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Delta-T shot noise is activated in temperature-biased electronic junctions, down to the atomic
scale. It is characterized by a quadratic dependence on the temperature difference and a nonlinear
relationship with the transmission coefficients of partially opened conduction channels. In this work,
we demonstrate that delta-T noise, measured across an ensemble of atomic-scale junctions, can be
utilized to estimate the temperature bias in these systems. Our approach employs a supervised
machine learning algorithm to train a neural network with input features being the scaled electrical
conductance, the delta-T noise, and the mean temperature. Due to limited experimental data,
we generate synthetic datasets, designed to mimic experiments. The neural network, trained on
these synthetic data, was subsequently applied to predict temperature biases from experimental
datasets. Using performance metrics, we demonstrate that the mean bias—the deviation of predicted
temperature differences from their true value—is less than 1 K for junctions with conductance up
to 4G0. Our study highlights that, while a single delta-T noise measurement is insufficient for
accurately estimating the applied temperature bias due to noise contributions from other sources,
averaging over an ensemble of junctions enables predictions within experimental uncertainties. This
demonstrates that machine learning approaches can be utilized for estimation of temperature biases,
and similarly other stimuli in electronic junctions.

I. INTRODUCTION

Machine learning (ML) methods have found diverse
applications across various fields, including materials sci-
ence, quantum science, and nanoscience, offering an array
of tools such as supervised, unsupervised, and reinforce-
ment learning, generative models, and quantum machine
learning tools. In the field of Physical Chemistry, re-
cent efforts have focused on leveraging ML for generat-
ing machine-learning potentials, accelerating electronic
structure calculations, unraveling structure-function re-
lations, predicting crystal structures, and more [1, 2].

Measurements of electron transport in single-molecule
junctions can uncover information on the structure and
dynamics of the conducting molecule [3]. For example,
single-molecule junctions can be used to probe electron-
vibrational couplings and thermal relaxation rates [4, 5],
the characteristics of metal-molecule bonds [6], and the
coupling of electron motion with the chiral structure
[7]. Furthermore, monitoring the conductance of single
molecules that undergo a chemical reaction can be used
to assess important reactions and their mechanisms, such
as catalytic processes [8].

Over the past decade, a variety of machine learning
methods have been applied to analyze and predict single-
molecule conduction [9, 10]. These efforts can be broadly
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categorized into two types. First, since molecular trans-
port experiments are typically conducted repeatedly over
thousands of junctions and exhibit significant variabil-
ity, many studies focus on assisting experimentalists with
data filtering and classification. This includes the clas-
sification of conductance traces in break-junction exper-
iments to automate the identification of different struc-
tures and group the traces into families [11–19]. These
studies rely on a variety of ML algorithms, such as super-
vised and unsupervised learning, image recognition, and
clustering. A complementary effort in ML-based quan-
tum transport studies addresses structure-function rela-
tionships, that is, the prediction of electrical conductance
in molecular junctions using ML algorithms. Examples
include predicting transport in nanostructures with scat-
tering impurities [20, 21] and in double-stranded DNA
with varying sequences [22, 23]. Recent studies have
further advanced ML workflows by incorporating first-
principles calculations and molecular dynamic simula-
tions to predict the electrical conductance of, for exam-
ple, metal nanowires [24] and organic molecules [25, 26].
More broadly, we also mention an emerging application
of ML to quantum thermal machines, which is to opti-
mize performance [27–30], and test the regime of validity
of basic bounds that are non-universal [31].

In this paper, we explore a novel application of ML
methods to quantum transport. Specifically, we show
that measurements of the electronic current noise in en-
sembles of atomic-scale junctions, combined with their
electrical conductance, can be used via a supervised
learning approach to infer the stimuli affecting transport.
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FIG. 1. A schematic diagram of a single-molecule atomic-
scale junction with a scatter plot showing the delta-T noise,
S∆T against the conductance G. This diagram depicts the
experiment of Ref. 32. A neural network is employed here
to estimate ∆T using temperature, conductance, and noise
data.

In the present case, we demonstrate that shot noise mea-
surements enable estimation of the applied temperature
bias [32]. Our approach is represented in Fig. 1 along
with a schematic diagram of a single-molecule junction
with a temperature bias.

As part of this study, we generate synthetic datasets
of electrical conductance and the corresponding delta-T
noise to supplement experimental data. Models trained
on these synthetic datasets are subsequently tested on
experimental results. The process of reducing prediction
errors on real datasets provides valuable insights into the
sequential channel-opening protocol, enabling the devel-
opment of a model that reasonably aligns with the ob-
served behavior in real junctions.

The paper is organized as follows. In Sec. II, we re-
view the characteristics of the delta-T noise, elaborate
on our research objective, and describe available exper-
imental data collected in atomic-scale junctions. Given
the limitation of the experimental datasets, in Sec. III
we describe protocols for generating synthetic data. We
present two approaches for conductance channel opening:
a deterministic protocol, which proves inconsistent with
experimental results, and a noisy protocol, which success-
fully captures measurements. In Sec. IV, we describe
the ML model developed for temperature bias estima-
tion, including the training and testing procedures. We
summarize our findings in Sec. V and offer future direc-
tions. Details of channel opening protocols are described
in Appendix A. The architecture of the neural network
(NN) is described in Appendix B. Training and testing
of the model using the delta-T integral noise formula are
presented in Appendix C.

II. DELTA-T SHOT NOISE

A. Noise characteristics

When a temperature difference ∆T is applied across a
quantum conductor, current shot noise is generated. This
delta-T noise was first demonstrated in an atomic-scale
junctions [32] and later observed in mesoscopic conduc-
tors [33]. Theoretically, using the full counting statistics
approach of coherent transport [34–36], it was shown in
Ref. 32 that the delta-T noise can be approximated by

SI = 4G0kBT̄
∑
i

τi

+ G0kB
∆T 2

T̄

(
π2

9
− 2

3

)∑
i

τi(1− τi). (1)

Here, G0 = 2e2/h is the quantum of conductance, T̄ is
the average of Th and Tc, which are the temperatures at
the hot and cold terminals of the conductor, and ∆T =
Th−Tc. The noise depends on the transmission constants
τi of the ith transmission channel. It is useful to recall
that the electrical conductance itself is given in terms of
the transmission values as

G = G0

∑
i

τi. (2)

Appendix C provides a summary of the derivation of Eq.
(1). In short, the theory assumes noninteracting coherent
electron transport. Additional steps leading to Eq. (1)
are (i) assuming constant (energy independent) transmis-
sion functions, and (ii) expanding the noise to the lowest
nontrivial ∆T/T̄ contribution, which is quadratic. As
shown in Ref. 32, The second order expression proved to
be a good approximation for the noise even when ∆T/T̄
was of the order of 1 [32].

The first term in Eq. (1) is analogous in form to
the Johnson-Nyquist equilibrium noise, here evaluated
at the average temperature across the conductor. The
second contribution, termed “excess noise”, and specifi-
cally “delta-T noise”, is denoted by S∆T , and is gener-
ated as a result of the temperature difference across the
conductor. This contribution depends on the distribu-
tion of the transmission function across N channels as∑N

i=1 τi(1 − τi). That is, delta-T noise is generated by
having partial transmission and backscattering of elec-
trons.

Following experiments [32, 33], delta-T shot noise has
been theoretically analyzed in different regimes, extend-
ing beyond the quantum coherent and constant trans-
mission model. These studies examined the static [37–
39] and finite-frequency [40, 41] resonant transport limit,
hybrid normal-superconducting systems [42], as well as
correlated electron junctions [43–46]. Interestingly, the
delta-T noise, a nonequilibrium noise induced by a tem-
perature difference, was generated in the setup of Ref. 32
in the absence of net charge current due to the cancel-
lation of equal and opposite currents flowing above and
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below the chemical potential. This novel type of zero-
current nonequilibrium noise was recently proved to be
bounded by equilibrium noise [39, 41].

Numerous studies have shown that voltage-activated
shot noise can probe the structural and electronic prop-
erties of atomic-scale and molecular junctions [47, 48].
For example, noise measurements have been employed to
resolve conduction channels [49–53], identify and probe
interactions [54, 55] possibly due to effects at the interface
[56, 57] or intrinsic to the conductor, such as electron-
vibration interactions [5, 58–60], and characterize trans-
mission properties [61].

In this study, we continue these efforts to use noise
as a probe for nanoscale transport phenomena. Beyond
the fundamental significance of observing and character-
izing delta-T noise, we demonstrate that this contribu-
tion, when combined with knowledge of thermal noise,
can serve as a probe for detecting temperature differ-
ences in nanoscale and atomic-scale quantum conductors.
However, to utilize the delta-T noise for this purpose, one
needs to know the specific combination of transmission
coefficients that construct this partition-type noise, as
described in Eq. (1). This dependency renders solving
the inverse problem particularly challenging. To address
this problem, we employ a supervised machine learning
approach. By inputting G, S∆T , and T̄ , we show that a
neural network can be trained to predict the temperature
difference, ∆T . An important finding is that tempera-
ture difference prediction is valuable only when repeated
across an ensemble of nanojunctions.

In Sec. II B, we describe the experimental character-
ization of delta-T noise in atomic-scale junctions [32].
However, to convincingly demonstrate the ML prediction
of temperature biases based on delta-T noise, we supple-
ment experimental datasets with synthetic data, a task
that we follow in Sec. III.

B. Experimental data of delta-T noise and its
limitations

The delta-T shot noise was experimentally character-
ized in Ref. 32 using atomic-scale junctions, where hydro-
gen molecules were introduced into the contact between
two atomically-sharp gold electrodes. Unlike bare gold
atomic junctions, hydrogen-based molecular junctions of-
fer a wide range of conductance values below 1G0. This
was crucial because the primary effort in Ref. 32 has been
to characterize the delta-T shot noise in the conductance
range of G ≤ 1G0.
In brief, the experiment reported in Ref. 32 utilized the

break junction technique to form an ensemble of molec-
ular junctions with different structures at the contact
region, resulting in a broad range of conductance val-
ues. A temperature gradient was applied on the junc-
tion by an asymmetric heating of the electrodes. The
temperature bias across the junction was monitored by
thermometers placed on opposite sides of the junction.

Details over sample fabrication, the break junction tech-
nique, electronic measurements, junctions’ characteriza-
tion, calibration of thermometers, and delta-T noise mea-
surements were included in Ref. 32.
In the experiment, the current shot noise SI was mea-

sured. The delta-T noise S∆T , an excess noise, is defined
as the total noise minus the average thermal noise, which
is determined by the average temperature, leading to the
expression S∆T = SI − 4GkBT̄ .
In Fig. 2, we present examples of experimental

datasets of delta-T noise as a function of the junction con-
ductance. Each marker presents the noise measured on
a single atomic-scale junction, with these measurements
repeated across an ensemble of junctions. The data was
collected under different average junction temperatures
and for different temperature differences. The dark gray
region highlights data up to 1G0. It is important to note
that only delta-T noise within this range was analyzed
in Ref. 32. This distinction is important because our
present study extends the analysis beyond this conduc-
tance regime. While the G < 1G0 data manifest clear sig-
natures of partition noise characteristics, S∆T ∝ τ(1−τ),
given the dominance of a single channel in this regime,
this trend is difficult to discern beyond 1G0. We highlight
in light gray the region of 1G0 < G < 2G0. The parti-
tion noise characteristics are difficult to discern already
at this range. Consequently, the verification of Eq. (1)
for the full range of conductance has not been assessed
so far.
The collected experimental data as presented in Fig.

2(b) includes 9 sets of (T̄ , ∆T ) pairs, for which both
conductance G and shot noise SI were measured for en-
semble of junctions, the latter allowing the extraction of
S∆T . In Fig. 3, we mark these 9 pairs by red squares.

The results of training and testing an ML model on
the experimental data are presented in Figure 4; Details
of training and testing are provided in Sec. IV. The NN
demonstrates an excellent ability to predict the temper-
ature bias on the basis of the measured data. Although
this is certainly encouraging, it is evident that, due to
constraints in the experimental setup, there is a clear
linear correlation between the variables T̄ and ∆T , as
shown in Fig. 3. As a result of this correlation, the NN
effectively learned that ∆T was restricted around T̄ , en-
abling accurate predictions of temperature biases without
the need to deeply learn the characteristics of the noise.
To more carefully and broadly test the ability of an NN
model to learn temperature differences from delta-T shot
noise in molecular junctions, in the next section, we turn
to synthetic data.

III. SYNTHETIC DATA: PROTOCOLS

A. Deterministic channel-opening protocol

As a first attempt at generating synthetic data to pro-
vide data points in a wider range of T̄ and ∆T values,



4

FIG. 2. Visual representation of experimental measurements. (a) Scaled shot noise S∆T is plotted against electrical conductance
G in units of the conductance quantum G0 for three choices of (T̄ ,∆T ) pairs used in the experiment. Two regions of interest,
0 < G < G0 and G0 < G < 2G0, are shaded. In the former, quadratic dependence of S∆T on G is observed with some noise.
In the latter, this behavior becomes less pronounced. Overall, S∆T tends to be higher at higher ∆T/T̄ . (b) All the collected
experimental data (excluding points taken at very low ∆T ) with the color bar indicating the average temperature T̄ of the
measurement environment. For this dataset, the temperature difference ∆T between the sides of the junction is highly similar
in value to its corresponding T̄ , thus the colors can represent ∆T as well. The data presented in (a) is a subset of datasets in
(b), and we display it in two different ways to highlight its dependence on ∆T and T̄ .

FIG. 3. Pairs of ∆T and T̄ of experimental datasets (red
squares), and compared to ∆T and T̄ values chosen to gener-
ate synthetic data (black circles). The red dashed line repre-
sents ∆T = T̄ , in proximity to which the experimental data
lies. Synthetic ∆T values range to the maximally allowed
∆T = 2T̄ , with the border indicated by the dashed blue line.

we developed a procedure for computing S∆T given in-
put values of G, ∆T and T̄ . Experimentally, these three
quantities alone do not uniquely determine S∆T , as is
clear from observing the experimental data presented in
Fig. 2. This is because G sets only the sum of the

FIG. 4. Neural network predicted ∆T plotted against true
∆T for (a) training set and (b) testing set from a model
trained with experimental data. The dataset is split as 80%
training set and 20% testing set. The red circles indicate the
mean of all predicted ∆T (in blue) for an unique true ∆T
with the standard deviation as error bars.

transmission probabilities τi associated with all channels,
without stipulating the exact value of each τi.

To fill this gap, we follow a protocol for determining
a typical value for each τi given the total conductance
G, motivated by previous studies [62]. This protocol re-
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FIG. 5. The transmission probability τi when successively
opening channels within the deterministic channel opening
protocol for increasing values of G. Parameter x is constant
here, x = 0.05. We present here the opening of 5 channels
with conductance up to 4G0. The piecewise functions are
presented in Appendix A.

quires a parameter be set, denoted by x, representing
the rate at which transmission channels begin to par-
tially open with increasing G, before all lower channels
are completely open. x can take any value between 0 and
1/2.

Without loss of generality, channel transmissions are
indexed in decreasing order. For 0 < G ≤ 1G0, we as-
sume that exactly two channels contribute to the overall
conductance. By definition, x = τ2G0/G = τ2/(τ1 + τ2).
Therefore, up to the conductance quantum, τ2 increases
linearly with G with a slope x. So, too, does τ1, with
a slope 1 − x as required for consistency. For G > 1G0,
there are exactly three partially open channels at any
time. As G increases past 1G0, τ3 begins to grow as
τ3 = x(G−G0), the slope of τ2 increases to 1− 2x, and
the slope of τ1 drops to x so it can reach the fully open
status in time for G to reach 2G0, triggering the opening
of channel 4. Once a channel is fully open, it remains
so for all higher G values. Appendix A includes these
piecewise functions, and Fig. 5 presents the protocol up
to 4G0.

Equipped with this protocol, we generated a synthetic
dataset by first choosing a set of T̄ ,∆T pairs. To address
the false correlation seen between these quantities in the
experimental dataset, we chose a grid-like array of points
in the T̄ ,∆T plane, as shown in Fig. 3. There, five T̄
values were chosen at even intervals between 10 K and 25
K, reflecting the experimental values. At each T̄ , a range
of ∆T values from 5 K up to the maximum possible, 2T̄
were used.

At each T̄ ,∆T pair, we generated 500 data points. For
each, we chose the value of G from a uniform distribution

from 0 up to 1G0, 2G0, or 4G0. We then used our proce-
dure to determine each τi, and, in turn, S∆T , via Eq. (1).
We chose to generate many conductance-noise pairs for
a fixed set of T̄ ,∆T values, rather than to choose a new
random T̄ and ∆T value every time we generate a point,
to better mimic the experimental procedure. The result-
ing dataset is shown in Fig. 6(a) with 4G0 as the chosen
upper limit to the range of G values.
The dataset exhibits a periodic behavior of S∆T rela-

tive to G, particularly for G > 1G0, with slightly lower
delta-T noise for G < 1G0 due to the presence of only
two partially open channels. The quantity plotted is a
non-dimensionalized version of the noise, S∆T /G0kBT̄ ,
thus it depends on temperature only via a quadratic de-
pendence on the ratio ∆T/T̄ , leading to the observed
stratification. This periodicity is due to the fact that
only partially open channels contribute to the noise; for
each interval between consecutive integer multiples ofG0,
there are three partially-open channels opening in the
exact same manner. Lower-indexed fully open channels
contribute to G as needed, but have no impact on S∆T .
This is a clear deviation from the experimental dataset,
which shows a general trend towards overall growth of
the delta-T noise with increasing G, see Fig. 2.
Furthermore, it is clear from the way the experimental

data is distributed that knowledge of the quantities G, T̄ ,
and ∆T is insufficient, in practice, to determine the value
of S∆T , while in the synthetic data generated according
to the deterministic protocol, it is.

In light of these significant qualitative differences be-
tween the synthetic and experimental datasets, we set
out to develop a more complex protocol for generating
synthetic data, with hopes of better capturing the phys-
ical processes at play. Furthermore, as we show in Fig.
6(b)-(e) and discuss below in Sec. IV, while we success-
fully trained a model on deterministic synthetic data, the
trained model, and thus the underlying synthetic data,
were not able to capture experimental results. This fail-
ure demonstrates that the deterministic channel opening
protocol, as depicted in Fig. 5, does not represent the
experimental situation.

B. Noisy channel-opening protocol

The experimental data (Fig. 2) differs significantly
from the synthetic data generated according to a deter-
ministic channel opening protocol (Fig. 6(a)), as seen
most clearly by observing the scatter plots of S∆T vs
G. For the deterministic data, the value of S∆T is de-
termined by the values of G and ∆T/T̄ , without any
variation. In contrast, the experimental data show a sig-
nificant amount of noise, with a range of possible values
for S∆T given G at a particular ∆T/T̄ . Further, the de-
terministic data exhibit periodic behavior, reaching min-
ima at each integer value of G/1G0. This is because the
noise contributions of channels die off as they reach a
fully open state. In contrast, in experimental data out-
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FIG. 6. (a) Visualization of synthetic dataset generated by the deterministic channel-opening protocol with G ≤ 4G0 using
x = 0.05. (b)-(e) NN predictions of ∆T values against true ∆T , with example histograms of predicted values for one example
of ∆T . (b) NN predicted ∆T (blue) against true values on the synthetic training dataset, with the means of the distribution
shown as the red circles and standard deviation as error bars. (c) Histogram displaying the distribution of predictions for a
specific ∆T , marked by the red star in (b). The green vertical line stands for the true ∆T . The red vertical line indicates the
mean of the predicted values in the histogram. (d) NN predicted ∆T against true values on the experimental dataset, with a
corresponding histogram in (e).

side the G < 1G0 regime (where quadratic dependence
of S∆T on G can be inferred with noise), there seems to
be an accumulation of delta-T noise as G increases, with-
out observable minima of S∆T at integer values of G/G0

higher than 1.

We set out to develop a procedure for generating syn-
thetic data that more accurately reflects the physics of
channel opening in nanoscale junctions, as reported in
experiments [49] and calculations [63–65], leading to a
dataset that better reflects experimental noise observa-
tions. We specifically found that emulating the channel
opening trends seen in Ref. 64 provided good description
of the experimental results. As such, we built on compu-
tations from this paper, along with Ref. 49, to guide us
in generating synthetic datasets.

However, we point out that these studies consid-
ered gold nanojunctions without introducing hydrogen
molecules into the contact region, in contrast to the ex-
perimental data we try to capture. Some of the hydro-
gen molecules are likely to settle in the small atomic
gap formed between the electrodes (leading to conduc-
tance values below 1G0), while others penetrate the gold
contact region and the bulk affecting transport even at
higher conductance. Therefore, the presence of hydrogen

molecules probably affects the conductance in the range
up to 4G0, which we focus on. As such, Refs. [49, 64]
only serve us as a general guide for the opening of chan-
nels in gold nanojunctions.

In the deterministic protocol, one single parameter is
set, namely, x, dictating the rate at which partially open,
higher-indexed channels open up; see Fig. 5. For the
noisy protocol, we augment this by several ingredients:
(S1) Sampling x from a probability distribution, so it
takes on a different value in generating each data point.
(S2) Increasing the number of partially open channels
with increasing conductance. This is done by limiting
the transmission of channels above channel 1 to no more
than 0.95 and defining additional fixed parameters for the
different rates of change of τi for i > 2. (S3) Adding some
noise to the resulting distribution of τi that builds a given
G. There is some arbitrariness in our parametrization in
step (S2), which is handled by this randomization.

We now explain in more detail the elements in the gen-
eration of noisy synthetic data.

(S1) To generate each data point, the value of x is
chosen by sampling an exponential distribution charac-
terized by a mean value of 0.1. We choose this distribu-
tion by looking at the experimental data for G < 1G0,
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FIG. 7. Histogram of x values obtained from experimental
data, scaled as a normalized probability density function. We
acquire the different values of x by assuming that only two
channels have nonzero transmission for conductance less than
1G0. The orange curve is an exponential distribution charac-
terized by the mean value of the experimental x values.

where we assume that at most two channels have non-
negligible transmission. As such, the measured values of
G and S∆T , given T̄ and ∆T , are sufficient to calculate
the values of τ1 and τ2, and, in turn, x, see the resulting
scaled histogram in Fig. 7. Note that the highest possi-
ble value of x is 0.5 since we choose to label the channel
with a higher transmission value with the index 1.

The exponential distribution was chosen as it reflects
the experimental behavior quite well while also being de-
fined by only a single parameter (its mean), maintaining
some simplicity. Technically, this distribution is nonzero
at all positive values. As such, in the protocol, we choose
to reject values higher than 0.4. Although values as high
as 0.5 are physically possible, we find that they are sup-
pressed beyond what is captured by the exponential dis-
tribution, as seen in Fig. 7. The mean value of x deter-
mined in this way from the experimental data is 0.095.
For convenience, we round this to 0.1 in generating the
synthetic data, as we expect other sources of uncertainty
(e.g., rejection of values above 0.4) to render this distinc-
tion insignificant.

(S2) In addition to choosing x, we choose a value of G
by sampling a uniform distribution between 0 and a set
maximum value (usually G0, 2G0, or 4G0). Given this
value, the transmission probability associated with each
channel is set according to the predetermined piecewise
defined functions for the τi’s in terms of G, plotted in the
inset of Fig. 8. For details, see Appendix A.

(S3) For each data point, we introduce additional noise
by taking the value of each τi determined by the func-
tions generated in Appendix A and subtracting a value

sampled from a uniform distribution between 0 and 0.05,
provided that doing so does not result in a negative value.
This accounts for the fact that the channels are not ex-
pected to open in the exact same manner for every run
of the experiment. The shaded regions in the inset of
Fig. 8 hence represent the range of possible values for
each τi given G. We note that this addition of noise will
change the sum of the τi’s, thus, the value of G must be
recalculated as it will differ slightly from the input value
initially used to calculate the transmission probabilities.
These three changes introduce variations to the pos-

sible value of each τi given the value of G, manifesting
as variations in S∆T . Crucially, preventing each channel
from reaching a transmission probability of 1 at periodic
steps in G leaves more channels with a nonzero contribu-
tion to the noise that persists as G grows, exhibiting the
experimentally observed trend of higher noise at higher
conductance, see Fig. 8.
The nonequilibrium-excess noise S∆T is then calcu-

lated according to Eq. (1). Results are shown in Fig. 8.
The periodic behavior seen with the deterministic proto-
col has been significantly obscured here, and a trend of
increasing S∆T with G is now present, comparable to the
experimental data. However, minima at multiples of G0

can still be inferred, though they become less pronounced
with increasing conductance. This reflects that the un-
certainty in the manner in which channels are opening
grows and more channels are at play.
Another notable feature of the synthetic datasets is the

general trend for S∆T to increase with ∆T/T̄ , although
the noise makes deviations from this trend possible. The
apparent stratification of datasets is due to the fact that
only a discrete set of ∆T/T̄ values were used, rather than
a continuous range. This behavior is expected based on
the theoretical expression for S∆T . No such trend can be
observed in the available experimental data, but this is
simply because the experimental datasets do not cover a
wide enough range of ∆T/T̄ values, as discussed above.

IV. TRAINING AND TESTING

A. Procedure and Metrics

We build a deep learning model with the Keras library
[66] framework for the prediction of ∆T . The model basis
is a feedforward NN consisting of hidden layer(s) between
input and output layers. The network architecture, such
as a loss function and an optimizer, as well as the per-
formance evaluation to choose the number of layers and
neurons, is described in Appendix B.
In accordance with our objective, models were trained

on scaled features G/G0, S∆T /G0kBT̄ , and T̄ (input
layer) from synthetic datasets to target corresponding
∆T/T̄ (output layer), which we scale back to ∆T as the
final predicted value. Each synthetic dataset contains
12,500 total data points, divided to 625 points for each
of the 20 (T̄ , ∆T ) pairs. The model is trained on 10,000



8

FIG. 8. Synthetic datasets with 0 ≤ G ≤ 4G0, as generated using the noisy channel opening protocol. Each data point is
generated using a value of x sampled from the exponential distribution whose mean is 0.1 (with only values up to 0.4 accepted)
and additional parameters characterizing the growth of channel transmissions at higher G values are chosen. Values of each
τi determined according to the procedure described in the main text. Inset: the transmission probability, τi, of successively
opening channels (i.e., i increases from left to right along the plot) given a value of G. Each channel opens accordingly to a
piecewise defined function of G mimicking previous studies [49, 64]. Shaded regions represented additional noise added onto
transmissions to capture additional sources of variation.

points (80% of dataset - 20% for testing). This total
number of data points remains constant when we vary
the maximum G allowed in the dataset. When using a
trained model to predict on the experimental dataset,
we limit that set to the same maximum G. Overall, the
nature of predictions is that a distribution of predicted
∆T/T̄ is formed for a given true ∆T . This is the result
of the nonunique and non-deterministic (noisy) relation
between the current noise S∆T and the conductance, and
∆T/T̄ .

Two metrics are used for the evaluation: the mean ab-
solute error (MAE) between any predicted ∆T and true
∆T values, and the mean bias, defined as the difference
between the predicted and true ∆T , averaged over the
entire dataset–that is the mean signed error. A posi-
tive mean bias value indicates that the predicted mean is
larger than the true one, and vice versa. In histogram vi-
sualizations, we also use “bias” to quantify the signed ∆T
difference between the mean of predictions in the ensem-
ble and the true ∆T , for a unique value of ∆T . We use
the trained model to predict on its own training dataset,
as well as predict on the experimental dataset. We also
show examples of histograms of a prediction distribution
for a given true ∆T .

B. Failure of the deterministic protocol

We described in Sec. III the generation of synthetic
datasets according to the simple fixed-x rule, depicted in
Fig. 5, with noise-conductance results presented in Fig.
6(a). We continue and discuss in Fig. 6(b)-(e) the pre-
dicted results of the NN when trained on this synthetic
dataset of the deterministic channel opening protocol.

Fig. 6(b)-(c) presents testing on synthetic data. The
metrics indicate that the MAE is 1.93 K and the mean
bias is -0.1 K, that is, the majority of distribution means
were less than the true value, and within 1 K in proximity.
An example histogram is shown in panel (c) for a true
value ∆T = 25 K (marked by a star in (b)). We find that
the center of the main distribution lies almost directly on
the true ∆T (green line). However, the distribution mean
(red line) is smaller due to outliers predicted much below
the majority of results. This difference results in a bias
of -0.54 K.

We proceed and employ this trained model to predict
on features in the experimental dataset. Results are pre-
sented in Fig. 6(d) showing mean absolute errors of about
6.5 K and a mean bias of about 4.5 K. Looking at an ex-
ample histogram in Fig. 6(e), significant number of pre-
dictions appear around ∼ 38 K, whereas the true value
is 23 K, leading to a distribution mean that is greater
than the true value. Since training and testing on the
synthetic data was successful, as demonstrated in panels
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(b)-(c), it is evident that the trained model failed to cap-
ture experiments due to the synthetic data incorrectly
representing experimental trends.

C. Training and testing data from the noisy
protocol

We now turn our attention to deep learning models
trained from datasets generated via the noisy channel
opening protocol. As we show in Figs. 9-11, these mod-
els perform well when tested on experimental datasets,
providing reasonable predictions of ∆T with mean biases
smaller than 1 K. This good performance provides confi-
dence in the channel opening protocol [49, 64], supports
the theoretical expression (1) — and opens the door to
the estimation of the temperature bias based on measure-
ments of the delta-T shot noise.

We now detail our results. Fig. 9 shows the predictions
of the synthetic set (left) and the experimental set (right)
against true ∆T for models trained with increasing max-
imum conductance G (top to bottom) in the datasets.
When using the models to predict on its synthetic train-
ing set, Fig. 9(a), (c) and (e), a notable observation is
that for some values, e.g. ∆T = 20 K and ∆T = 50
K, the predictions are (i) relatively narrow in the dis-
tributions, i.e. precise, and (ii) there are only a few
predicted values exceeding true value. This is because
those datasets were generated for the maximally allowed
∆T = 2T̄ , using T̄ = 10 and ∆T = 20 K, see Fig. 3. Sim-
ilarly, predictions at our lower temperature bias ∆T = 5
K are mainly higher than the true value. These obser-
vations reflect that the neural network has learned the
range of allowed ∆T .

Predictions on the experimental dataset are presented
in Fig. 9(b), (d) and (f). Here, we observe a decrease
in the MAE, and, more notably, the mean bias down to
within 1 K, compared to metrics shown for the determin-
istic datasets in Fig. 6(d). These improved metrics can
also be seen from the distributions of predicted ∆T , Fig.
10. In each histogram we observe that the distribution
peak and thus the mean (in red) is in proximity to the
true ∆T (in green). While these histograms are wide,
they are generally evenly distributed above and below
the true ∆T .

In Fig. 11, we compile our neural network metrics
with increasing max G in datasets. Metrics are averaged
over 10 models. We generally find MAE up to 3.75 K
and mean biases in the range of -0.5 to 1 K. In this re-
spect, it is useful to comment that the experimental data
has an uncertainty of about 0.5 K in ∆T . We therefore
regard models with mean biases of up to 1 K as “predic-
tive”. We make the following observations: (i) Predic-
tions on experimental datasets (red) suffer from higher
errors (MAE, mean bias) compared to predictions over
synthetic sets (blue). (ii) Predictions on experiments are

typically more accurate for small G, with error metrics
growing with G.
Both of these observations can be rationalized by re-

calling that training was done on synthetic-noisy data,
with a protocol for channel opening inspired by com-
putations [64] and experiments [49]. Our protocol can
only mimic general trends rather than the precise chan-
nel opening process. Thus, it is not surprising that error
metrics are larger when models that are trained on syn-
thetic data are tested on experimental sets. Similarly,
our protocol for channel opening appears to be closer
to reality when only a few channels are involved. Note
that experimental datasets include junctions with con-
ductance exceeding 4G0, see Fig. 2. However, in order
to make ∆T predictions about these high-conductance
junctions, synthetic data are needed in that range, mak-
ing more assumptions about channel openings. Given the
scarcity of studies on channel opening in relevant junc-
tions at G > 4G0, we limited our predictions below that
range.
In Appendix C, we generate synthetic datasets based

on an integral formula from which Eq. (1) was derived
after additional approximations. Since training and test-
ing on this synthetic dataset yield results comparable in
quality to those based on the approximate Eq. (1), we
conclude that this approximate equation provides a valid
and practical alternative to the more accurate yet cum-
bersome expression [Eq. (C2)], and that errors in our
predictions on experiments do not stem from the use of
the approximate expression.

D. Extrapolation tasks

What about extrapolation tasks? We consider a sce-
nario where datasets are collected from junctions with
relatively low conductance, and we are tasked with pre-
dicting ∆T for junctions with potentially higher conduc-
tance. As we show in Fig. 12, this type of extrapolation
can be achieved, depending on the training set. In par-
ticular, this can be done without any modifications to
our neural network architecture or training procedure.
In Fig. 12(a), we train a model using noisy synthetic

datasets with conductance up to G ≤ 2G0, and then ap-
ply it to predict on experimental data with higher con-
ductance, up to 4G0. The performance metrics are sub-
optimal, particularly when compared with predictions
made within the same range of G on which the NN was
trained (recall Fig. 9(d)). In contrast, in Fig. 12(b) we
apply a model trained with G ≤ 4G0 to essentially all
available experimental data, with G ranging up to 8G0.
In this case, the NN performs significantly better, with
metrics comparable to those shown in Fig. 9(f).
We can rationalize these results as follows. When

trained exclusively on data with low conductance, the
NN fails to learn that with higher conductance, more
transmission channels should open sequentially and par-
tially. As a result, instead of “opening” more channels to
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FIG. 9. Neural network predicted ∆T plotted against true ∆T with model trained from datasets generated by the noisy channel
opening protocol. Left column ((a), (c), (e)) shows predictions on the synthetic training dataset; right column ((b), (d), (f))
shows predictions on the experimental dataset. Rows are separated by maximum G allowed in all datasets.

FIG. 10. Histograms of single chosen true ∆T from corresponding panels in Fig. 9 as indicated there by the red stars. The true
∆T is shown within plot by the green vertical line, and the mean of the histogram is shown by the red line. True temperature
data is consistent in columns: Left column ((a), (c), (e)) share T̄ = 17.5 K and true ∆T = 25.0 K; right column ((b), (d), (f))
share T̄ = 21.5 K and true ∆T = 24.3 K.



11

FIG. 11. Metrics of (a) mean absolute error and (b) mean bias of neural network ∆T predictions with varying max G allowed
in datasets. Each data point is averaged over 10 retrained models, and error bars display the standard deviation in the models.
Data in blue indicates predictions on synthetic (training) dataset and data in red indicates predictions on experimental dataset.

explain the elevated noise at higher conductance, the NN
predicts higher temperature biases in Fig. 12(a). In con-
trast, when the model is trained on data up to G ≤ 4G0,
where up to 6 channels are involved, as seen in Fig. 8,
the neural network successfully captures the increase in
noise caused by the sequential opening of channels. This
enables the model to make more accurate predictions, as
shown in Fig. 12(b).

However, challenges arise when attempting to extrap-
olate ∆T over a wider temperature range. Specifically,
when models are trained on datasets with low ∆T and
tasked with predicting higher ∆T values, outside the
training range, we observe that the neural network “re-
sists” making predictions beyond its learned domain. A
similar rigidity occurs when training on high ∆T datasets
and attempting to predict lower ∆T . To improve the
model’s performance in extrapolation tasks, more efforts
should be placed on the NN architecture and training
strategies, a direction that we leave for future work.

V. SUMMARY

Noise can serve as a probe to infer the properties of
the system and the underlying transport mechanisms. In
this work, we demonstrated that delta-T noise, combined
with conductance measurements, can be used to esti-
mate temperature biases in atomic-scale junctions. We

accomplished this task by employing a supervised ma-
chine learning algorithm, training models on delta-T shot
noise, conductance, and average temperature to predict
∆T .

Due to the limited range of T̄ , ∆T parameters in
the available experimental data, we generated syn-
thetic datasets emulating single-molecule transport ex-
periments. A key conceptual challenge in this process
was to capture the dependence of the noise and conduc-
tance on the transmission probabilities of multiple chan-
nels, which are determined by microscopic details not
directly accessible through experiments. We tested two
data-generation protocols: a deterministic approach and
a noisy channel-opening method. Although the deter-
ministic approach yielded results inconsistent with ex-
periments, models trained on noisy datasets produced
reasonably accurate predictions when applied to exper-
imental data, with comparable prediction errors across
both training and testing datasets.

Our study contributed to both practical and funda-
mental aspects. On the practical side, we demonstrated
that stimuli controlling transport in atomic-scale junc-
tions can be effectively extracted from noise measure-
ments by using supervised ML methods. From a fun-
damental perspective, we found that training models on
synthetic data, which remain consistent with experimen-
tal observations, enables us to: (i) Gain physical insight
into the system, particularly trends associated with chan-
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FIG. 12. Extrapolation tasks. Neural network predictions
of ∆T on experimental data. We use a model trained with
synthetic data on lower G regimes for extrapolations on ex-
periments to higher G values. (a) Predictions from a model
trained on synthetic data with G ≤ 2G0, applied to exper-
imental data with conductance up to 4G0. (b) Predictions
from a model trained on synthetic data with G ≤ 4G0, ap-
plied to experimental data with conductance up to 8G0.

nel openings. (ii) Support the analytical delta-T formula
in a broader conductance range, beyond 1G0, which had
previously been studied in Ref. 32. (iii) Support the
analytical delta-T formula in a broader range of tem-
peratures, even in regimes where ∆T approaches 2T̄—a
scenario where the temperature of one terminal becomes
very low, approaching zero.

The principle behind our supervised ML approach
for predicting ∆T from delta-T shot noise can be ap-
plied similarly to predict temperature biases using the
more commonly available delta-T flicker noise [67]. More
broadly, our workflow can be used to estimate other stim-
uli or internal parameters from molecular junction mea-
surements.

Measurement of temperature differences at the
nanoscale is essential for advancing understanding of
thermal transport in nanodevices. Accurate tempera-
ture measurements can, for example, drive the develop-
ment of thermoelectric devices, improve thermal manage-
ment of electronic devices, and advance the performance
of quantum information technologies. Noise signals can
be a powerful tool for probing local thermal biases. With
ongoing progress in ML methods, we envision these tech-
niques becoming a more standard part of experimental
workflows, allowing a rapid estimation of parameters and
assessment and verification of measured results.
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Appendix A: Details on channel opening protocols

We elaborate here on our construction of the piecewise
functions that build the total transmission, τ =

∑
i τi,

with G = G0τ . In the deterministic protocol, we list
here the piecewise functions in several regimes with x < 1
dictating the rate of channel opening; see Fig. 5.
For 0 ≤ τ ≤ 1,

τ1 = (1− x)τ, τ2 = xτ. (A1)

For 1 ≤ τ ≤ 2, we define τM ≡ τ − 1,

τ1 = (1− x) + xτM , τ2 = x+ (1− 2x)τM ,

τ3 = xτM . (A2)

For 2 ≤ τ ≤ 3, we define τM ≡ τ − 2,

τ1 = 1, τ2 = (1− x) + xτM , τ3 = x+ (1− 2x)τM ,

τ4 = xτM , (A3)

and continuing in this pattern to higher conductance.
In the noisy-opening protocol, we elaborate here on

step (S2). Recall that x is sampled from an exponen-
tial distribution, and that it is the slope of each τi for
channels 2-4 as they begin to open, up until their trans-
mission probabilities reach a value of x. For consistency,
up until 1G0, the slope of τ1 is 1 − x. After the first
kink, for 1G0 < G ≤ 1.95G0, τ1 has a slope of (20/19)x
until it saturates at 1, while τ2 grows with a slope of
1− (39/19)x. For 1.95G0 < G ≤ 2.8G0, while channel 4
is beginning to open with slope x, τ3 grows with a slope
of 1 − (36/17)x and τ2 with a slope of (19/17)x. For
2.8G0 < G ≤ 3.65G0, channels 1 and 2 are both satu-
rated at transmissions of 1 and 0.95 respectively, while τ3
grows with a slope of x and τ4 with a slope of 0.6, slower
than channels 2 and 3 grew after their first respective
kinks (based on a typical x value of around 0.1). Channel
5 begins to open with a slope of 0.4 − x, which is usu-
ally greater than x. For G > 3.65G0, τ3’s growth slows
to a slope of 0.07, τ4 grows with slope x, τ5 grows with
slope 0.38−x, and channel 6 opens, with its transmission
growing at a slope of 0.35. We find that six transmission
channels are sufficient to cover the range of conductance
values up to 4G0.

The protocol above is obviously somewhat arbitrary
in that the slopes chosen and the residual opening be-
fore saturation could have been constructed with differ-
ent numbers to mimic experiments. To relax these rules
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and get closer to the experiment, step (S3) as detailed
in the main text adds some randomness to the chan-
nel opening protocol. Together, steps (S1)-(S3) generate
data sets pictured in Fig. 8.

Appendix B: Neural network architecture

Deep neural networks were constructed and trained us-
ing the Keras library [66]. The general NN architecture
is a feedforward network with a number of hidden lay-
ers and neurons chosen after performance evaluation, as
shown in Fig. 13. From panel (a) we see that trained
models predicting on their own training sets, or predict-
ing on the experimental sets, show opposite trends for the
MAE as the number of neurons increases: While predic-
tions on synthetic sets are improved with a growing num-
ber of neurons, the opposite trend shows when testing
on experimental data. We attribute this to some form of
overfitting on training data, leading to worse predictions
on unknown experimental data.

Interestingly, with respect to the mean bias metrics,
panel (c) shows predictions on synthetic and experiments
having mean biases that show similar trends with increas-
ing number of neurons at different magnitudes. Overall,

the increase in MAE of the predictions from the experi-
mental data is not as drastic as the improvement of the
predictions from the training set. Achieving a low stan-
dard deviation in both MAE and mean bias, we choose
20 neurons in a hidden layer to be the standard setting
of models for main results.
Regarding the number of hidden layers, Figs. 13(b)

and (d) show minimal improvement in error metrics when
increasing the number of hidden layers, with 20 neurons
used in each layer. We eventually chose 3 layers as our
main architecture. This allows balancing best metrics
and low fluctuations for predictions on both training and
experimental data.
Thus, the overall NN architecture consists of an in-

put layer, 3 hidden layers with 20 neurons each, and
an output layer. All hidden layers include dropout
(20%) and use the rectified linear unit (ReLU) activa-
tion function. For training, we use Adam optimiza-
tion [68] on the mean absolute error (L1) loss function,

L = 1
N

∑N
i=1 |ytrue − yi,pred|, where N = 32 is the batch

size, and we iterate over 100 epochs with constant learn-
ing rate.
The performance of the model on the test set (20% of

the synthetic dataset) is shown in Fig. 14. We find that
there is no significant overfitting on the training set as
the resulting error metrics for predictions on the testing
set are highly similar to metrics received on the training
set.

Appendix C: Generating synthetic delta-T noise from the integral noise formula

The full counting statistics of charge transport in multi-terminal conductors can be obtained analytically for non-
interacting carriers in the coherent limit [34, 35]. Considering two-terminal junctions (L-Left; R=right) with a single
transmission channel, the charge current is given in the Landauer form,

I =
2e

h

∫ ∞

−∞
dϵτ(ϵ)[fL(ϵ, µL, TL)− fR(ϵ, µR, TR)]. (C1)

The current shot noise reads SI = S1 + S2, where [36]

S1 =
4e2

h

∫
dϵ {fL(ϵ, µL, TL) [1− fL(ϵ, µL, TL)] + fR(ϵ, µR, TR) [1− fR(ϵ, µR, TR)]} τ(ϵ)2,

S2 =
4e2

h

∫
dϵ {fR(ϵ, µR, TR) [1− fL(ϵ, µL, TL)] + fL(ϵ, µL, TL) [1− fR(ϵ, µR, TR)]} τ(ϵ)[1− τ(ϵ)].

(C2)

Here, fν(ϵ, µ, T ) = [eβν(ϵ−µν) + 1]−1 is the Fermi function of the ν = L,R metal, maintained at temperature Tν and
chemical potential µν , τ(ϵ) is the transmission coefficient, which in general varies with the electron energy. In what
follows, we assume it is a constant, τ . The electrical conductance is given by G = I/V , with the applied voltage
V = (µL − µR)/e. In the limit of constant transmission, G = G0τ , with G0 = 2e2/h.

Assuming the chemical potentials are identical but that the two metal electrodes are maintained at different tem-
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FIG. 13. Neural network architecture: Performance evaluation in terms of the mean absolute error and mean bias metrics of
deep learning models trained with various number of (a), (c) neurons in one hidden layer and (b), (d) hidden layers each with
20 neurons. Training was performed with synthetic dataset generated by the noisy channel opening protocol with conductance
limited to G ≤ 4G0. Each data point indicates the averaged MAE and mean bias over 10 trained models with the same setting,
and error bars display the standard deviations in results from those 10 models.

FIG. 14. Training and testing the ML model on synthetic data. We present the NN predicted ∆T against true ∆T . Datasets,
generated with the noisy channel opening protocol, were split to 80% training and 20% testing sets. Left column panels (a),
(c), (e) show predictions on the training set; right column panels (b), (d), (f) show predictions on the testing set. Each row
presents results with datasets allowing increasingly higher maximum G.
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FIG. 15. Predictions based on training with the integral formula for delta-T noise, Eq. (C2), after subtracting the equilibrium-
like contribution ST̄ , which does not depend on ∆T . Neural network predicted ∆T plotted against true ∆T from datasets
generated using Eq. (C2) within the noisy channel opening protocol. Left column panels ((a), (c), (e)) show predictions on the
training datasets; right column panels ((b), (d), (f)) show predictions on the experimental dataset. Each row presents results
with datasets allowing increasingly higher maximum G.

peratures, we expand Eq. (C2) in orders of ∆T . Collecting these contributions, we write the total noise as

SI = S1 + S2

S1 =
4e2

h
τ2kB(TL + TR),

S2 ≈ 4e2

h
τ(1− τ)kB

[
(TL + TR) +

(TL − TR)
2

2T

(
π2

9
− 2

3

)]
.

(C3)

This result leads to Eq. (1) in the main text where we decompose the noise to an equilibrium-like contribution, and
the excess-nonequilibrium or delta-T noise, SI ≈ ST̄ + S∆T ,

ST̄ =
8e2

h
kBT̄ τ, (C4)

and

S∆T =
2e2

h
τ(1− τ)kB

(Th − Tc)
2

T̄

(
π2

9
− 2

3

)
. (C5)

Here and in what follows, we specify the two temperatures by Th and Tc, with their average T̄ = (Th + Tc)/2 and
difference ∆T = Th−Tc. As for the validity of Eq. (C5), it was shown in Ref. 32 that the next (quartic) contribution
in ∆T/T̄ was inconsequential relative to the quadratic term, even when using a high temperature difference, ∆T = 2T̄ .
For a multi-channels junctions, τ is replaced by

∑
i τi, and τ(1− τ) by

∑
i τi(1− τi), with the index i going over the

different channels.
In the main text, we utilized the approximate formula (1) to generate synthetic data. Here, we demonstrate that

using the more accurate integral formula, Eq. (C2), does not improve the quality of predictions of trained models



16

FIG. 16. Predictions based on training with the integral formula for delta-T noise. Histograms of particular ∆T from corre-
sponding panels in Fig. 15, as indicated there in each panel by red stars. The true ∆T is shown by the green vertical line; the
mean of the histogram is marked by the red line. Left column panels ((a), (c), (e)) share T̄ = 17.5 K and true ∆T = 25.0 K.
Right column panels ((b), (d), (f)) share T̄ = 21.5 K and true ∆T = 24.3 K.

FIG. 17. Metrics when training with the integral formula for delta-T noise: (a) mean absolute error and (b) mean bias. Results
are shown for ∆T predictions with varying max G included in datasets. The datasets were generated by the noisy channel
opening protocol using the integral formula (C2). Each data point is averaged over 10 retrained models, and error bars display
the standard deviation in the models. Data in blue indicates predictions on synthetic (training) dataset; data in red indicates
predictions on experimental dataset.
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on experimental datasets, compared to the approximate expression. We assume here constant transmission functions
but avoid expanding the Fermi functions near equilibrium. The fact that training with the integral formula does not
yield improved performance on experimental data indicates that prediction inaccuracy are not due to Eq. (1) being
an approximation of Eq. (C2) with respect to ∆T .
In Fig. 15, we train NN on S∆T = S1 + S2 − ST̄ with S1 and S2 evaluated from Eq. (C2), using constant

transmissions. We test results on experimental data. Example histograms are displayed in Fig. 16. When comparing
these results to predictions shown in Fig. 9-10, we find that error metrics, as presented in Fig. 17 are similar.

We highlight that the approximate expression for the delta-T noise, Eq. (C5) was previously tested only on data up
to 1G0 [32]. Here, for the first time, we provide evidence that it captures behavior beyond that, for higher conductance.
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[40] M. Hübler and W. Belzig, “Light emission in delta-
T -driven mesoscopic conductors,” Phys. Rev. B 107,
155405 (2023).

[41] L. Tesser, M. Acciai, C. Sp̊anslätt, J. Monsel, and J.
Splettstoesser, “Charge, spin, and heat shot noises in the
absence of average currents: Conditions on bounds at
zero and finite frequencies,” Phys. Rev. B 107, 075409
(2023).

[42] Leonardo Pierattelli, Fabio Taddei, Alessandro Brag-
gio, “∆T -noise in Multiterminal Hybrid Systems,”
arXiv:2411.12572.

[43] J. Rech, T. Jonckheere, B. Grémaud, and T. Martin,
“Negative Delta-T Noise in the Fractional Quantum Hall
Effect,” Phys. Rev. Lett. 125, 086801 (2020).

[44] M. Hasegawa and K. Saito, “Delta-T noise in the Kondo
regime,” Phys. Rev. B 103, 045409 (2021).

[45] G. Rebora, J. Rech, D. Ferraro, T. Jonckheere, T. Mar-
tin, and M. Sassetti, “Delta-T noise for fractional quan-

tum Hall states at different filling factor,” Phys. Rev.
Research 4, 043191 (2022).

[46] K. Iyer, J. Rech, T. Jonckheere, L. Raymond, B.
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