Dynamic Chms 
8.2.3 Chaos of Parametric Magnons in CsMnFJ . . . . . .  

8.3 Geometry of Attractors of Secondary 
Parametric Turbulence of Magnons . . . . . . . . . . . . . . . . . .  
8.3.1 Effective Phase Space 

and Dimensionality of Inclusion . . . . . . . . . . . . . . .  
8.3.2 Experimental Study of Attractor Structure 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  inCsMnFB 
8.4 Secondary Turbulence and Collapses 

in Narrow Parametric Wave Packets . . . . . . . . . . . . . . . . . .  
8.4.1 Equations for Envelopes . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  8.4.2 Stationary Solitons 
8.4.3 Average Characteristics of Secondary Turbulence 
8.4.4 Destruction of Parametric Solitons 

with Large Amplitude . . . . . . . . . . . . . . . . . . . . . . .  
8.4.5 Soliton Mechanism of Amplitude Limitation . . . .  

Springer-Verlag 
Berlin Heidelberg New York 
London Paris Tokyo 
Hong Kong Barcelona 

8 Secondary Parametric Wave Turbulence 

The present chapter deals with the non-stationary processes accompany- 
ing the parametric excitation of waves under stationary conditions when 
the pumping amplitude and other external parameters of the experiment 
are time independent. Under these conditions the system of interacting 
parametrically excited waves is in the flux equilibrium. Then the energy 
from the pumping W+ is equal to the dissipation rate of the energy W-: 
W+ = W+ = W .  By the presence of the energy flux through the system 
the flux equilibrium differs from the thermodynamic equilibrium at  which 
w+ = w- = 0. 

The behavior of nonlinear systems in the state of the flux equilibrium 
is much more complicated than in the state of thermodynamic equilibrium. 
Thus at  the thermodynamic equilibrium the average characteristics of the 
systems (e.g. occupation numbers) are time independent, i.e. stationary. In 
contrast, at the f l ~ u  equilibrium as the energy flux through the system in- 
creases the stationary state under a certain W = Wcr is no more stable. At 
W >> Wcr the behavior of these systems is usually chaotic and then their 
parameters (including W(t)) randomly depend on time. The classical exam- 
ples of such systems are hydrodynamic turbulence arising when a liquid (or 
gas) flows past an obstacle with a large velocity and the turbulent thermal 
convection emerging in liquid or gas in the gravitational field and under the 
influence of high temperature gradients. 

A nonlinear system of parametrically excited waves is not an exception. 
As the pumping amplitude increases (accompanied, accordingly, with the 
increase of the energy flux through the system) the ground state as a rule 
loses its stability. As a result the occupation numbers n(k, t )  and phases of 
the pairs P(k, t )  at large W behave chaotically. This physical situation we 
shall call secondary parametric turbulence. The term "turbulence" empha- 
sizes the similarity to the hydrodynamic turbulence. The attribute "sec- 
ondary" points to the chaotic behavior of the already averaged (over the 
quasi-Gaussian ensemble of the canonical amplitudes of the waves c(k, t), 
c*(k, t ))  quantities, i.e. double correlators n(k,  t )  and a (k ,  t )  of the para- 
metrically excited waves. The secondary turbulence of the parametric spin 
waves has been studied in detail. It will be discussed in the following sub- 
section. 

Budapest 
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8.1 Instability of Ground State and Auto-Oscillations 

8.1.1 Properties and Nature of Spin Wave Oscillations 

It is common knowledge that under parametric generation, the stationary 
mode often fails to be achieved and the magnetization is characterized by 
complicated variations with respect to some mean value. The basic experi- 
mental data on the auto-oscillations (AO) obtained for the high-quality YIG 
crystals under parallel pumping are as follows [8.1-31. 

1. A 0  frequencies are within the range from lo4  to about lo6 Hz (de- 
pending on the pumping power p and the magnetic field H). Under small 
supercriticality the A 0  spectrum consists of a single line. As the intensity 
increases the number of lines also increases and they are shifted towards 
higher frequencies. In particular, the components emerge at multiples and 
at half of the frequency [8.1-31. High above the threshold the spectrum has 
a noise character. 

2. The A 0  threshold h,, is usually very low, e.g. 0.1 - 1 dB (with respect 
to the threshold of parametric excitations) with the exception of the range 
of small k IV lo3 - lo4 cm-l, where the A 0  threshold notably increases. 
The threshold also increases when internal inhomogeneities are introduced 
into the crystal [8.1]. 

3. A giant crystallographic anisotropy of the A 0  is observed which sig- 
nificantly exceeds the anisotropy of the spin wave spectrum. Thus the A 0  
intensity in YIG when the magnetization is oriented along the axis [Ill] is 
about 200 times as large as the intensity of these oscillations along [I 001. 

The physical nature of A 0  was one of the main problems when para- 
metric excitation of magnons is considered. Various hypotheses have been 
proposed. The simplest of them [8.4, 51 suggests the presence in the para- 
metric magnon spectrum of several discrete frequencies corresponding to 
the eigen oscillations of the crystal. The beats between them are assumed 
to result in A 0  emergence. This hypothesis accounts well for some exper- 
imentally observed phenomena (A0 dependence on the intensity and di- 
rection of the magnetic field) but completely ignores the problem of the 
A 0  frequency dependence on the pumping intensity and the origin of the 
various discrete frequencies. Note that the S-theory predicts the existence 
of only one frequency wp/2 in the stationary state. The other group of hy- 
potheses is based on the assumption that parametric magnons influence the 
magnetization (see, for instance, study by Green and Schlomann [8.6]). If 
the average magnetization of the crystal follows the number of parametric 
magnons after a certain delay, magnetization A 0  can be built up in such a 
crystal. This viewpoint is expressed by Mono~ov in [8.1] who proceeded from 
the Bloch-Bloembergen phenomenological equations. Actually, however, the 
emergence of A 0  can be influenced only by the persistence of the thermal 
waves with the frequency of order wp. Therefore, the kinetic equation has 
to be used to study the influence of the thermal magnon persistence. It can 

be assumed that in most experiments the influence of the persistence can 
be neglected. Within the S-theory A 0  can be explained as a result of the 
instability of the stationary state described in Sec. 7.2. If at least for a single 
mode with m- number the instability conditions (7.1.7) are satisfied, then 
within the S-theory the system of parametric magnons have no stable states 
either. In this case there are two possibilities: either the system is pushed 
out of the S-theory applicability region (which is accompanied by the large 
amplitude increase of the excited waves) or the oscillations become steady 
in the stationary state. The development of these oscillations can be exper- 
imentally observed as the magnetization AO. The auto-oscillations can be 
expected to be, generally speaking, either regular or chaotic. 

8.1.2 Numerical Simulation of Auto-Oscillation in the S-Theory 

As is seen from (7.1.6) the instability of the stationary state is completely 
aperiodic (Ref2, = 0). Because of this it is very difficult to solve analyti- 
cally the problem of the nonlinear stage of its development. Thus computer 
simulation seems the best way out. However, to simulate the real situation, 
e.g. for YIG, would take too much computer time to be practicable. There- 
fore a computer simulation on the simplified modeis of the ground state 
seems reasonable. In [8.3, 71 the computer simulation of the A 0  excitation 
in the "two-beam" model is described where the parametric spin waves were 
taken to be concentrated at two fixed angles = 7r/2 and Oz = n/4. The 
coefficients S(k,  k') and T ( k ,  k') were chosen close to those calculated for 
YIG as the orientation H 11  [ I l l ]  (see below), so that the conditions of the 
zeroth mode instability were satisfied. 

Numerical experiment showed that for such a model there is A 0  of 
the amplitudes and wave phases on the beams (Fig. 8.1). The frequency 
dependence of these A 0  on the pumping level qualitatively agrees with the 
similar dependence ordinarily observed in the laboratory experiment. In 
addition, the two-beam model is used to simulate the development of the 
collective instability at m # 0. The number of parametric magnons at the 
nonlinear stage of this instability was studied. It is an interesting problem 
because at the linear stage no change of the sum ( N 1  + N 2 )  takes place. The 
beams were chosen where = e2 = w/2, c p l  = cp2 = ~ / 2 .  The experiment 
showed (Fig. 8.2) that the mode is established where both the difference 
and the sum (Nl f Nz) experience oscillations. The oscillatioils (N1 + N2) 
are due to the interaction of the collective modes with different m. 

The significant result of these computer simulations consisted in the 
proof of the fact that at p < pcrl 21 (1.0-1.5) dB the system of parametric 
waves enters a stable limiting cycle whose field of attraction is the entire 
phase space. At p > pcrl the paths near this cycle become exponentially un- 
stable, the average divergence increment per cycle increases proportionally 
to p - pc,l. At small values of this difference in the vicinity of the limiting 
cycle a narrow layer occupied by exponentially unstable paths emerges. 
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Fig.8.1. (left) Time dependence of total numbers of pairs on beams at the instability of 
a zero mode. Nl and N 2  correspond to O = 7r/2 and O = n / 4 ;  p = 2 

Fig. 8.2. (left) Time dependence of total numbers of pairs on beams at the instability of 
non-zero mode. Nl and Nz correspond to q5 = 0 and q5 = n / 2 ,  O = ~ / 2 ,  p = 2 

The divergence of the path has been studied in a laboratory experiment 
by Grankin et al. [8.3]. They recorded the dependences ~ " ( t )  of the dif- 
ferent pumping pulses of one series with fixed supercriticalities and fixed 
other experimental conditions on one and the same screen. The only dif- 
ference between successive pulses is in initial conditions at t = 0. At the 
supercriticalities p = 2.5 dB the successive curves ~ " ( t )  coincide. Above 
this supercriticality level when the AO-Fourier spectrum undergoes a sharp 
broadening the curves X"( t )  for different pulses begin to diverge. At first, 
the divergence of nearby paths is manifested only when the time is long. 
Then, as the supercriticality increases, the "scattering time'' becomes com- 
parable with the A 0  period 7- -. (3-5) /Ao and the successive curves X1r(t)  . , .  
comprise a broad band. 

In summary, it can be said that the computer simulation on the models 
reveals that within the S-theory equations the development of the internal 
instability of the ground state results in auto-oscillations. The properties 
of these AO, i.e. the dependence of the frequency and spectrum on the 
pumping intensity are comparable with the properties of the experimentally 
observed AO. In particular, under small supercriticalities both in laboratory 
and mathematical experiments A 0  prove to be periodic. An example of such 
a motion in the phase space is the limiting stable cycle. 

In the experiments of both types the transition to the stochastic A 0  as 
the supercriticality increases takes place not via addition of new types of 

~ - 

motion at incommensurable frequencies; it is accompanied by the broad- 
ening of the already existing spectral lines and is due to the decreasing 
stability of the phase paths leading to their scattering. 

This implies that the secondary turbulence of spin waves arises in ac- 
cordance with the concept of the strange attractor. The scenario of the 
route to chaos in the parametric turbulence will be treated in more de- 
tail in Sect. 8.2. For the time being discussing the rough properties of the 
parametric turbulence we shall only note that in computer as well as in lab- 
oratory experiments A 0  development does not influence significantly the 
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Fig.8.3. Divergence of the 
trajectories X " ( t )  in an 
experiment by Grankin et 

I I I al. [8.3]. (a) p = 2.6 dB; (b)  
10 20 30 40 t ,  ps p = 2.9 dB; (c) p = 3.4 dB 

average level of parametric waves. The computer simulatioll also shows that 
under the instability development the total number of parametric waves 
together with the observed value X r r ( t )  oscillate significantly at the zeroth 
mode and weakly when the instability is developed at higher modes. Inter- 
estingly enough, A 0  excitation in the computer simulation was as a rule 
accompanied by a decreasing average value of X I .  The same phenomenon 
was observed in the laboratory experiment [8.1]. 

8.1.3 Conditions for Excitation of Auto-Oscillations 

The instability criterion (7.1.7) enables us to predict the conditions under 
which A 0  are to be observed in laboratory experiments. Let us consider the 
interaction amplitudes S and T for YIG calculated by Musher, Starobinets 
and L'vov by (7.1.5) for the typical experimental situation, i.e. N = 113 
(sphere) wp/27r = 9.4 gHz, k = 0 ( H  = H,), w, = 4.9 gHz, w, = 0.23 gHz 
(room temperature). See Table 8.1 

Table 8.1. Interaction amplitudes S,  and T,,, for YIG (in units of 27rg2) 

Orientation To so T2 = T-2 S2 s-2 

[1001 0.28 0.52 0.11 0.01 -0.36 
[ I l l ]  -0.75 0.30 0.05 0.01 -1.27 

As can be seen, not only the values, but also the signs of the amplitudes 
depend on the magnetization orientation. Substitution of the table values 
into the instability criterion (7.1.7) shows that in the "easy direction" [ I l l ]  
there is instability with respect to the zero mode, whereas in the "difficult 
directions" [loo] all the modes in this situation are stable. Experimentally, 
at H = Hc there are no A 0  in the difficult direction up to the excesses equal 
to (6-7) dB corresponding to the second threshold. At the same time in the 
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easy direction intense A 0  are observed practically immediately above the 
threshold [8.5]. 

The conditions of A 0  excitation in various experimental situations have 
been studied in detail by Zautlcin and Starobinets [8.8]. By varying the 
Hamiltonian coefficients S,, T,,, within a wide range (the magnetization 
being varied by changing the temperature and the concentration of the 
admixtures as well as the shape of the sample, i.e. sphere, cylinder, disk, i.e. 
the direction of magnetization) they showed, in particular, that intensive A 0  
appear only when the zeroth mode is unstable with respect to the criterion 
(7.1.7). At the same time the instability of the modes with m = 0 is always 
accompanied by the appearance of A0  with a small amplitude (for details 
see Sec. 9.7). Other experimentally observed characteristic features of A 0  
can be easily accounted for by the S-theory. 

In conclusion, it must be noted that the simple A 0  theory described 
in the present section predicts that the threshold of their excitation h,, 
coincides with the threshold of the parametric excitation h,, and the A 0  
frequency at h = h,, is zero. Experimentally, we observe at the same time 
the finite threshold of A 0  and the non-zero initial frequency in the YIG crys- 
tals the threshold of auto-oscillations usually equals (0.1-1) dB. The initial 
frequency does not correlate with the value of the threshold. Depending on 
the constant magnetic field it varies within the range (lo4-lo5) Hz [8.5]. 
These facts can be explained by the influence of weak nonlinear damping, 
which does not significantly change the values and x", by the random 
inhomogeneities in crystals, by the absence of exact axial symmetry, by the 
feedback effect on the resonator, etc. To obtain the relative contribution of 
those mechanisms the auto-oscillations must be further studied both theo- 
retically and experimentally. 

8.2 Route to Chaos in Dynamic Systems 

We have already noted that the nonlinear system of parametric waves is 
an example of nonlinear dissipative systems which in the state of the flux 
equilibrium lose their stability as the energy flux W through the system 
increases. Under big W these systems are characterized by a most compli- 
cated chaotic behavior as a rule. In addition to the hydrodynamic systems, 
such as the atmosphere and the oceans of our planet, the chaotic behavior 
is characteristic of various systems in chemistry (e.g. Belousov-Zhabotinsky 
reactions), biology, electronics, solid-state physics, etc. 

The theory of dynamic chaos as a field of theoretical mechanics and 
mathematics which could be applied to the above named fields has inten- 
sively developed in the last decade. Several boolcs have been published on 
this topic (see, for instance, [8.9]), and the elements of this theory have 
already become a part of courses on theoretical physics [&lo]. 

A lot of interesting results were obtained when the route to chaos was 
studied under the parametric excitation of the spin waves [8.11-191. This is 
the reason for including this section. 

8.2.1 Introduction 

The transition to chaotic behavior under increasing W is known to be often 
rather abrupt. By analogy with the radio technical generator, such excita- 
tion will be called hard. As a rule, the turbulence properties under hard 
excitation vary greatly in different systevs and must be studied specifically 
by concrete sciences, i.e. hydrodynamic turbulence, laser physics, etc. 

In other cases the route to chaos is smooth and takes place through 
the succession of bifurcations successively making the system's behavior 
more and more complex. Under small supercriticalities when the turbulence 
excitation is soft the number of unstable modes participating in the motion 
can be small, e.g. two or three. LLThis enables us to assume that the types of 
stability losses of ... the continuum could be obtained essentially in the same 
way as the stability analysis of the periodical movement of the dissipative 
discrete mechanical system described by the finite number of the equations" 
[8.10]. Mathematically, it means that the dimensionality of the phase space 
N defined as the number of the ordinary differential equations of the first 
order with respect to time 

describing the system is finite. Moreover, in some cases the important fea- 
tures of the chaotic behavior can be effectively described in the phase space 
of the low dimensionalities at N E 3-5. In the limit of the small N different 
physical systems become more and more similar in many respects; the num- 
ber of common features increases as the dimensionality of the phase space 
N decreases. 

Let us consider as a limiting case the two-dimensional phase space con- 
centrated on a plane. Let the phase trajectories be attracted inside a certain 
area and never come outside it. Since the phase trajectories do not intersect 
topologically they can have only three types of behavior. These trajectories 
are either attracted to the stationary limiting point (pole) (see Fig. 8.4A) 
or they are wound around it (focus) (see Fig 8.4B) or they are wound on a 
limiting cycle (Fig. 8.4C). In the first case the system asymptotically passes 
to the stationary state, in the second case the transition to the stationary 
state takes place through the damping oscillations, in the third case asymp- 
totical behavior of the system is the non-damping periodic auto-oscillations. 
There are no other variants of behavior of the considered system. 

It must be emphasized that our conclusion about the time behavior of 
the nonlinear system is unrelated to its physical nature. This conclusion is 
based only on the fact that its phase space is two-dimensional and on the 
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Fig.8.4. Two-climensional attractors: limiting point, A;  stable focus, B; stable cycle, C 

assumption of the presence in this space of the asymptotically attracting 
area, i.e. an attractor. Accordingly, experimental manifestations of a non- 
linear dissipative system can help us to study the topology of its attractor 
on a plane, but will give us no evidence of its physical nature. Similarly, an 
experimental study of integers, consisting of counting apples or feeding bits 
of information into computers will give us no idea of the taste of apples or 
the physical structure of the computer memory. The different properties of 
integers, apples and computers are the objects of different sciences. Perhaps 
it is useful to know mathematics when studying apples. But will it make 
sense to study mathenlatics using only apples? 

This almost absurd example can help us to understand the relation of 
notions in the nonlinear physics of magnets and the modern theory of the 
route to chaos in simple dynamic systems. Indeed, what can we learn about 
an antiferromagnetic CuClz or ferromagnet Y3F5Ol2 when we observe in 
them the bifurcations of doubling of the magnetization auto-oscillation pe- 
riods [8.11,12]. What can be learn about the antiferrbmapets CsMnFs or 
(CH3NH3) CuC14 if we observe in them other scenarios of the route to chaos 
[8.15]? Nothing, I think except the almost trivial fact that these objects are 
nonlinear systems of general position and thus manifest the general laws of 
the route to chaos. 

Does this imply that the experimental study of chaos in magnets is not 
interesting? By no means. The mathematical theory of the route to chaos in 
simple dynamic systems requires not only computer studies but also physical 
experiments. Not, however, in order to check results like "two times two 
equals four" within the system of Peano's axioms, but, for example, in order 
to find new laws and scenarios. The universality of the laws of transition to 
chaos makes it possible to carry out these experiments on water and alcohol 
(in hydrodynamics) as well as on magnets. As in our previous example with 
the theory of integers and apples, the choice of the subject of inquiry is 
mostly a matter of personal likes and dislikes, availability and potential 
efficiency. 

Sections 8.2.3 and 8.3.2 present an example of using the magnets as a 
subject of chaotization process studies. These are results of Smirnov's inves- 
tigations of the route to chaos under the para~netric turbulence of magnons 

in an antiferromagnet CsMnF3. This study effectively employs some notions 
of the dynamic chaos theory, which will be briefly described in Sec. 8.2.2. 

Those readers who, first, had the patience to read my book up to this 
place, and, second, are not acquainted with the theory of dynamic chaos 
will be rewarded by the harmonic postulates of this fashionable science. In 
this case my task will be fulfilled. At any rate, the presented material is 
sufficient to form a balanced attitude to the dynamic chaos and its relative 
importance in the nonlinear wave theory. 

8.2.2 Elementary Concepts of Theory of Dynamic Chaos 

1 Landau-Hopf scenario. In order to analyze the ways of turbulence gen- 
eration, let us consider phase spaces with dimensionalities larger than two 
which admit asymptotic motion different from a stationary point or a limit 
cycle. For a long time the possible attractors for a dissipative system were 
considered a stationary point, a limit cycle, a two- or three-dimensional 
torus, etc. At the n-torus the system participates with n different periods 
T. From this viewpoint, stationary point and the limit cycle are 0- and 1- 
torus. If some of the periods prove to be commensurable, the dimensionality 
of the torus decreases and the torus will be called a.resonance torus. Thus, 
for instance, the trajectory on the surface of a two-dimensional resonance 
torus will be closed and topologically equivalent to a circle, i.e. 1-torus. 
In these terms, the well-known Landau-Hopf scenario of the route to chaos 
consists of the successive increase of the torus' dimensionality, the torus rep- 
resenting the system attractor. At large N the correlation functions of the 
system will be damped over the time of the order of Tj. However, over a very 
long period TR, the so-called Poincark recovery time, the system trajectory 
will pass arbitrarily close to the initial point and the correlation functions 
will abruptly and drastically increase up to the order of unity. The order of 
magnitude is 

where a is of the order unity. 
The behavior of the nonlinear system according to the Landau-Hopf 

scenario seems atypical, i.e. in the space of the system parameters it can be 
realized over the set of zero dimension. To put it simpler, the probability of 
such a scenario is vanishingly small and for it to be realized special efforts 
are necessary, for instance N + oo of non-interacting generators of non- 
commensurable frequencies should be built which will work for the common 
load. For more details about this scenario see Sect. 30 in [8.10]. 

2 Strange attractor. In 1963 Lorenz [8.20] considered a limitingly trun- 
cated system of equations of thermal convection in a plane layer heated 
from below. In a dimensionless form this system of equations is 
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where b, r and a are the dimensionless parameters. The phase volume of 
such a system decreases with time: 

where R is the vector x, y, z.  From the Lorenz equations it follows also that 

At large R the right-hand side is negative. This means that the distance 
between the points R and Ro = (0,0, a + r )  decreases with time, i.e. all the 
trajectories enter into some limited volume surrounding Ro. Inside this vol- 
ume there are no (in a certain area of changing parameters r ,  b and (T) stable 
stationary points and no stable limit cycles. As a result, phase trajectories 
falling into a limited volume and unable reach this stable manifold have to 
move in a very complicated and bizarre way. Some general considerations 
for the LLphase portrait" for the dissipative system where the trajectories 
are complicated and tangled (e.g. as in 18.101) can be given. As the system 
is dissipative the trajectories only enter a certain limited volume. To tan- 
gle the trajectories it is necessary that two arbitrarily close points denoting 
the initial conditions should move apart with time at a distance comparable 
with the dimensions of the attractor, i.e. all the trajectories should be unsta- 
ble. The attracting sets of limited and unstable trajectories (the possibility 
of their existence has been predicted by Lorenz [8.20] for the case of the 
system (8.2.1)) are now called strange attractors. 

Let us consider the geometrical structure in an n-dimensional space by 
studying the behavior of the bundle of trajectories on their way to the 
attractor [8.10]. In the cross-section of the bundle the trajectories fill a 
certain volume V in (n - 1)-dimensional transversal subspace. Under the 
motion along the trajectory the volume V(t) decreases because the system is 
dissipative (in the conservative case V is time independent by the Liouville 
theorem). However, in a certain amount m < (n - 1) of directions the 
bundle section broadens due to the exponential divergence of the unstable 
trajectories. 

In the remaining (n - m - 1) directions the bundle is compressed. The 
general compression must be stronger than the extension because the volume 
decreases. Along the trajectory the direction of compression and extension 
must change, or else the trajectories can fall out side the attractor. Therefore, 
the solid cross-section bends and at the same time flattens, bends again and 

so on. This process is sometimes called Baker's transformation because it 
resembles rolling the pastry, folding it up, rolling it again, etc. The cross- 
section of the bundle proves to be extended and folded many times. This 
happens not only to the selected bundle but to any of its parts. As a result, 
the attractor is a system of an infinite number of flat and infinitely thin 
layers connected through their sides and spaced infinitely close to each other. 
The general volume of the attractor in its n-dimensional space equals zero. 
Such sets are called the Cantor sets. They are characterized by the fractional 
dimensionality according to Hausdorf nH < n: 

where n ( ~ )  denotes the minimum number of the n-dimensional cubes with 
the edge E required for the coverage of our set. Clearly, for the part of the 
plane with the area S N(E) = S/E', therefore the limit of (8.2.5) is equal 
to two. For the line nH = 1, for the set of separate points nH = 0. For the 
Lorenz attractor nH Y 2.07 (for a = 10, b = 813, r = 28) [8.20] 

3 Feigenbaum scenario When analyzing possible scenarios of turbulence 
generation under the destruction of the limit cycle it proves possible to 
avoid analyzing the specific type of the dynamic systems, and its general 
behavior can be predicted by means of the PoincarC representation. This 
mapping is a set of intersection points of the phase trajectory with the 
surface in the phase surface transverse to it. The initial dynamic system 
makes it possible to determine basically the intersection coordinate Rn+l 
on the (n+l) th  round as a function of coordinate R, on the previous round. 
In such a function of succession arises: 

In many cases the trajectories in the transverse subspace come very close to 
some line. It significantly simplifies the analysis of the trajectory behavior, 
because the succession function turns out to be one-dimensional 

As can be easily shown (see, for instance, [8.10]), for the motion to be 
stochastic F(x) must be a non-monotonic function. Fezgenbaum obtained 
a fundamentally important result. He showed that for all the systems with 
one-dimensional non-monotonic mapping (8.2.7) depending on some param- 
eter W (e.g. on the Reynolds number, pumping amplitude or on the energy 
flux through the system) with the extremum of the quadratic form there ex- 
ists a qualitatively and quantitatively universal scenario of transition from 
periodic to chaotic motion, i.e. Feigenbaum scen,ario [8.21, 221. 

The most important features of this scenario are shown by the mapping 
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thoroughly studied, e.g. in [8.9]. The periodic motion (cycle) corresponds to 
the roots of the equation(8.2.8) at Xn+1 = X,. There are two such solutions 

As can be readily seen, within the range 112 < C < 312 the cycle X11 is 
stable, and in the range -112 < C < 112 the other cycle Xlo is stable. 
Therefore, as C decreases from 312 to 112, the coordinate X of the stable 
cycle increases from -1 to 0 and then in the range C from 113 to -112 it 
remains equal to zero. 

What happens in the range C = -112 - E,  E << l ?  In order to answer 
this question, periodical points of the period 2 must be considered. It can 
be readily obtained from the evident condition 

Here F2(X) is the square of the mapping F(X) ,  describing the mapping 
over two windings of the cycle 

At C > -112 (8.2.10) has the solution (8.2.9). At C = -112 the two 
additional solutions appears (namely x2f = *2), these solutions are stable 
at small E .  The generation of a pair of stable points at C < Cl = -112 
describing the cycle of double period is an example of bifurcated doubling 
of cycle. As C further decreases at some Cz < C1 the double cycle is no 
longer stable and a new cycle with the period 4 is generated. The infinite 
succession of the bifurcation of the period doubling cdnverges to the value 
C, = -0.78497. At C < C, the motion is chaotic. Feigenbaum showed that 
at large n the succession of bifurcation values of CH for arbitrary mapping 
with a single maximum has a universal behavior 

[Cn+i - C,]IICn - Cn-11 = 116 

with a universal value 6 = 4.6692 [8.22]. 

4 Reciprocal bifurcations of chaotic motion. In the previous subsection we 
gave a brief description of the succession of period doubling bifurcations for 
the mapping (8.2.8) with C changing from C1 = -112 to C, = -0.78497. 
What is the nature of motion for C < C,? 

This range has been studied by Lorenz [8.23], Collet and E c k m a n n  [8.24] 
and Hel leman [8.25]. In computer experiments they observed that as C 
decreases the bands of chaotic motion merge and experience inverse bifur- 
cations at some points C = C,. It was also found that bifurcations of the 
limit cycles with the period n = 6, 5 and 3 cutting the chaotic area. The 
reciprocal bifurcations of the chaotic bands obey the similarity law (8.2.12) 
with the same constant 18.261. 

5 Pomeau-Manneville scenario The quadratic mapping of the form 

demonstrate one more kind of bifurcation, i.e. the so-called reciprocal tan- 
gential bifurcation [8.27]. As values change from negative to positive the 
stable and anstable points of this mapping merge and vanish [8.28]. This 
bifurcation is characterized by another type of route to chaos-via intermit- 
tence. It is usually called the scenario of Pomeau-Manneville.  In this case 
the ranges of almost chaotic motion are chaotically overlapped by the suc- 
cessive ranges of irregular motion. The average length of coherent beams 
decreases as 114. Interestingly, the route to chaos in the system (8.2.8) 
from the integer cycles corresponding to the value C < C, when the C 
parameters increases (and not decreases) takes place in accordance with the 
scenario of Pomeau-Manneville without period doubling. 

In conclusion it must be emphasized again that the survey of the scenario 
of the route to chaos in this section is by no means exhaustive or complete. 
My intention was to give the reader the most important mapping used in the 
interpretation of experiments on chaos in rnagnets [8.11-191, and I mostly 
followed the textbook [8.10] and Smirnov's  doctorate thesis [8.28]. 

8.2.3 Chaos o f  Parametric Magnons in CsMnFs 

In recent studies of parametric secondary turbulence [8.11-191 this problem 
was connected with the modern ideas of chaotic dynamics of nonlinear dissi- 
pative systems. The first observation of a cornplete doubling route to chaos 
was made by Gibson and Jeffries [8.12] with the second-order Suhl process 
in a Ga-YIG. Waldener ,  Barberis and Yamazak i  [8.13] observed a route to 
chaos by irregular periods, and Yamazak i  [8.11] observed one period dou- 
bling but no chaos in AFM CuC12 . The first observation of subharmonic 
routes to chaos was made by Resende et al. in 1986 in pure YIG spheres. A 
detailed review of experimental studies of chaos origin in magnetic systems 
is given in [8.17, 191. In this section we shall consider only Smirnov's  re- 
sults concerning the antiferromagnet CsMnFa as an example of an advanced 
experimental study of this problem. 

1 Main results. In [8.16] the time dependence of the power W ( t )  absorbed 
by the sample of CsMnF3 was studied under different amplitudes of pumping 
h and varying values of the external magnetic field H. Depending on the 
values of p = h2/lz:h different modes of W ( t )  behavior were observed (see 
Fig. 8.5 [8.16]). These include stationary state W ( t )  (mode 0), periodic auto- 
oscillations of the relaxation character with the period t = 0.1 ms mode 
1. The bifurcations of doubling and quadrupling of the period of the basic 
motion, modes 2 and 4, were also observed as well as the cycles with periods 
3T, 5T and 7T, modes 3, 5, 7. The mode of chaotic motion was observed 
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Fig. 8.5. Diagram of stationary 
( O ) ,  ~eriodic  (1) - (7) and 
chaotic (a,al and b) regimes. 
Periodic situations of the 
corresponding multiplicity 
(from 1 to 7); a-chaos 1 (motion 

r 0 in one and two zones); a'-chaos 
I I I 1 (motion in four zones); 

0 1.5 '2.0 2.5 f H ,  kOe b-chaos 2.(after Srnirnov [8.16] 

H c  

whose spectrum contains merged lines at the frequencies f = 1/T, 1/2T 
and 1/4T which was called Chaos 1, and another type of chaotic motion 
with a wide spectrum called Chaos 2. The diagrams in Fig. 8.5 shows the 
general succession of bifurcations leading to changing of the modes. Fig. 8.6 
shows the cross-section of this diagram (with higher ~esolution of p) in the 
field H = 2.0 kOe. Following [8.16], let us treat this cross-section in more 
detail. 

2 Fine structure of the mode change of A 0  depending on pumping intensity. 
As can be seen from Fig. 8.5, the transition from the periodic mode of auto- 
oscillations of the absorbed power to "chaos 1" takes place in compliance 
with the Feigenbaum scenario, i.e. through period doubling. As described 
in Sec. 8.2.2, the analysis of the quadratic mapping (8.2.8) made it possible 
to clarify many other details of mode change under changing C parameter 
which, as it turned out, appear in experiment [8.16]. Fig. 8.6 shows the 
temporal sequence of the different types of microwave absorption observed 
in the field of 2.0 kOe when the pumping power was varied. Most consistently 
the Feigenbaum scenario and other details of the mode change typical of the 
mapping (8.2.8) are manifested as the intensity changes from high to low 
values. The process of the inverse bifurcation of doubling - the merge of 
external zones of the phase-plane diagram is clearly seen. The spectra of 
chaotic motion at the parameter values corresponding to these transitions 
must have a form universal for many systems [8.29] (see [8.9], Fig. 7.23). 
The spectrum obtained for the value C = Cz corresponding to the merging 

of the four zones into two has a sharp peak at the frequencies f / 4  and 
f / 2  and broad peaks of lower amplitude at the same frequencies. The wide 
and sharp peaks at the frequency f / 2  are characteristic of C = C1 (two 
zones merge into one). These spectra qualitatively agree with the spectra 
experimentally observed in [8.16]. 

The laws of transition from the loop modes with periods 7 ,5, 3 to the 
chaotic modes are of considerable interest. In the experiment [8.16] the 
transient (from cyclic to developed chaotic period) was observed only for 
the cycle with the period 3. As the power decreases the period is doubled, 
i.e. a cycle with period 6 is generated. The exit from the cycle 3 in the 
opposite direction (as the power increases) takes place in a different way. 
The spectral lines corresponding to the cycle 3 rapidly broaden and the 
real signal reveals the intermittence of wave packets from the cycles 3 and 
chaotic intervals. Unfortunately, in experiment [8.16] the intermittence was 
observed in a very narrow intensity range, so that it is not possible to 
obtain the power dependence of average duration of coherent wave packets. 
However, it can be positively assumed that in this experiment intermittence 
is due to the merge and vanishing of stable and unstable cycles, since the 
place of this mode change is determined by all the remain bifurcations. 

Following Lorenz [8.9] a dependence y,+l(y,) for'the chaotic mode (po- 
sition 8, Fig. 8.6) can be plotted where y, is the absolute value of the n-th 
minimum on the W ( t )  dependence. Such a plot determines the Poincard 
mapping for the surface parameterized by the condition of the maximum 
of this coordinate in the phase space. The plot of this dependence is shown 
in Fig 8.7A and has the form of a curve with the mininlum. According to 
Feigenbaum's theory, the system with such Poincard mapping during the 
transition to chaos nust experience a cascade of duplication bifurcations. 
This i~nplies [8.9] that close phase trajectories diverge exponentially with 
time, and that the attractor of our system is strange one. The construction 
of mapping y,+l (y,) for the chaotic mode near the intermittence of the 
cycle 3 and also for "chaos 2" brings about no unambiguous dependence 
(Fig. 8.7B). The same situation with mapping is evidently also observed in 
the numerical experiment on the mapping (8.2.8), and the C value close to 
the value under which cycle 3 arises at the approach from the condensation 
point of duplication bifurcations (see 18.91 and Fig. 15 in [8.9]). 

Note also that the transition from the mode of chaotic motion corre- 
sponding to the position 12 on Fig. 8.6 to the mode of the position 13 is 
accompanied by a small hysteresis and is usually associated with the two 
chaotic attractors of the system in this range of the parameter values. 

A close observation of the transition from the cyclical mode of the fun- 
damental cycle to "chaos 2" revealed that this transition also ta,kes place 
through intermittence. Experiment shows that the mean value (11~) ( r  is 
the duration of coherent wave packets) depends on E = (H - H,,) as E' (see 
[8.16], Fig. 11). The "chaos 1" is characterized by the order close in time, 
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/ i i2*  arb.units I 1 
Fig.8.6. Sequence of transformation of periodic and chaotic regimes in a field of 2.0 ltOe 
as the power is varied. (1)-steady state; (2)-cycle of fundamental period; (3)-cycle 2; (4)- 
cycle 4; (5)-chaos of four zones; (6)-chaos of two zones; (7)-cycle; (8)-chaos of one zone; 
(9)-cycle 3; (10)-cycle 6 = 3 x 2; (11)-chaos of one zone; (12)-zone contraction; (13)-chaos 
of one narrow zone; (14)-cycle 4; (15)-cycle 2; (16)-cycle of the fundamental period; (17)- 
steady state. The arrow points to the value of h2 at which the intermittency of cycle 3 is 
observed 

Fig. 8.7. (A) PoincarC mapping for chaotic regime 8 in Fig. 8.6, (B) for chaos (after [8.16]) 

which is confirmed by the observed dependence y,+l(y,) (Fig. 8.7A) and 
also a fixed hierarchy of the mode transformations under intensity changes 
(Fig. 8.6). 

In conclusion, we can say that in the discussed example of the secondary 
turbulence in the antiferromagllet CsMnFB the route to chaos follows the 
Feigenbaum scenario (through period duplication) if the pumping interisity 
is increased under an increasing magnetic field. The Pomeau-Manneville sce- 
nario is set (transition through the intermittence of coherent wave packets). 
Many details of the evolution of the time, spectral and amplitude motions 
of the system of parametric magnons are observed, theoretically predicted 
on the basis of the quadratic mapping (8.2.8), i.e., periodic motion with the 
period multiple of 3,5,7, bifurcation of the cycle 3 intermittence, merging of 
chaotic zones. 
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8.3 Geometry of At tractors of Secondary Parametric 

Turbulence of Magnons 

8.3.1 Effective Phase Space and Diinensionality of Inclusion 

As has already been noted, the modern approach to the problem of turbu- 
lence generation is based on the assumption of the finite dimensionality of 
the phellomena which determine the develop~nent of instabilities. Although 
the rigorous mathematical formulation of this statement, i.e. the theorem 
of central variety [8.30] has been proved only for the bifurcation of stability 
loss of the stationary point, there are intuitive arguments [8.10] in favor of 
the existence of a finite set of essential modes or degrees of freedom which 
determine the system dynamics over a long time and for more complicated 
modes of motion. 

In this respect it is interesting to obtain experimentally the number 
of independent variables unambiguously describing the potentially infinite 
dimensional motion of the dissipative continuum system when the number 
of degrees of freedom really involved in motion is not known beforehand. 
To define the necessary number of such variables will mean to construct 
one-to-one mapping of the phase space of the asymptotic motion inode onto 
the Euclidean space of these variables; therefore this number can naturally 
be called the dimensionality of inclusion 11, [8.31-331. 

The first attempts to construct an infinite dimensional phase space on 
the basis of measurement results were associated with the simultaneous mea- 
surements of a number of independent quantities in hydrodynamics [8.33, 
341. The next important step was to prove the fact that the phase coordi- 
nates X,(t) for time t may can be talien in the form X3(t) = a[t + (i - l)T], 
where a(t) is the only measurable quantity and T is the shift in time [8.31, 
321. For the position P of the mapping points on the trajectory in the equiv- 
alent phase space to be in one-to-one correspondence with its position in the 
real phase space of the system the number of variables XI must be not less 
than (2nH $1) where fz~-1 is the dimensionality of the attractor according to 
Hausdorf in the real phase space [8.32]. In cases when the attractor's geom- 
etry is simple and its mappings onto the space of the equivalent variables 
have no self-cross sections, the number n, can be decreased down to n ~ .  
In [8.32] - a fullda~nental research for this analysis - this procedure was 
shown to obtain the correct topology of the attractor as well as to enable 
one to accurately determine the values of all the Lyapunov exponents. The 
physical meaning of this procedure consists in the fact that the values of one 
variable (called T) are determined by the interaction with all the essential 
variables of the problem. Therefore the evolution history of this variable 
a(t) contains (in indirect form) the information about the values of other 
variables in previous times. 

In order to determine the n coordinates X3(t) of the point in the equiv- 
alent phase space measurements of the value of one coordinate a(t) over n 
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times are used, i.e. the data are not talcen from nowhere as it may seem. 
The experimenters must find very attractive such a construction algorithm 
of phase space of any dimensionality by means of measuring the time de- 
pendence of only one value, because they always have time but not always 
the chance to put any amount of sensors on the object of their observation. 

If the number of important variables n, is not known beforehand (as 
is usual in the case of distributed systems) it must also be found from the 
experiment how many coordinates describe the evolution of the system. We 
could employ here a convenie~lt geometric criterion formulated in [8.33], 
it is equivalent to the distribution criterion of the joint probability [8.31]. 
If n > n,, then any measurable quantity y(X) must be a function of the 
constructed n-phase variables y(X) = f (XI,  X'z, ..X,). If n < n,, then in 
the general case y will not be a function of XI ... X,,. than y should be 
added as a n + 1 coordinate. Therefore, beginning with coordinate n = 1 
it is necessary to add new coordinates one by one and to check for the 
functional dependence on the previous coordinates. Under the moving point 
X ( t )  the repetition of the vector X results in the repetition of y if there 
is a functional dependence and brings about no such repetition if there is 
no such dependence. This circulnstance is conveniently checked graphically. 
To this end we plot as abscissa the distance r: = Cy==1(X3(t) - Xy)2  from 
the current position of the point on the attractor to some fixed point a' on 
this attractor. On the y-axis we plot the value d = IX,+] ( t )  - Xz+l 1 .  If the 
above described functional dependence exists, then d + 0 at r, -+ 0. Let us 
call this check of the functional dependence the criterion 1. To realize this 
criterion in an n-dimensional sphere with a small radius there nlust be only a 
few points on the attractor unlike the methods which'determine Hausdorf's 
dimensionality of the attractor. The authors of [8.33] formulated another 
less exact criterion (let us call it criterion 2) which excludes all the snlall 
scales. According to the criterion 2 the dimensionality n ,  is achieved if the 
envelope of the trajectory on the plane r,d is completely below the straight 
line d = I ir  where I i  E 1. The criterion 2 can be varied usefully for'large 
dimensionalities of inclusion when the number of the experimental points 
on the attractor in the volume limited by small linear dimensions is small. 
The dimensionality n, obtained by the criteria 1 and 2 in some specific cases 
can be decreased, for instance, by means of additional cross-sections, as will 
be described below, or by using the rotated coordinate system. 

8.3.2 Experimental Study of Attractor Structure in CsMnFs 

In the present section we shall dwell further on the interesting results ob- 
tained by Smirnov [8.6] in his research on the secondary paranletric turbu- 
lence of magnons in CsMnF3. Fig. 8.8 shows projections of attractors onto 
the plane W(t ) ,  W( t  + T) taken from this work. Modes (I), (2), (3) on this 
figure correspond to the "chaos 1" on the diagram on Fig. 8.5 and to the 

modes (5), (8), (11) on Fig. 8.6. The modes (4) and (5) on Fig. 8.8 corre- 
spond to "chaos 2" on the mode diagram. The mode (4) is transient from 
the cycle of the basic period to "chaos 2". 

Fig.8.8. Phase portraits for the periodic (0)  and chaotic regimes (1-5) (following [8.17]) 

Constructing the trajectory on the plane r,,d we obtain by the criteria 
the following dimensions of inclusion: for modes (I),  (2), (3) n, = 3, in the 
mode (4) n, = 3, for mode (5) - n, = 5 by criterion 1 and by criterion 2. 

The shape of the attractors included into the 3-dimensional space can 
be studied in detail by means of plane cross-sections. The points where the 
phase trajectory crosses the intersecting plane are located on line segments, 
i.e. the attractor is formed from a two-dimensional band which at the inter- 
section with cross-secting planes form the line segments. These plane bands 
form foldings as well as the branches in the band planes, and afterwards the 
branch is imposed on the main part of the band. 

By constructing a number of cross-sections we can obtain an unambigu- 
ously topological structure of the attractor for each of the modes (I) ,  (2), 
(3), Fig. 8.9 shows the topological equivalents of these attractors. 

For the mode (1) the attractor is topologically equivalent to the Rossler 
attractors [8.9] for those parameter values under which the motion takes 
place in two zones, i.e. it is a two-loop spiral from a flat band with folds 
(see Fig. 55 [8.9]) I11 the Rossler attractor under its evolution towards the 
increase of the area of chaotic change of variables the foldings are embed- 
ded into each other, which results in the loop been formed from a plane 
strip of the flat band with a fold. The chaotization of the motion in this 
case occurs at the expense of the divergence of the trajectories in the ba.nd 
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Fig. 8.9. Topological equivalents of the attractors for the regimes 1-3. The arrows indicate 
the folds 

plane and their missing as a result of folding (the above named Baker's 
transformation). 

A spin-wave turbulence attractor develops in a different way. In the 
transition to mode (2) a small strip branches off the plane, departs from 
the large loop und is superposed on the trajectory of the small loop as the 
planes graduallally converge. Such a chaotization of trajectories takes place 
in the Lorenz attractor. 

In the attractor of the mode (3) the edges of the band merge at the small 
and large loops and the branching-off belt of the Lorenz attractor type passes 
over from the internal orbits to the external orbits malti~~g there one more 
folding. 

Therefore, the attractors for the modes corresponding to the "chaos 1" 
can be constructed from the elements of the Rossler and Lorenz attractors. 
They correspond to the motion with the least state of chaos in the sense 
that the phase trajectories in them diverge in one direction only (they have 
only one positive Lyapunov exponent). 

The described cross-sections also reveal the traces of the fractal structure 
of the attractor, i.e. in the layer which can be called two-dimensional with 
some finite accuracy there turns out to be one more layer than the resoktion 
scale, which in turn, must also consist of layers, etc. Thus it can be seen 
on the cross section 5 that the attractor band giving a branch of the cross- 
section inclined to the vertical axis of the figure of about 45' is layered. 

For modes (4) and (5), the cross-section (Fig. 4 in [8.16b]) show that the 
projections of the corresponding attractors in the three-clirnensional spa.ce 
are solid: the points where the trajectories pierce the cross-section planes fill 
the two-dimensional sections. Therefore, the trajectories in mode (4) mix in 
the solid tube of the trajectories (convergence takes pla.ce in two directions, 
and the dimensionality of the flux is not less tban 4) and for nlode (5) 
the trajectories miss in the space of still larger dimensionality, although its 
dimensionality is limited and does not exceed 5. 

In conclusion I should like to emphasize that the information on the 
dimensionality of the attractors of different dynamic system is undoubtedly 
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necessary for the study of their statistical behavior. This, however, is only 
a small part of the information required. Again I should like to bring an 
analogy. Both dogs and chairs have four legs unlike the three-legged pianos 
and two-legged ostriches. Does this imply that the statistical behavior of 
dogs and chairs is similar and ostriches resemble pianos more than dogs? 
By no means. But, on the other hand, the information about the number 
of legs is not useless. Thus, a three-legged chair will fall more often and a 
dog devoid of one leg will also beha.ve strangely. Similarly, the information 
about the attractor dimensionality is interesting not only from the geomet- 
rical, but also from general point of view. It is necessary, for instance, when 
seeking equations simpler than the input equation that determine the be- 
havior of the dynamic systems in the range of supercriticalities where the 
dimensionality of the attractor is significantly less than the dimensionality 
of the phase space. 

8.4 Secondary Turbulence and Collapses 

in Narrow Parametric Wave Packets 

Throughout this book the threshold of the parametric instability has been 
assumed to be minimum for the wave pairs with vectors f k filling line or 
surface in k-space. The phase sum in the pair is in this case a dynamic 
variable and individual wave phases are chaotic with a good accuracy. Now 
we shall describe the situation when the excitation threshold is nlininluln 
for the only pair f Lo, e.g. under parallel pumping in uniaxial ferromagnets 
with the anisotropy of the "easy-plane" type. The basic peculiarity of the 
problem is the narrowness (in each direction) of the wave packets excited in 
the k-space. On the one hand, in this case we cannot employ the statistical 
description as in the S-theory, on the other hand, this enables us to reduce 
the interaction Hamilt onian using other parameters, i.e. the narrowness of 
the packet. To this end, the problem must be formulated in terms of complex 
amplitudes of the envelopes of the waves. 

8.4.1 Equations for Envelopes 

By using the canonical equations of motion with the exact Hamiltonian 
'Flint = 'FI, + 'H4 given by (5.2.1) and (1.1.32) and assuming that then in 
the k-space narrow wave packets are excited 

we also obtain, as in Sec.4.1., the equations for the complex amplitudes of 
the envelopes A(r , t),  B ( r  , t ) .  These are the Fourier compone~lts of A ( K ,  t) 
and B(IE,~) .  The resulting equation has the form 
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where 

T = T(k0, ko; ko, ko)/2 , S = T(ko, -Lo; Lo, -ko)/2 

(the amplitudes of wave interaction). Equations (8.4.1) have a trivial solu- 
tion 

A(r) = (AoIexp(-iPr) , B(r)JAol exp(-iG) , 

21SIA; = d m ,  sin(!Pl + $2) = y/hV , 
!PI = !P2 = @ / 2 ,  (8.4.2) 

corresponding to the excitation of a standing wave f k o .  I showed [8.35] that 
the solution (8.4.2) is practically always unstable with respect to increasing 
valuation of amplitudes and phases of envelope waves 

The development of the instability significantly depends on the ainpli- 
tudes of the interaction Hamiltonian. With the exception of the case T > 0, 
S > 0, which will not be discussed the instability increment is maximunl on 
the surface K. I k and has the form [8.35]: 

At the distance from the surface it decreases rapidly. Because of this the 
main properties of the nonlinear stage of the instability can be described by 
means of the two-dimensional equations (8.4.1) where A and B depend only 
on the coordinates x and y orthogonal to v. The upper and lower lines in 
the expression (8.4.3) correspond to perturbations of the type SA(r,T) = 
ztSB(r,t). When T > 0, S > 0 the perturbation of the type SA = -SB is 
seen to have a reserve of stability. As shown in [8.35], the relation A(r, t )  = 
B(T, t)  is also vdid on the nonlinear stage of motion. Limiting ourselves for 
simplicity by the case w" > 0 we can reduce (8.4.1) by changing the scale 

Here we determined w(k0) by the condition of external stability. Thus the 
most stable standing wave is selected for which, as shown in [8.35], the area 
of the positive increment in the k-space is limited: U(K) > 0 at h: < K, where 
K., << ko. The nonlinear instability stage of the plane standing wave for the 
further development will be studied within the scope of (8.4.4) formulated 
here. 

8.4.2 Stationary Solitons 

The simplest variant of nonlinear behavior of the system is its transition 
to the stationary state different from the plane standing wave A = const. 
Therefore in this section we shall consider the stationary solutions of the 
basic equations (8.4.4). As a rule, these solutions are deep non-sinusoidal 
variations of the amplitude A(r) and phase @(r) and they can naturally be 
called solitons. 

The solitons with a constant phase @(r)  = @ o  can be studied most 
conveniently. It follows from (8.4.4) that 

hV sin Go = y , 

and for C = JA(r)J we have the equation 

where Co must be understood as the initial amplitude of the pair. Taking 
into account that hV cos + SC: = 0 let us write (8.4.5) as 

For the plane solitons C(x) this equation describes the motion of the 
nonlinear oscillator with the coordinate C in the potential field U(C) = 
FC2(2C: - C2)/8 where x acts as time. The behavior of the solution is 
characterized by the "energy" of the oscillator. The case F > 0 is the most 
interesting because in this case there exist solutions with a little difference 
from the plane wave. They are realized at E close to Emin = FC,2/8 and are 
weakly modulated plane wave C(x) = Co - Cl cos K O X ,  where K: = -FC:. 
Such solutions (CI << Co) we shall call smal l  solitons. As the energy in- 
creases the amplitude and the oscillation period increase. At E = 0 

and passes to the solitary wave, i.e. the single sol i ton which is the analogue 
of the plane self-focusing beam in the nonlinear medium. At E > 0 the 
solution resumes its periodic structure, but now it changes within the limits 
symmetrical about zero. Small solitons with the variable phase 
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have the size 

We draw attention once more to the evident fact that the characteristic 
dimensions no and nl of the small solitons correspond to those K for which 
the increment of the plane wave described in [8.35] becomes zero: 

When studying very deep solitons with a variable phase when in (8.4.4) the 
damping and pumping can be neglected we again come to (8.4.6) with the 
potential 

where a is an arbitrary constant. There are also deep solitons moving with 
a constant velocity. In this case the term v2C2/8 is added to the potential 
of the deep solitons. 

The analysis performed by L7vov and Rubenchik [8.36] enables us to 
assume that all the stationary solitons in (8.4.4) are unstable. In the same 
work the initial nonlinear stage of this instability was treated and special 
attention was paid to the case when the increment was abnormally small. 

Interestingly, the nonlinear interaction becomes significant at very small 
amplitudes. Nevertheless, it does not lead to the limitation of the ampli- 
tudes. There is only a decrease in the rate at which the initial perturbation 
grows thus slowing it down significantly. In this case the amplitude increases 
as &. A narrow in the k-space wave packet is generated (ti KO << ko, 
AK c. KO). Such a state is highly turbulent and will be studied in the next 
section. 

8.4.3 Average Characteristics of Secondary Turbulence 

First, let us estimate the width of the area excited in the k-space at ar- 
bitrary supercrit,icality. It follows from the basic S-theory that in the case 
under discussion when V(k) has its maximum at the point Lo the packet of 
parametrically excited waves relaxes to the standing n~onochromatic wave 
with L = Lo if the individual wave phases can be considered random. It is 
sufficient for the phase raildonliiess that the phases of two waves in a pacltet 
have to diverge at a value of about unity over the time less than the charac- 
teristic time of the nonlinear interaction. This takes place in a packet with 
( L I ~ ) ~  >> K; = SA;/wr'(k). Therefore the pacltet with Ak >> K O  narrows up 
to the size N no and its meail aniplitude relaxes to the value Ao. But if 
Ak << KO, then such a packet is unstable with the increment (8.4.3) with 
respect to the perturbations with rc -- no and, consequently, will broaden 

up to dk K O  Jw. Note that in the wllole area of the turbu- 
lent motion the instability increment (8.4.3) is positive in the narrow layer 
KU 5 SA; close to thc plane K l v. So tlle turbulcnce considered is almost 
two-dimensional, nainely : 

The mean level of turbulence A2 cannot differ greatly from A; given by 
the (8.4.2). Indeed, as has already been noted, it was shown in [8.35] that 
the monochromatic plane wave is stable with respect to the short wave 
perturbations with K cz ko only if the amplitude equals to Ao. Evidently, 
such instability is retained also for the pair modulated with K << ko. So if 
A; differs appreciably froin A2, short wave modulations are excited, which 
contradicts the above-found narrowness of the packet. Therefore, the insta- 
bility development of the plane wave 1ea.d~ to a strong quasi-two-dimensional 
wave turbulence of the modulatiorl A(r , t )  with a nlean level 

and with the modulation depth of the order unity, characteristic frequency 
of motion (h l r -  y) and with the characteristic scale in the coordinate space 
r l  KC' > k ; ' J m .  We call say that there arises a dynamic soliton 
structure with the coherence length of the orcler of the soliton size, i.e. 
2/*/Ao which changes significantly in space over a time l/(lzV - 7). 

8.4.4 Destruction of Parametric Solitons with Large Amplitude 

111 the areas where tlie soliton ainplitude during the turbulent inotion proved 
to be anomalously large A >> A. damping and pumping in the equations of 
inotion can be neglected, because over tlle characteristic time of the problenl 
1/SA2 the system will not have enough time for significant energy exchange 
with the thermal bath and pumping. In this approxiination (8.4.1) describe 
the non-stationary behavior of wave pair i r ~  a collservative mediu~n. The 
behavior of one alnlost n~oiiochroinatic wave in the nonlinear medium has 
bren experimentally and theoretically studied using computers in associa- 
tion with the problems of nonlinear optics [8.37], plasma and hydrodynamics 
l8.38, 391. The phenornenoil of light self-focusing was discovered [8.40]. Later 
it was shown that the self-focused light bearn is unstable, in soinc cases this 
instability leads to tlie short-time collapse of the beam [8.41, 431. 

It will bc sllown below that similar plienomena take place also in our 
case of the wave pair. Tlle dircct calculatioil can show that (8.4.1) haw tlle 
following integral of motion: 
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Let us show that its sign significantly determines the system evolution. Let 
us consider the second derivative of the clearly positive R2 

Direct calculation with the help of (8.4.1) where (with respect to the pa- 
rameter d- << l )  the second derivatives with respect to z can be 
neglected shows (see Sec. 1.5.4) that d2R2/dt2 = 21. Thus, 

R(t) = ~t~ + 2at + ,b' , (8.4.15) 

where a and are the constant integrations. Clearly, over a finite time 
R2(t) becomes negative when I < 0; this fact contradicts (8.4.14). This 
means that the solution of (8.4.1) "breaks" over the finite time. 

Let us study this phenomenon in more detail. To this end, within the 
frame of the two-dimensional (8.4.4) (where A(x, y) = B(x, y)) let us com- 
pute the time evolution of the axially symmetrical initial distribution 

simulating the local increase of the amplitude spontalleously arising during 
the turbulent motion. It would be natural to select a quarter of the length of 
the envelope corresponding to the maximum increment as a characteristic 
length a where A(r,O) - A. decreases to zero. It gives the estimate 

Figures 8.10, 11 show the results of the computer simulation [8.43]: the 
evolution of the amplitude IA(0, t)l and of the phase P(0, t) in the center of 
the packet (Fig 8.10), amplitude distribution (A(r, t)l for some characteristic 
times (Fig. 8.11). Clearly, there is some "critical" modulation depth Ii,, 
such that at I< > I<, the packet collapses over the finite time whereas the 
amplitude in the center increases indefinitely. The critical values of II, are 
given in Table 8.2. 

Table 8.2. Dependence of critical initial amplitude I(, on the pumping amplitude: I(1 < 
I(, < I(z (for I( = IC1 the packet still spreads, whereas for K = it collapses) 
---- . - .. . . - . - .. --- 
- - hV 1 Ii-2 - -  hV 1 I<l 

7 
I i z  

7 

23.0 24.0 1 3.0 3.1 
l o r 2  10.5 11.0 2 2.6 2.7 
10-I 5.4 5.5 3 - 0.5 
0.4 3.4 3.5 

It can be seen that at hV - y << y the critical amplitude Kc >> 1. To 
understand this fact, note that the phase @(r, t)  near the focus r = 0 of 

Fig.8.10. (left) Evolution of the amplitude A(0, t )  (A) and phase #(0, t )  (B) a t  the center 
of a packet for hV = 27, T = -S > 0. Curves 1, 2 and 3 correspond to  Ic = 2.3 and 3.5, 
respectively. For the sake of clarity the vertical scale for curve 3A is increased by a factor 
of 20 

Fig.8.11. (right) Distribution A ( r , t ) ,  for hV = 27, T = -S > 0, Ic = 3.5. Curves 1, 2 and 

3 correspond to yt = 0.05, 0.125 and 0.2, respectively; a = 0 . 8 m  

the collapsing packet increases monotonically. This was analytically shown 
in [8.44] and is clear from Fig. 8.11 at t > 0.2. The rotation of the packet 
phase with respect to the pumping phase leads to the fact that the energy 
flux to the vicinity of the focus stops; therefore for the collapse the value 
SA2 must be at least of the order which significantly exceeds the mean 
level of turbulence SA: 2 J& in the range hV - y <i y. This result 
((I& >> 1 at hV - y << y) is weakly dependent on the choice of the initial 
distribution phase. 

8.4.5 Soliton Mecl~anism of Amplitude Limitation 

As already noted the depth of the amplitude modulation in the turbulent 
motion is of the order unity, and therefore the probability of formation 
of solitons with the amplitude significantly exceeding Ao, is exponentially 
small. This inlplies (see Table 8.2) that slightly above the threshold there 
(hV - y 5 y) is almost no soliton collapse. It is clear from Fig. 8.10 that the 
solitons with the amplitude 1 < I< < I& are dispersed. With increasing h 
the critical value I{, decreases and there is a characteristic amplitude h, at 
which h', CY 1. Note that the kind of initial distribution (8.4.16) is to a large 
extent arbitrary, and afterwards under amplitude hc we shall understand 
such value of the pumping amplitude above which practically any area with 
the characteristic diameter l/tio is covered during the collapse. As is seen 
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from Fig. 8.12 (hV = 47) for the initial packet with small I< < 1 as a result 
of parametric instability the amplitude in the central area increases with 
the characteristic increment of the order of hV up to the values exceeding 
unity, after whicll a quick collapse taltes place. This meails that under h > h, 
nonlinearity not only fails to hinder the instability clevclopment, but, on the 
contrary, leads to an acceleration of the increase and the collapsillg of thc 
paclce t . 

Let us consider the phenomena occurring at h > h,. Evidently on study- 
ing the evolution of the collapsing soliton the influence of the pumping and 
damping can be neglected. Equation (8.4.4) in this case is transformed to the 
nonlinear parabolic equation. The properties of such equations have been 
studied in detail in connection with the problem of the light self-focusing. 
As shown in [8.40], the amplitude in the soliton center rapidly increases in 
time: A(0,t) - (t - to)-2/3. At the same time its radius decreases so that 
the process of collapse entraps the strictly definite amount of energy 

Fig. 8.12. Evolution of A ( 0 , t )  
at the center of a packet for 
h V = 4 y ,  T =  -S 

When the wave amplitude in the collapsing soliton is large enough the non- 
linear damping which leads to the fast damping of the soliton energy bc- 
comes essential. The effective nonlinear cla~nping can be estimated as YNL 

I,',ni/rwA: - 1/r, where r is the time between two successive collapses in 
the area of the size 6;. According to the dimensional estimation r l /hV 
at h > h,. Talcing into account this nlechanisirl of energy dissipation leads 
to the fact that the mean amplitude of the turbulent pulsations (A) be- 
comes less than Ao, and the susceptibility XI' with the increasing amplitude 
h does not decrease but reaches the plateau whose order of magnitude co- 
incides with the maximum 

A promising method of experimental research of the strong soliton tur- 
bulence of parametrically excited spin waves is the measurement of the 
spectral density of the electro-magnetic irradiation of the ferromagnet at 
the frequencies close to the pumping frequency up.  At h < h, when the col- 
lapses are rare the spectral density of the noise (h2), is close to the Gaussian 

with the width Iw - w,l - -y.J2)=-T. At h > h, the significant contribution 
to irradiation is made by the collapsing solitoils where the phase of the pair 
P ( T , ~ )  breaks away from the pumping phase and begins to rotate quicltly 
by the law P(t) (t - tC)-'l3 (see [8.41]). The time of breaking away of the 
phase and several first turns are distinct in Fig. 8.11. 

The fast rotation of the phase leads to the significant broadening of the 
irradiation spectrum (h2), which can be used in recording the collapses. By 
making use of [8.44] we can show that (h2), (w - w ~ ) - ~ / ~ .  Non-linear 
damping limiting the amplitude i11 the collapse A < A,,,,, must cut the 
irradiation at the frequency SA;,, - lwmax - wpl. 




