Lecture Notes:
Fundamentals of Nonlinear Physics
Victor S. L'vov
The Weizmann Institute of Science, Israel, Rehovot 2014

The lecture course presents in a systematic manner the basic physical ideas in
nonlinear dynamics of continuous media in plasma, gases, fluids and solid states,
considered from a common background. This approach allows one to reach two
goals. First, to clarify the common features of nonlinear phenomena in various
areas of physics: in nonlinear wave physics (in plasma, optical crystals and fibers,
on a water surface and the atmosphere, etc.), in nonlinear phase transitions (flame
propagation and crystal growth), in physics of turbulence. Second: to develop a
reasonably simple description of basic nonlinear phenomena, that contains from
the very beginning only their essentials, and can serve as a starting point on

understanding of the rich nonlinearity of the surrounding world.
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LATR J=2+3A,50Hz

Hot, current heated NiCr wire

Fig.1.1. Hot-wire quasi-harmonic pendulum

Introductory Lecture 1

Hot-wire quasi-harmonic pendulum & nonlinear phenomena

Questions to answer:

e What is the physical mechanism of this phenomenon (non-decaying oscilla-
tions)?

e How to estimate (compute) frequency and amplitude of the oscillations?

e How to estimate transient times (of the amplitude growth and decaying)?

e Why one cannot use, say a copper wire instead of the NiCr wire?

e Why the wire should be so long?, etc.



Basic model: Harmonic oscillator

d*a do
. d’ d
Neglecting  k,, = p75 + 27y 7 +wi |a~0, where (1.1b)
g k
./ Z - . 1.1
wo ¢ 7 9 / ( C)
Solution of this beauty:

a(t) = [aexp(—iwt) + c.c], with (1.2a)

w? 4 2iyw — wi =0, = (1.2b)
w=—iytw, w =1/ Wi+ =w, = (1.2¢)

a(t) oc exp(—~ t) sin(wyt + 1) (1.2d)

Hereafter 1) = 0. 7 — damping decrement, 1/ — decay time.

Instability mechanism: parametric excitation

Air cooling for very thin wire o< fda/dt has maximum at o = 0, giving periodic

temperature dependence with frequency 2w;. Due to the thermal expansion:

(= l[1 —ecos(2wit)] . (1.3)

With Eq. (L3)) for small 0 = 4wee < wy [Equation 1.1b =

d? d
{— + 2 — + Wi + 26wy [exp(2iwst) + exp@iwlt)]} a=0.(14a)

dt? dt
Let  a(t) = [bexp(iw + v)t] + b exp(—iw; + v)t] + c.c. (1.4b)
= i(v4+)b+' =0, Sb—i(v+~)b =0
= v=—y%0. (1.4c)

If & > ~ this gives parametric instability with the instability increment v > 0 :

a(t) o< exp(vt) sin(wpt) . (1.4d)

—



e More about excitation conditions of the hot-wire pendulum:
The length ¢(Ty +T") = £y (1 + BT") with the thermal expansion parameter
B =dInl/dT. The heat balance (C' — heat capacity, v(t) -the wire velocity)
dT"(t) da(t)
dt dt

Thus € o< £y g = 6 o o, the pendulum amplitude.

C

o |u(t)] = Ly

| ~ ooy cos(wot)| = Loy cos(2wpt) .

This gives “hard excitation” from the final amplitude ay.

e Something about stationary state of the hot-wire pendulum:

ky, in[Equation 1.1aloriginates from the force /" of turbulent friction of the heavy

mass (of diameter D) with air, that can depend on the diameter D, velocity v

and the air density p: F' ~ D"vYp*. To find x, y, z consider dimensions

Llpl=g-ecm™ . (1.5a)

d
One finds F ~ pD*v® = 7, =~ pD*l <d—?> x ag balancing {1.5b)

[Fl=g-cm-s %, [D]=cm, o] =cm-s~

e Some nonlinear phenomena, related with the hot-wire oscillator:

e Parametric excitation of waves, nonlinear-wave interactions, ..

e Turbulent cooling (of everything: chips in computers, car engines, etc. )
e Turbulent frictions (of cars, aircrafts, ships, etc.)

e Current resistance. Basic mechanisms:

1. Emission and absorbtion of phonos by conduction electrons. Gives small
resistance at 7' — 0 and R o< T for large T'. Effective in any metal (and

semiconductors), except of superconductors.

2. Electron scattering on static inhomogeneities. Dominates in alloys, like

NiCr.

e Thermal expansion of solids (alloys and crystals).



Exercises

Exercise 1.1 Estimate dimensionless ¢, its dependence on ¢ (see Fig. on

page [6). Explain, why the hot wire should be so long?

Exercise 1.2 To find the stationary amplitude o accounting for the next terms

in expansions sinc and coscr. lsubsection 1.3]




Lecture 2

Introduction to Classical Hamiltonian Approach

Outline

2.1 Examples of non-linear waves, their frequencies and equations of motion
Hamiltonian equations of motion for n -degrees of freedom

2.3 Generalization for continuous media.

2.4 Transformation to complex variables

Canonical transformations

Exercise



Examples of non-linear waves and equations of motion

Dispersive waves play a crucial role in a vast range of physical applications,
from quantum to classical regions, from microscopic to astrophysical scales.
For example:

e Sea waves are important for the momentum and energy transfers from wind to
ocean, as well as for navigation conditions;

e Internal waves on density stratifications and inertial waves due to rotation
are important in turbulence behavior and mixing in planetary atmospheres and
oceans;

e Planetary Rossby waves are important for the weather and climate evolutions;
e Alfven waves are ubiquitous in turbulence of solar wind and interstellar medium;
e Sound waves in plasmas, fluids and solids;

e Electromagnetic waves: microwaves, IR, light, UV, X-rays;

e Spin waves in magnetically ordered solids;

e Kelvin waves propagating on quantized vortex lines provide an essential mech-
anism of turbulent energy cascades in quantum turbulence in cryogenic Helium;

etc., etc., etc.
Estimates of the dispersion laws (frequency of waves) w(k)

Wave amplitude: n(r,t) < explik - r —iw(k)t], w(k)=wr—"

e Waves on a deep water
— Long gravity waves. Relevant physical parameter — the gravity acceleration g
(no fluid density: inertial and gravity masses are the same)

Dimensional reasoning: [w] =s™!, w(k) = ¢* k¥, [g] =ecms™2, [k] =cm™L.

we =+ gk . (2.1a)

Notice that |Equation 2.13|is exact.




— Short capillary waves. Relevant parameters: Surface tension (surface energy
per unite area): [0] =g s~ and fluid density [p] =gcm™>. The only combination

IS:

3
WE — i . (2.1b)
P

IEquation 2.1b|is also exact.

— Waves on deep water — General case. In the crossover region (pg ~ ok?)
dimensional reasoning fails. To find frequency consider
Energy balance: (mean) kinetic energy density (per unite area of the water sur-
face) E, = potential £ 4+ surface E energies. Accounting that wave motions
(with wave amplitude on the surface 7y, decay with depth as exp(—kz) and on

the surface the fluid velocity v = dny, /dt ~ wyny, one gets

p K p
B, ~ ﬁ(mwk)Q, E, ~ pg/k zcos(kx)dz = Egnz,

dny, : o (kng)? o k3

IEquation 2.1c|is also exact.

e Waves on a shallow water involves additional parameter, the water depth
h. This gives dimensionless parameter k£ h < 1 and dimensional reasoning fails.
However the energy-balance approach works: Potential and surface energy are
h-independent. To find kinetic energy one accounts that continuity equation for
water mass requires: horizontal water velocity v— ~ v, /(kh) > v, = nwy.

However, the wave “depth” is not the wave length 27 /k but only h. These give:

ph (17(%)2 . o k?
E o~ (1R — — . 2.1d
k=5 7 ) o gving wi k‘\/h (g+ p (2.1d)

lEquation 2.1d| is exact. Together with |Equation 2.1d| it explain, why near a

coast line a wave front is almost parallel to it [independent to its orientation in
open sea] and wave amplitude (e.g. near Ceasaria) usually mach larger, then in
the open Sea (e.g. near Haifa)



e Acoustic waves (Sound) in solids, fluids and gases:
p1,v x explik - T — iwi t] .

Relevant parameters:
(adiabatic) compressibility 5 = 0p/0p, p — pressure and material density p
Dimensional analysis: [3] = [p/p] =s*cm~2. Denoting ¢ = 1/1/3 one
has
wr = ik . (2.2)

e Waves on fluid surface and in stratified fluids: = The Navier-Stokes
equations
Gravity and capillary waves on a deep or shallow water,
Rossby waves in rotation Atmosphere = Cyclones and Anticyclones

Intrinsic waves in the Ocean = Long-distance energy trahsfer

e Acoustic waves, Sound: = Material equations
Acoustic waves in glasses (disordered media), fluids and plasmas

Optic & Acoustic waves in Crystals

e Electromagnetic waves: = The Maxwell + Material equations
Radio-frequency & Microwaves, Light, X-rays, etc. in dielectrics,

Numerous wave types in non-isothermal magnetized plasma

e Spin waves in Magnetics: = The Bloch & Landau-Lifshitz equations

All these equations of motion can be presented in a canonical form as

the Hamiltonian equations of motion



Hamiltonian equations of motion for n -degrees of freedom

e Hamiltonian equations (one degree of freedom)
dg _OH - dp _ OH
dt  Oop’' dt  0Oq

‘H — Hamiltonian function or Hamiltonian ,

(2.3)

g, p — Canonical variables: generalized coordinate and momentum.
Simple example: H = p?/2m + U(q) =

dp dU d*q dU : :
=—, —=— = —=——, Newtonian equation.
dt m dt dq dt? dq
e Hamiltonian equations ( n degrees of freedom)
for g1, Gz, --qn and  pi,pa,..py:
dg; dp;
a _OH dpi_ OH (2.4)
dt  Op;  dt 9q;

Example 2A: periodical chain of atoms — one dimensional harmonic crystal

dg p

n
m—-m-m-—-m... H= E
j=1

2
L+ (g qu)Q] @5
Example 2B: periodical chain of atoms: two atoms in the elementary cell
M—-—m-M-m H= (2.6)
Generalization for continuous media

For q(7,t) and p(r,t) at each point 7 :
dq(r,t) OH Op(r,t) OH
= : = (2.7)
ot op(r,t) ot dq(r,t)
— The Hamiltonian A is a functional of ¢(r,t), p(r,t), —d/0p and 6/dq

are variational derivatives (generalization of partial derivatives). For more details

about variational derivatives see here.


http://lvov.weizmann.ac.il/Course/Appendix-Lect1-1.pdf

dr [p?(t

For sound Hamiltonian H z/ 27“ [p (,7) +pCZVq(t,r)?| (28)
P

Eqs. of motion is 82q(r,t)/8t2 = CSAq(r,t) . (2.9)

For several type of waves (or polarizations), 7 = 1,2, ..n:

an(T, t) OH apj('r, t) OH

_ = — : 2.10
ot op;(r,t)’ ot og;(r,t) (210)
Transformation to complex variables
e Step 1: Q(7) = Ag(r), P(r)=p(r)/A (2.11a)
such that P and () have the same dimension. This is canonical transformation,
because:
dq(r, 1) _ OH :>8)\q(r,t) _ ANOH :>0Q(fr,t) _ OH (2.11b)
ot op(r,t) ot op(r,t) ot P (r,t)
op OH dp OH oP OH
ot 5q Nt ong ot 30 (2.11c)
2
For example, for a harmonic oscillator (with M =rxmand w = >\— S ):
m m
2 2 2 L2
_ P ’“]_1242_)‘_29_ 2 2] _ YWrp2 A2
H=—tml = [N = o | 5] = S [P+QY . 211d)

o Step 2: a; = (Q; +iP})/V2, aj=(Q; —iP})/V2 (2.12a)
with the equation of motion

| oa*
Jglu oM oM p0a 0H 0N

= — — . 2.12b

ot b, 5Q, Yot " ap, e, (2:12b)

e Step 3: Substituting H(a,a*) = the canonical form of Hamiltonian eq.:
| dat(r,t

aa/j (Tj t) _ 5H a] (Ir ) . 5H (212C)

ot Yoar(r, )’ ot daj(rt)

J



For example, for the harmonic oscillator the Hamiltonian takes very simple

form:
H = %[P2 +@Q°] =waa*, (compare with Eq. (211d)), (2.14a)
and equation of motion became trivial:
% = —iwa, = at) oexp(—iwt) . (2.14b)

Canonical variables a;(r,t) & a;(7,t) are classical analog of the Bose operators

of creation and annihilation in quantum mechanics.

General canonical transformations

Let [ai(r,t),a;‘(r,t)] = [bj(r,t),bj;(r,t)] C i,j=1,2,..N (215

in which b; & b7 are some functionals of a; & af ( for more details, see
Appendix-Lect1-2,

bi(r, t) = Flai(r, 1), al(r,0)}, bi(r,t) = F{a,(r, 1), al(r,t)} .
t

Compute % and require p ) = —1 5b;(7:, g (2.15h)

This gives the condition of canonicity, expressed through the Poisson brackets:

" 5f2 5gj< /> 5f2(Q) 59]'((]/)
{fz g} } Z/ [ ,, (5&5( ) 56@(?‘”)(5&’5(7“”) ; (2.15(3)

{bl< >7 J( >} =0, {b< )27 ]( )} —5ij5<q_q/> : (2'15d)

In Eq. (215d) ¢ runs through a “complete set” of values, e.g.,, g =71 or g =k

Eq. (2.15d)) - classical analog of the commutation relations for the Bose operators


http://lvov.weizmann.ac.il/Course/Appendix-Lect1-1.pdf

Exercises

Exercise 2.1 To find for H of Eq. (2.5) equations of motion and to solve

them

Exercise 2.2 To find # for the model two atoms in the elementary cell,
Eq. (2.6)), to write equations of motion and to solve. Hint: Use periodi-

cal boundary conditions (p; = pn;) and the Fourier transform.

Exercise 2.3 For sound Hamiltonian, [Equation 2.8| derive Equation of mo-

tion. Answer: [Equation 2.9

Exercise 2.4 To find condition of canonicity for the Fourier transform and for

the linear (Bogolubov) (u-v) transformation: b =wu-a+v-a*.



Lecture 3

Hamiltonian structure under small nonlinearity.

Outline

B.1] Hamiltonian expansion

Canonical form of free-wave Hamiltonian

B3] Three-wave Interaction Hamiltonian

3.4] Four-wave Interaction Hamiltonian

Dimensional analysis of the Hamiltonian

Dynamical perturbation theory

B3.7] Exercises



Hamiltonian expansion

Step 1. Let a,a® =0 in the absence of a wave. Assume that a ,a" are
smallin the required sense, for instance, when the elevation of the surface-water
waves is smaller then the wavelength.

Step 2. For small a , a* the Hamiltonian H can be expanded over a, a*:

H="Ho+ Hint, Hint =Hs+Hs+Hs+He+ ..., (3.1)

where H,; is a term proportional to product of j amplitudes a;, and the interaction
Hamiltonian H;,; describes the wave coupling, as explained below. We omitted
here the independent of a; and a; Hamiltonian of the system at the rest, H,,
because it does not contribute to the motion equation. In the Lectures we
consider only waves, exited in the thermodynamically-equilibrium systems, for
which H is minimal at the rest, when a; = a; = 0. Then linear Hamiltonian,

H, = 0.

Canonical form of free-wave Hamiltonian Hs

Ho = Z /{Aij(r,r')ai(r,t)a;’f(r',t) (3.2a)

5,j=1

+ % [Bij(r, r)ai(r, t)a;(r', t) + c.c|}drdr’. (3.2b)

“c.c’ = complex conjugate.
Consider properties of expansion coefficients of 7, that follows from:
Hs is real = Ajj(r,r') = A%(r',7), no restriction on B;j;
Hint: Complex conjugate Eq. (B.2a)) and relabel <+ v’ and i <+ j. Eq. (3.2h)
is real automatically.
Spatial homogeneity = A;;(r,r') = A;;(r — '), Bjj(r,r') = B;j(r — ')

4



Inversion symmetry = R=r—7r', A;;(R)=A;;(—R), B;;(R) = B;;(—R)

Ho = Z/{A;, Ja;(r + R, t)a’(r, t) (3.30)
*% [Bi(R)ai(r + R, t)ay(r,t) + c.c.] } dRdr .

Step 3. Fourier representation. Define a(k,t) = a; by

ap = %/a(r, t)exp(—ik - r)dr | a(r,t) = Zak exp(ik - 7) . (3.4)

k
Hint: (2m)> " = V/ddk .
k

One can show that Eq. (3.4)) is canonical, but not unimodal transformation:

day, (97-[(%, ay)
ot day,
Advantage: because of the spatial homogeneity H, is diagonal in k, Eq. (3.33])

. Hlag,ay) = H{ar, a.}/V . (3.5)

1
= Ho = g {Akakaz + 3 |Braxa_j + c.c.]} , (3.6a)
k

A = /A(R) exp(ik - R)dR, By = /B(R) exp(ik - R)dR .

Step 4. Bogolubov u-v diagonalization.

Consider general form H, for n types of waves (or wave polarizations):

H

HQ = Z Z {Aw(k)al(k)a;(k) + 5 [Bw(k)al(k)aj(—k) + C.C.]} . (36b>
1)k

Canonical motion equations

oulkt)  OH({aya))
ot | dai(k.t) (37a)

an



with the Hamiltonian, given by Eq. (3.6h)), takes the form:

aalgtc ! Z [A’Lja](k t) +B2ja (— kvt)] . (3.7b)

J
Eq. (3.7b) becomes algebraic with  a;(k,t), ai(—k,t) o< exp(—iwt)  and

have 2n non-zero solutions with the w = +wj, that are the roots of:

Ajj(k) —wdij,  Bij(k)

Bjj(k), A;ij(k) + wbij (38)

Consider linear canonical transformation (called Bogolubov u-v transformation)

n

a;(k,t) = Z [wij (k) bj(Re,t) + vy (R) 03—k, 1)] (3.9)

for which H5(b, b*) takes the canonical diagonal form
Ho = Z/dk wi (k)b (k)DH(k) = bi(k,t) = —iw;(k)b;i(k,t) . (3.10)

bi(k,t) are normal canonical variables.

All physics of non-interacting waves is determined by 5 and therefore waves
in different media differ ONLY in the type of dispersion law w(k).
ALL information about wave interaction is contained in coefficients of H;,;

One shows that canonicity condition for the Bogolubov u-v transform, (3.9)),
(form=1)is

(k) — Ju(k)|*=1. (3.11)
For this case:
wi = sign{ A}/ A% — | Bil?, (3.12)
h — A + wg . __Bk Ap — wg
ko 2wk, ’ ko ’Bk’ ka

Note: Generally speaking, the frequency w;. can be negative: Hamiltonian H de-
creases, if wave amplitudes increase. This is impossible near the thermodynamic

equilibrium, but can happens in highly exited media.

~ 1



Three-wave Interaction Hamiltonian #;

ALL relevant information about wave interaction (and no extra, unneeded

details) is contained in the coefficients of iy

Hint = Hg + Ha+ ... (3.13)
Three-wave Interaction Hamiltonian H3
1 *
Hs = 3 Z (Vgbibabs + c.c.) (3.14a)
k1=ko+ks3
1 X7 k7 ok
+o > (Ugbibsbs +c.c) . (3.14D)
ki1+ko+ks3=0

describes three-wave processes of interaction.
Terms in Eq. (3.14al) — the decay processes 1 — 2 & confluence processes 2 — 1.

Terms in Eq. (3.14b]) annihilation of three waves 3 — ( & their creation from
the vacuum 0 — 3

Shorthand notations: b = b(k;,t), V, = Viss = V (k1, k2, k3), etc. Here-
after we are chousing numerical factor in the front of the interaction Hamiltonian
as 1 /N, where N is the number of elements in the Hamiltonian symmetry group.

This simplifies various equations in the problem description.

Four-wave Interaction Hamiltonian H,

describes processes involving four waves: 2 <+ 2, 1 <+ 3, and 4 <> 0:

1
Hi= 7 ), Wybibibsh (3.15a)
ki+ko=ks+ky
1
+5; > (Gybibibib; + c.c.) (3.15b)
" ki=ko+kstky
1
+ Z (R bibabsby + c.c). (3.15¢)

" k1+kotk3+ky=0

a



To which order in b, b* the Hamiltonian H should be expanded?
Three-wave conservation law : wk+k)=wlk)+wk) . (3.16)
3-waves processes can be forbidden. 4-wave scattering (2 — 2) conservation law:
wk)+wk)=wk+r) +wk —k). (3.17)

always allowed. Thus, in general,
H: and higher-order terms should NOT be taken into account.
Expansion (3.1]) utilizes the smallness of the wave amplitudes, therefore, gen-
erally speaking,
Ho > Hsg > Hy > Hs > ... . (3.18a)

In particular cases, due to specific symmetries of a problem, odd expansion
terms vanish (i.g. for spin waves in magnetics with exchange interactions, Kelvin

waves in quantum vortex lines). In these cases, instead of (3.18al) one requires:

Hy=Hs=Hr = =0, (3.18h)
Ho>Hy>Heg>Hs > ... . (3.18(3)

Therefore, as a rule, three-wave interactions dominate in wave systems with small
nonlinearity, e.g. for Rossby waves in the Atmosphere and Ocean, capillary waves
on the water surface, drift waves in Plasmas, etc.

On the other hand, if H3 = 0, or three-wave processes are forbidden the leading
nonlinear processes are four-wave interactions, that are allowed (in the sense that
will be clarified below) for all nonlinear systems.

In this Lectures we will discuss only three- and four-wave interactions, that

describes vast amount of weakly interacting waves.

Clearly, the physical world cannot be put in the Procrustean bed of any formal
scheme. For instance, in one-dimension the system of gravity waves five-wave

interactions Hamiltomian H, = 0 an five-wave interactions dominate, whereas



six-wave interactions dominate for Kelvin waves in quantum vortex lines. Wave
interactions in these and similar systems can be studied along the same lines as
the three- and four-wave interacting systems, but this subject lies outside the

scope of present Lectures.

Dimensional analysis of the Hamiltonian

For more details, see Sec. 1.2 in my book “Wave Turbulence under Parametric

Excitation”
H = Z wkz|bkz|2 —|— — Z szk’k”bkbk’bk” (319&)
k: k' + k"
1 * 7 %
_|_Z Z Tk:k:’k:”k”’bkbk/bk”bk”’ .
k+k/ k//+k///
H] =g -cm?* 9572 density of energy, [wi] = s},

g
bi] = gl/2 . cml=d/2 . g71/2,

[Vigs] = [z—:] =g /2 em?? s (3.19b)
w _ _

Tho51] = [b_;f] =g l.emi?. (3.19¢)
k

e Relevant parameters of the problems and results of the dimensional analysis

Sound in Continuous Media

d=3, [p] =g-cm™?, elasticity coefficient [x] = g-cm 572 or ¢
k k
Pr = by, al , Vi = b e = PE ~ U—k, (320&)
Cs Po Po Cs
Vigg = | |= k3 = krkoks


http://lvov.weizmann.ac.il/Texts-Online/003_PSW/003_PWT-Chapter1.pdf

Gravitational waves on the deep water: d =2, p, gravity acceleration g.

EM k?
HE = bk (T) , T1234 ~ — . (320b)
pg P
Capillary waves: d = 2, p, surface tension [o] =g-s>
|\ /A 210N /4
~ b — Viga >~ [ —— : 3.20
Hie = Dk (pak‘) 7 1 < p° ) 5:20e)

Vortex motion of Incompressible fluid: d =3, [p] = g-cm™>.

’Uk;ﬁb]%k/p, WOEO, ‘/12350, T12342]€2/p, 7‘[27‘[4 . (320d>

Dynamical perturbation theory
= Elimination of the nonresonant terms. Consider simple example:
H = whb* + gaﬁb* + %) + %(b?’ + b7 (3.21a)
Next, consider the weakly nonlinear canonical transformation:

b=c+ Ai> + Asec® + Azc*? (3.21b)

+ Byc® + Byc*® + Byec®® + By + ... :
obob*  0b* 0b |

ey = 28 _ 21
oo’y OdcOc*  Oc Oc* (3.21¢)
The canonicity condition, Eq. (B2Id) gives:

Ay = —2A,, By = A5 — A}, By +3B; = 2A5(A3 — A)) . (3.21d)

1
Demanding that H = wec”™ + ZTCQC*Q one, in addition to Eq. (3.21d)), has

V V U V: VU
Al=—, Ay=—— As=— B = 3.21
! 2w2’ ’ , w' , 6w’ ! 4w2+6w2’ (3:21¢)
U V V UV Uv
27 36w dw? T ? dw? i 1202 1= T 82
3V U
=2 (3.21g)

W 3w

-~



In general, total amplitude of the 4-wave processes

Ti231 = Wig 34+ T1234 (3.22a)
f (?+2,1,2)V(3+4,3,4) U(—1—2,1,2)U(—3—4,3)
12,34 = — —
’ W1 + W2 — Wi42 W3 1 W4 + W34

_‘/(ji,3,1—3)v(4,2,4—2) B ‘/(3,4,2—4)‘/(3,1,3—1) (3.22h)
Wy—9 + Wy — Wy W3—1+ w1 — ws

‘/(;,3,2—3)‘/(47174_1) ‘/(14,1—4)‘/7(37273_2)

Wip_1 + W — Wy W3_9 + Wy — Ws




Exercises

Exercise 3.1 Prove that Eq. (3.4) is canonical, but not unimodal transforma-

tion and derive corresponding canonical equations (in k-representation). For
answer, see Eq. (5.28d).

Exercise 3.2 Find canonicity condition for the Bogolubov u-v transform,
given by Eq. (3.9)

Exercise 3.3 For a scale invariant dispersion law
wr = k¢
find values of o for which 3-wave processes are allowed. For a dispersion law
wr = wo |1+ (ak)?]
find values of k£ for which 3-wave processes are allowed.

Exercise 3.4 Using dimensional reasoning find relations between canonical
and natural variables and estimate interaction amplitudes for examples, given
in Eqgs. (3.20))

Exercise 3.5 Using dimensional reasoning find frequency, 4- and 6-wave in-
teraction amplitudes for Kelvin (bending) waves along quantized vortex line
in superfluid. The (most important) relevant parameter is K = i/M (M
is the atom mass). [k] = cm?/s. There is also dimensionless number
AN ~ In(f/a) ~ 12 + 15, where ¢ is the mean intervortex distance and

a ~ 1078cm (in *He) is the vortex core radius.

Answer:
A E?
wy ~ kk* = " : (3.23)
41
Tiozs ~ k' = —Akikoksky/(47),
I 3

Whozase ~ — = ———kikaksksksks,
K 4Tk
see PRB 81 104526 (2010).

-



Lecture 4

Linear evolution of wave packages

Outline

4.1 Dynamic equation of motion for weakly nonconservative waves
Equation for envelopes

4.3 Phase and group velocity

4.4] Dispersion and diffraction of waves

Exercises

Dynamic equation of motion for weakly nonconservative waves

e Small linear wave damping

If the interaction of the waves with the medium may be neglected:

: (4.1a)

ot b (k. 1)
The interaction of the waves with the thermal bath leads to the
exponential damping: |b(k,t)| = |b(k,0)| exp[—7(k)t] . (4.1b)
v(k) is the rate of damping. Phenomenologically:
8b<k,t> . . 5Hint
k k) bk,t)=— : 4.1

Region of applicability:
Y(k) < w(k), Hiw < Ha, [b(K)|* > |bo(k)[* = no(k) = T/w(k),

“~A



no(k) is the Rayleigh—Jeans distribution (classical limit of the Planck distribu-

tion).
e Accounting for the thermal noise
8b(k,t> . . 5Hint
k k) \bk,t)=— k.,t) . 4.2
f(k,t) is the Langevin force: random, Gaussian, white with the correlation:
(f(k, 1) (K, 1)) = 20(k — K')o(t — t')y(K)no(k) . (4.2b)

f(k,t) is not correlated at different times and for waves with different k.

10n(k,1)

Derive ST —y(k)[n(k,t) —no(k)], (4.2¢)
(b(k)b* (k') =n(k)d(k —K') . (4.2d)
n(k) is the number of waves. At n(k)/h < 1: n(k,t) = hng(k, ).
e Nonlinear damping
AlE nk)] = 20k) + 3 palhe, K (k) 43
%

Equation for envelopes

Consider Eq. (4.1d) in linear approximation, taking Hi,; = 0:

abg? ) + [iw(k) + (k)] b(k,t) =0 . (4.4)

Let b(k,t) # 0 only for k < ko, kK = k — kqy. For
c(k,t) = bk, t) exp [iw(ko)t] (4.5a)
ac(;; 2 + {z[w(k) — w(ko)] + ’y(k)}c(k, t)=0. (4.5b)

Expand the frequency difference

w(k) —w(ky) =v-K+QKriKk;+ ... Here (4.6a)

dw 0w
= | — locity, ;; = . (4.6b
v (dk>kk0 group velocity , €2;; (23kz’3kj>kko (4.6b)

N




Introduce new variable: Envelope of a narrow wave package C'(r, )

C(r,t) = 2 /c(k,t) expli(k — ko) - r]dk . (4.7a)
24—1) V — il C(r,t)=0 ZZQa—Q (4.7h)
ot ! e oY 890,8:6} . .
In an isotropic medium denote:
2
wk)=wk), v= %v, v = g—:, W = % . This gives (4.8a)
0 w02 v

This is a Hamiltonian equation with the Hamiltonian ‘H

oC 5

= 4.9
Yor oc (49)
1 . % « " 00 2 v 2 d
7—[—5/ - (CVC* = C*'VCO) +w 5, +E\VLC’\ d'r .
Eq. (4.7D)) has an extra integral of motion
N = / |C(r,t)|*dr — the total number of particles. (4.10)

Phase and group velocity

Plane wave C'(7,t) = C'exp {i|[w(k)t — k - ]} is a solution of Eq. (4.7h]). A
plane of constant phase propagate with the Phase Velocity

k w(k)
(k)= ——7. 4.11
Viulk) = & U (411)
Neglect L in Eq. (7B). Than one has the family of solutions
(r,t) = C(r — vt) describing a wave package which propagates with the
d

Group Velocity:  wv(kg) = (_w) (4.12)

dk / j_,

Clearly, Viu(k) # v(k) .



Dispersion and diffraction of waves

In isotropic media one has

0 (WO v
Consider stationary diffraction of waves on a half-plane z > 0, —o0 < y < oc.
0 o 0 0?
In Eq. (4.13)) put a:o, V—;g, @—H), Al — By (4.14a)
0 0
and get (2@k 5 + @> Cl(z,2)=0. (4.14D)

Self-similar substitution C(x, 2) = ¢g(() with ( = z \/k/z yields ordinary differ-
ential Eq.:
dh 1%
J"=i¢d, ¢dg=h = & =iCh = h(C) = hg exp% . (4.14¢)

This describes diffraction of wave package (on the half-plane).

In the co-moving with v reference frame R=r —vt, v-V — 0 and:

o (WD v
Eq. (4.13)) becomes [a — i (?@ + ﬁAL>] C(R,t)=0. (4.15a)

Consider next a 7 -independent, self-similar solution of Eq. (4.15al):

22

Cl(z,t) = f(&) with & = L giving ordinary differential Eq.: (4.15b)
w

Sff —i(ff+26f") =0, (4.15¢)

that describes Dispersion of wave package with 0z ~ Vw”t  (4.15d)



Exercises

Exercise 4.1 Derive Eq. (4.8b) as Hamiltonian equation with 7 given by
Eq. (4.9)

Exercise 4.2 Find solution ¢(() of diffraction Eq. (4.14d) and analyze its
asymptotical form for { > 1.

Exercise 4.3 Find solution f(£) of dispersion Eq. (5.35a) and analyze its
asymptotical form for £ > 1.

Py



Lecture 5
Three—wave processes

5.1 Basic “three-wave equation of motion”

Confluence of two waves and other induced processes
5.3 Decay instability

5.4 Intraseasonal Oscillations in Earths Atmosphere

The Bloembergen

Explosive three-wave instability

B.7] Burgers and Korteweg-de Vries Equations

Exercise

Basic “three-wave equation of motion”

Substitution Hin = Hs, Eq. (B.14), into the Eq. (4.1d) of motion yields

oby,
— W 1Yk | b 5.1
ey, —I-[ k + Y5 bi | (5.1)
—1 . * ¢ * 1k
=5 Z Vk*,lzblbz —1 Z V1,k,2b10; — 2 Z Uk,12b1b5 ,
k=142 1=k42 k+14+2=0
describing: k — k1 + ko = Decay Processes, (5.2a)

k + ky — ki = Confluence Processes, (5.2b)
k + k1 4+ k2 — 0 = Annihilation of Waves, (5.2¢)

Py



and corresponding inverse processes. We used shorthand notations 1 = kq,

2 = kz, b1 = bkl, b2 = bkz, Z = Z Ak,1_|_2, etc.

k=1+2  k,1,2

Confluence of two waves and other induced processes
Consider two monochromatic waves with the amplitudes by & bs:
b(k,t) = bjA(k — k1) exp [ — tw(k1)t] + boA(k — k3) exp [ — tw(k2)t].
They excite 4 additional waves: bs, by, 54 & bs:

+b46(k + ko — k1) exp[—iw(kq)t + tw(k2)t]
+b48(k + k1 — ko) exp[—iw(k2)t + iw(k1)t]

+b50(k + ko + k1) expliw(kq)t + tw(ko)t],
b — V*(ky 4 ko, k1, k2)b(k1)b(k2) (5.3)

P wlk) + wlka) — w(ky + k2) —iy(ky + k2)]
by(ki1, ko) = ba(ko, k1) (5.3b)

V*(k1, (k1 — k2), k2)b(k1)b(k2)

[w(ky) — w(kz) — w(ks — ka) — iy (k1 — k)]’
B U(—kl — kz, kl, kz)b*(kl)b*(kZ) 5 3(3)
w(ki) + w(ks) + w(ks + ka) — iv(ky + ka2)]

Resonant Conditions in (5.3al) If

b; =

W(kl) -+ W(kz) = W(kl + kz) , (54&)
b3 b3 w(k)
— ~ —~ (= ——=>1: resonance process of confluence of 2 waves.
by by (k)

For " good waves” Q-factor Q is about 10? — 10°.

Resonant Condition in (5.3b) If

the amplitude |by| >> |bs 5| and one has some strange process.



Consider process (b.3d) near in mechanical /thermodynamic equilibrium

Thus (5.3d)) are non-resonant processes that can neglected for Q > 1.

Decay instability

is an instability of a finite amplitude B plane monochromatic wave

b(k,t) = Bd(k — ko) exp ( — twot) (5.5)
with respect to decay into two other (secondary) waves:

e Decay of photon into two phonons, two magnons, two plasmons, etc.

e Induced light scattering: photon decaying into a photon and phonon, into a

photon and magnon,
e capillary waves (on liquid surface) decaying into two capillary or gravity waves,

e and many others ...

for which in the 3-wave Eq. (5.1]) we have to account for (b.2al) terms:

b; o .
ot -+ [wz -+ 7"772] bz = —5 i;H [‘/;;j,lbj bl } . (56)

In the presence of finite amplitude plane wave (5.5) in Eq. (5.1I) for the sec-

ondary waves by, by, with

we have to account for the confluence terms, (5.2b)):
Ob
8—151 + [y1 + iw(k1)]by + iV B b exp(—iwot) =0,  (5.8a)
ob:

5 + [v2 4 tw(k2)]b; — iV*B*b; exp(—iwot) = 0. (5.8b)

Let
bi(t) = biexp [(v — tw1)t], b(t) = biexp [(V + tw2)t]{5.9a)

with the restriction w; + wy = wy . (5.9b)



We know that Eq. (5.8) has nontrivial solution, by , by # 0, if:

I mArv+iwk) —wi] tVb _ .
Det = Vb et — ifw (k) — w] | 0 /5.10a)
Im{Det} = (v1+v)[w(kz) — w2] — 2(’Yz + v)[w(k1) — wi] =(6,10b)
Re{Det} = [v+ 11722 L =2y (5.10¢)

2 4
—|w(kr — wy)] [w(kz) —ws| =0 .

Solving Eq. (5.10b]) and wy +wy = wy with respect to wy and wo and substituting
result into Eq. (5.I0d) one gets bi-quadratic equation for v + (7, + 72)/2 with

the solution:

2 = —v; — Y2 + \/B + /B2 4+ 2(AvAw)?, (5.10d)
Ay =41 —v2, 2Aw = w(ky) + w(ks) —w(kg), (5.10e)

2B = 4|Vb|* + (A7) — 4(Aw)?. (5.10f)

Clearly: wy ~ w(ky), and we >~ w(kz). For the simple case v4 = v2 = 7,
v = —y+/IVB]? — (Aw)?, (5.11a)

wy = w(ky) — % , wo =wl(ks)+ % . (5.11Db)

At Re v > 0 the wave amplitudes exponentially increase. v is an increment

of decay instability.

In general case (71 # “y2) v is maximum at the resonance Aw = 0,

2Winax = — (11 +72) + \/4IV® + (A7) (5.12a)
and vy, = 0 at the threshold amplitude By,
|V Bin| = V7172 - (5.12b)

At the threshold and in the resonance

V1b1 = /202 . (5.12¢)



Thus at v > 70, b1 < by .

5.4 Intraseasonal Oscillations in Earths Atmosphere

Intraseasonal Oscillations (IOs) were detected by Madden and Julian in 1971
in their study of tropical wind and later discovered in the atmospheric angular
momentum, atmospheric pressure, etc.

Kartashova-L'vov (KL)-model [PRL 98, 198501 (2007)] considers 10s an intrin-
sic atmospheric phenomenon, related to a system of resonantly interacting triads

of planetary (Rossby) waves with frequencies,
Q(m, 0) =20m /(L + 1), (5.13)

where () is the frequency of the Earth rotation, ¢ and m are longitudinal and
latitudinal wave numbers of the j-mode, equal to the number of zeros of the
eigen- (spherical-) function along the longitude and latitude.

Due to discreteness of )(m, ¢) there are (only) four isolated triads with
Q(ml, 51) = Q(mg, 52) + Q(mg, 53) , with m;, fj . (514)

Namely: {[4,12],[4,14],[9,13]}, {[3.14],[1,20],[4,15]}, {[6,18],[7,20],[13,9]},
and {[1,14],[11,21],[12,20]}.

With v; = 0, and a; = —tB; their Hamiltonian motion equations are:
B, =-VB;B;, B,=VB3B!, B;=VBB,. (5.15a)
This system has two independent (Manly-Row) conservation laws
I, = |Bi|*+ |B2|?, I, =|Bi|*+|Bs|?, (5.15D)

which allows one to find general solution for B; expressed in Jacobian elliptic

functions
B2 B2 OCI’I (’T — ’T()) ) B3 B3 oS1 (’T — ’T()) ,B1 Bl,odl’l (’T — ’T()) ,
where Bjo, 7o, are defined by initial conditions and 7 = ¢t/V /I, I, .

P


http://lvov.weizmann.ac.il/lvov/Texts-Online/199_PRL-07_RossbyTriads.pdf

Elliptic functions cn(7), sn(7) and dn(7) are periodic and their real periods are
equal to 4K,4K and 2K correspondingly, with K (1) a normalized complete
elliptic integral of the first order with modulus p:

2 [/ do I, I
K(H)Z—/ ,uzzmin{—l,—z}gl.
©™J o \/1—Msin29 I, I

Example of time dependence (in days) of By (solid-black), Bs (dashed-red) and
Bs (blue dotted-dashed) in the first triad is shown below.

1.0

The KL-model is equally applied to the

Northern and the Southern Hemispheres,

4 |/ "\, | is independent (in the leading order) of
} 1 Earths topography, naturally has the pe-
0. N /| riod of desired order, and allows one to
\ A . interpret the main observable features of

1.0 Nov Se_- -~ 4
o 5 4 & & 1 |Os

5.5 The Bloembergen Problem
Consider 3 narrow packages centered at

ki, k2, kzand wg,, wk,, Wk, such that

ki1 =ks+ ks, wi = Wk, + Wiy -

Introduce the envelopes : a;(k) = b;j(k; + k) expilw(k;)t — k;r], (5.16a)
a;(r) = (2m)73/? / a;(k) exp (ikr) dk , (5.16b)

and expand :  w(k; + k) = w(k;) + (kv;) . Then (5.16¢)

A


http://lvov.weizmann.ac.il/lvov/Texts-Online/199_PRL-07_RossbyTriads.pdf

o
(a + v+ vy V) a(r,t) = —iVay(r,t)as(r,t), (5.17a)
< o

ot
9 ystvseV
at = PTY

where V' = (2m)%2V (ky; k2, k3) -

+ 2 + vo - V) as(r,t) = —iVaq(r,t)az(r,t), (5.17b)
) as(r,t) = —iVas(r,t)a;(r,t), (5.17c)

Under ~; = 0 Eq. (5.17)) are Hamiltonian equations with the Hamiltonian

3
H = E & /[a;(r)Vaj(r) —c.cldr + V/[a’{azag + c.c]dr.
ot 21

(5.1%a)

Under 7, = 0 in addition to #H, Eq. (517 has two other independent

(Manly-Row) integrals of motion:

N1 + Ny = const., Ny + N3 = const., where (5.18h)
N; = /a;(r,t)aj(r,t) dr (5.18¢)

is the total number of particles of j type. In particular, Eq. (517]) describe

Stationary generation of the 2nd harmonic: Let:

az=az, v, =0, vj=v, ai(r) = Ai(z), (5.19)
CLQ(’I") = CLg(T) = \/EAZ(Z), Al,AQ real .

With (5.19), Eq. (5.17)) yields:

8 A, ,  0A;
v Ey = VAZ, v Ey = —VA1A2, (520&)




which has integral of motion A%(z) + A3(z) = A? =const. This gives:

0A
=V (A? - A3 5.20b
v Bz ( 1) ’ ( )
Consider boundary condition at
z=0: A;(0) =0, A2(0)=B. (5.20¢)

Solution of the problem (5.20):

A,(z) = Btanh (sz> L Ag(2) :B/cosh (VBZ> . (521)

(%

L = v/(V B) is the Interaction Lenght. At z > L all the energy of the initial

wave is fully transferred into the second harmonics Aj.

Explosive three-wave instability

Waves with negative energy can exist in the active medium! Then the res-
onance conditions may be satisfied for the Creation of three waves from the

vacuum:

W(kl) —|— W(kz) —|— (.«J(kg) =0 ) kl —|— kg —|— k3 =0. (522)

Retaining only the last term in Eq. (5.1])

DD [tk + i R)b ) = 3 Uk ki k)05, (529
k+1+2=0
and assuming
b(k,t) =Y a;(t)A(k —kj)exp[—iw(k))t],  (5.24)

i=1

one has in the resonance



0 :
[— + 71] a; = —tUasas,

ot
i 8 ] ° k k
ot + 72| a2 = —wUa;as, (5.25)
: 8 : ° k _k
o + v3| a3 = —tUajas; .
At v; = v Eqgs. (5.25) have a solution la;| = A with
—~t
A(b) = A 7 exp(=7t) (5.26)

v+ UAlexp(—~t) — 1]
This is instability with finite inertial amplitude: If U Ay > ~, the amplitude

A(t) becomes infinite over a finite time
1

t = .
2U A

(5.27)

Burgers and Korteweg-de Vries Equations

e \Wave equations for quasi-linear dispersion and hydrodynamic nonlinearity

Consider waves with the quasi-linear dispersion law
wy = csk — (csa k)® . (5.28a)

Corresponding motion equation for the velocity of that waves, travelling to the
right, in one-dimension is
0 o , 0°
(a + Cso + csa %> u(x,t) =0. (5.28b)
For sound waves in fluids, gravity waves on shallow (of the depth «a ) water,
and in many other systems (of hydrodynamic types) one can account for the

quadratic nonlinearity and viscous damping:

(a+ o ou, 283> 92w 5050
— < ca“— |lu=p——-:. .
ot “ox | oz x? Koz ¢




The form of the nonlinear term u wu, is determined by the requirement of the
Galilei invariance: the form of Eq. (5.28d) must be invariant under the transfor-

mation
r—o>r—Vt, u—>u+V. (5.29)

It also can be derived from the sound 3-wave interaction Hamiltonian with the
amplitude V)93 = V\/kikoks by the transformations: Vka, = v, — u(x) .

The 2nd term in the LHS of Eq. (5.28d) disappears in the comoving reference
frame
r — T — Cst,

giving:

O 2l Va2 5.30
8t+8w+ca8w3 v 'u(‘?acz ( )

— Without viscous term this equation was suggested by Korteweg and his
student de Vries in 1895 and is called Korteweg-de Vries (KdV) equation.
— Without dispersion term it was suggested by Burgers in 1940 and is called

(a du , 9° ) 82u

Burgers equation.

e Burgers equation

ou N ou O*u (5.31a)
—tu— = .
ot ox 'u(‘?:r;z !

can be solved in general form by the Hopf (1950) substitution

0
u=—2p—Inp(xz,t), (5.31b)
ox
which gives for ¢ linear (thermal-conductivity) equation
Oy 0%
— = . 5.31
at x> (5:31¢)

This allows to find analytical solution of Eq. (5.31al) from any initial condition.



x
At

F(¢) = % [exp <—g> / ; dnexp (—n?) (5.32a)
v (31) [ nen o)

where the only dependence on initial conditions is via the motion integral, me-

Asymptotically for ¢t — oo, @(x,t) = F(§), £ =

chanical momentum of the system, M :
M E/ u(x,t)dx . (5.32b)

In the limit p© — 0 :

u(x,t) =x/t,for 0<ax<V2Mt, (5.32¢)
u(x,t) =0, for 0<x, x>V2Mt.

Burgers Eq. (5.31al) has also stationary solutions, propagating “dissipative shock
wave
u=f(x—Wt), W:uo—l—%Au, (5.33a)
Au
1+ exp(Aug/2u)’
with ug and Au being integration constants. Shock width § = 2/1/Awu can be

f(&) =uo+ (5.33D)

also estimated by the balance of the nonlinear and dissipation term in Eq. (5.31a)
Korteweg-de Vries Equation

e 1834: Observation of solitary waves by a naval architect, John Scott Russell. He

was on horseback, riding along the Union Canal between Edinburgh and Glasgow,

and he suddenly saw a boat rapidly drawn by a pair of horses, which however

stopped suddenly and a rounded, smooth and well defined heap of water loosened

from its prow, continuing its course along the channel apparently without change

of form and diminution of speed. Russell called these waves solitary waves. Russell



performed a number of experiments in wave tanks and was able to gain much
empirical knowledge about these waves.

e 1895: Korteweg and de Vries, in the paper "On the change of Form of long
Waves advancing in a Rectangular Canal and on a New Type of Long Stationary

Waves", suggested the KdV equation:
ou O3u

Ou  Ou 6, 20n 9 (5.34)
ar "o o ags T |

This “canonical” choice of constants is reached by proper re-scaling of time,

length and amplitude w. The first and second linear terms, describe travelling
with velocity C' = 1 waves. The 2nd term disappear in the co-moving reference
frame.

In the linear approximation KdV Eq. (5.34)) has the dispersion law:
wk)=k—k. (5.35a)

The dispersion term leads to the broadening of the wave profile.

The nonlinear term gives velocity dependence on the wave amplitude:
Cy. =14 6u, (5.35b)

and responsible for the the steepening the wave front. The dispersion and front-

steepening effects balance each other and give rise to the stationary behavior,

solitons. One soliton solution of KdV Eq. (5.34)) is
2K2
u = .
ch[k(€§ — 4K?t) + @]

Here free parameter /K describe amplitude of the soliton, related to the non-

(5.36)

linear correction of its velocity 4x2, and soliton phase, ¢, defines position of
Its maximum at ¢t = 0.
A way to get this solution is as follows:

e In the moving with velocity 1 4 c reference frame x = & — (1 + ¢) T rewrite

KdV for u(x)

d[ +32+d2u]:>[ +32+d2u]—A:>0
A Cu u A2 Cu u A2 = ’



with the help of the zero at 200 boundary conditions.
e Multiplying this by du/dx one has similarly:
L[~ s (2] [ e ()] -
dx 2 dx B ’
again with the help of the boundary conditions.

e Now one has

du
o =uvc— 2u,
T

which easily can be integrating to give Eq. (6.16al).

This trick was possible due to two (trivial) integrals of motion, total mechan-

Ilzfudg,
Izzf%zdﬁ.

Indeed, KdV Eq. (5.34)) can be identically rewritten as the continuity equations

ical momentum

and total energy

dl,, dJ, _
+ =0, n=1,2 with the fluxes: (5.37a)
dr d£
0*u
?u 1 [Ou)\?
Later in 1965 Gerald Whitham found a third conservation law :
N3 =3u® —ug, ug= (d_u) , (5.38)
d§

J3 = 3u’ + 6u’(6u)ee — 12uui — 2ug ugee + uZe  (5.39)

Later up to ten(!) conservation laws were found by Norman Zabusky (currently
in Weizmann, Physics Dept.), Kruskal and Miura. This lead to the conjecture
that the KdV equation had an infinite number of conservation laws, which was

verified explicitly in 1968 by Miura, Gardner and Kruskal. This conjecture was



also shown explicitly in 1973 by Whalquist and Estabrook and by Lamb in 1974
using the Auto-Backlund transformation.

The KdV equation can support more than one soliton. IN-soliton solutions are
collisionless. This can be shown using the Hirota direct method, by the inverse-
scattering-transform or by the auto-Backlund-transform. These derivations are

beyond the scope of this course.

Exercises

Exercise 5.1 Derive Hamiltonian of the hot-wire harmonic oscillator (Lect.

1) and consider its parametric instability as a particular case of the decay
instability, Sec. 5.2l



Lecture 6

Four—wave processes

Outline

Basic “four-wave equation of motion”

Modulation Instability of Plane Waves

Nonlinear Equation for Envelopes

Evolution of Wave Packages in Unbounded Media

Exercises

Basic “four-wave equation of motion”

Let 3-wave processes are forbidden. Consider then 4-wave scattering of 2 = 2

type

W(kl) + W(kg) = w<’€3> + W(k4) ) ki+ky=ks+k,. (61&)
IEquation 4.1c|in this case are:
aCk . i *
E + [zwk + %}ck == —5 Z Tk7k1;k27k36k16k26k3 (6.1b)
k+ki=ko+ks

Here ¢y, are canonical variables, in which Hs is diagonal and all H3 is eliminated

by proper weakly nonlinear canonical transformation, similar to [Equation 3.21b|

Full 4-wave amplitude of interaction, T} .k, k. iS given by [Equation 3.22|



Modulation Instability of Plane Waves

Let b(k) = by A(k — kg) be a wave of finite amplitude.

ob
[Equation 6.1b| for b, at (k) = 0 becomes 5—15() + 182,00 = 0, (6.2a)

where “Nonlinear” frequency of the wave

1
Qko = Wk + T()() ‘bo’Q , T()O = §T<k0, ko; ko, ko) . (62b)

In the presence of by [Equation 6.1b] for the waves b; = b, < by,j =1,2 and
under the resonance conditions: 2wy, ~ wg, + Wk, , 2ky = k1 + ks =

ob 1

(9—151 + ’Llebl + ZSlQ b0b2 = O 512 == 2 (koko, k kﬁg) (63&)

ob;

a; — i,bs — iS5 (b5)?b1 = 0, Q= wi. +2Tilbol?,  (6.3D)
1

Ty = ET(ki’ ko; ki, ko). Attention: 2in (). ! (6.3¢)

e Instability increment in dissipation-less limit

Let  bi(t) = brexp [(iw1 + v )t] , b3(t) = biexp [(—iws + v )t] , (6.4a)

1 1
W] = kao + 5 (le — Qk,Q) , Wy = kao + 5 (Qk? — le) . (6.4b)
Then [Equation 6.3 yields: v? =[S bl — AQ*,  (6.5a)
1
AS) = 5 <Qk2 + le) — kao . (65b>

If AQ=0, then v =[Si5b5| > 0. Instability of plane wave!

Consider kip=ko+ K, = (), = w(ko) Fv -k + LK%+ 2S|by|*
Kk 0%w(k)

ith § = ~ T; 2 =
with S = Sy 0, Lk 5 (9]4328]{]

Then Eq. (6.5al) yields:




AQ ~ S|b|* + Lk*, Vi(k) ~ —Lr*(Lx* 4 2S|b|?) . (6.6a)
Instability criterion
SLk* <0, 0<|LkY <2|Sk;, (6.6b)
The instability is maximum for

Lr* = —S|by|? . (6.6¢)

Threshold amplitude in a dissipative medium:

Sl = vz - (6.6d)

In isotropic, scale invariant media:

kik;Pw(k)  wp=w, 1
LK? = — WK+ =R 6.7
Y= okok, = 2 | et (6.72)
wr X kY awg
1 ] (6
o [(oz K2+ 5 (6.7h)
k
e Nonlinear dielectrics: wj. = e n refractive index, and On > 0.

vn' ’ J|E|?
One has S < 0, since afg|2 ~ —8‘85‘2. For "normal dispersion” w >0, 8
w' < 0. This leads to S Lx2 < 0, the modulation instability of light in the non-

linear dielectrics resulting in the self-focusing of light.

e Gravitational waves on a sea: w(k) = /gk, a =1/2.

w(k) 1
Lr* = e </<;i — 5/3) : (6.8)

Fork =k, Lk?>>0andfork=r , Lx><0. Thus, there is the modu-
lation instability of gravity waves, (whatever the sign of T}, x,), resulting in the

4



phenomenon of a “tenth (or decuman, mountainous) wave”:

long-period ( with (A =~ 9 — 10\ ) longitudinal and lateral modulation of the

sea-wave amplitudes. Non-linear estimate of £/ =~ 10, a role of “white horses".

“Decumen wave”, lvan Aivazovskii (1817-1900), Tretyakov galary, Moscow.

Nonlinear Equation for Envelopes

describes nonlinear stage of modulation instability:
0
’ia—l—i’v'v—l—ﬁ—T‘C‘Q C(r,t)=0,
1 0%w(k) 0° w 0w

[

(6.9a)

(6.9b)



'I'-term describes the nonlinear self-action of the waves in the package.
Optically : dependence of the refractive index of the medium on |E|?.
When (5.4) is treated as a Schrodinger equation,

T-term is self-consistent attraction (at 7" < 0) or repulsive potential (at 7" > 0),

that is proportional to the density of particles N(r,t) = |C(r,t)|*

IEquation 13.2|is Hamiltonian

1 . * *
M=o / iv - (C"VC — OV ) (6.10)

0 (0C\°
+ w (—) +%|ALC\2+2T|C\4 dr

0z

and has one more integral of motion NV = / |C|*dr, total number of particles.

e Boundary Problem: The wave amplitude is given at a boundary of the

medium: 52
W 52 < Vs, A the v-direction (6.11)
e Stationary problem: 9C /0t = 0. Then
0o v
v—+—A, —T|C[ =0. 12
o + E oL C| ] C(r,t) =0 (6.12)

Considering 7 = z/v as a new time, [Equation 6.12] can be treated as a two-

dimensional Schrodinger equation (7 =z, y).

Evolution of Wave Packages in Unbounded Media

In the co-moving with a group velocity frame: (v - V) C — 0; w” retains and

0 W o2 )
it ——

Eq. (132
q-132) = |ig:+ 555 2

A, —T|CP*| Clr,t)=0. (6.13)

e Consider d = 1,2, 3 for w' >0 and for the “attractive” case T' < 0.
Let at ¢ = 0 £ is a characteristic size of the central peak and C' is an amplitude

in its center. The number of particles at £ =0 is

N :/\Cy%zr ~ |C]2¢ . (6.14a)



N is the integral of motion, dominated by the central peak. Thus:

C(t) ~ VNI(t) (6.14b)
Estimation for the energy of the package:
H o w N2 — |T|N? . (6.14c)

— One dimensional case: Stationary solution with

CL}// CL}//

ITIN — |TC?|ty’
minimizes the energy of the central peak. The rest of the energy radiates with

small amplitude short waves. In this case the pressure of the particles due to
their motion in the potential well balances the attractive force.

— Three dimensional case : As ¢ — 0 the pressure increases slower than the
attractive force which leads to collapse, falling of the particles on the center
over finite time. C(t) and {(t) are connected by [Equation 6.14a] with N — the

number of the particles involved in collapse. The energy of the collapsing particle

decreases (due to a "wave emission” ).

— Two dimensional case is marginal: the rate of the package of particles is
determined by the initial conditions:

At w' > TN ~ Tla|?/¢ the minimum given by Eq. (615) is achieved as
¢ — o0, i.e. the particles are moved away.
— Underw’ < TN part of the package is involved in the collapse process.

e One-dimensional Soliton

0 w O v
2 Y L YA —TIOP
TR W I e I

for d =1 (when A = 0) and with C(z,t) = C(2)exp(i\*t) yields
d*C dU 1

' =2\C - |T|C?) = —=, U=+

W =2 TIC") = ——% 5

After z — t this is a Newtonian equation for a “particle” with mass w” and

[Equation 6.13} C(r,t)=0

IT|C* = N2C?,  (6.16a)

coordinate C' moving in the field U(C'). [Equation 6.16a| conserves an “Energy”:

1o (dON° 1w g

[



— A solution C' =const., A\ = |T|C? (the particle at rest at the bottom of the well)
corresponds to a plane wave. When E/ > E.;, it results in periodical oscillations
i.e. to periodical modulation of the wave C'(z2).

— A soliton (at the rest) corresponds

B ]2 Aexp(1A°t)
E=0, C(zt) = \/Ecosh(\/@\z/\/m) : (6.16¢)

Other solutions: moving solitons, two, three,.. IN-soliton solutions.

e Dynamics of N-solitons solutions — inverse scattering problem

e Collapse in d=2, 3.
Let w” > 0, T' < 0 (attractive case).

After proper normalization:

oV OH 1
2T - o — L1y 1
i =S M=y [IVUP=Siiar, (617
)
i%—t + AU+ U =0 (6.17b)
Calculate:
82

2
—(R?) = 52/7“2\If|2dr i%/ZﬁV(@*W — UV U*)dr
J

ot?
0 ( ov* 8\I/>

= 2=z (UE— — ) ar (6.184)
(925; T\ Ox Oz

Making use the equation of motion, integrating by parts (no terms proportional

to x) one get
82
ot
At d > 2 and 8H > 0°(R?)/0t?, one has

—(R?% —4/ywy dr =8H +2(2—d /]\If4dr (6.18b)

(R?) < 4Ht* + C1t + Oy, (6.18¢)



i.e. collapse for H < 0 (R? — 0 in finite time).
The stationary two-dimensional solution (round wave guide) corresponds to
‘H = 0 with C; = 0. Unfortunately, this solution is not stable.

Exercises

TO BE PREPARED



Lecture 7.

Statistical description of weakly nonlinear waves
[7.1] Background: Statistical description of random processes
Statistics and evolution of free fields (Hi,: = 0)

[7.3] Mean-field approximation (linear in H;y)
[7.4] Approximation of kinetic equation, (quadratic in Hiy)
Applicability limits for kinetic equations

Quantum kinetic equations

[77) Exercises

Background: Statistical description of random processes

Let fi(t) random function, ¢ = 1,... N— sample # in an ensemble.

Ensemble averaging:

(f(t)f(t)), = lim —Zfl Vi), (7.1a)

N—oo [V

Stationarity:
E(t,t) = (ft)ft)), = Fat—t), Fst—t,t—t"),.. (7.1b)

Time averaging in stationary case:

(fR (), = OO/f flt+71)d (7.1¢c)



Ergodicity:

(...); = (...), = (...) — "proper averaging" , (7.1d)
Fourier transform:
flw) = / F(t) exp(iwt)dt (7.1e)
[~ o dw
)= [ Flo)expl-iwt) 57, (7.11)
Double correlation functions in ¢- and w-representations
[ - duw du
Ryt — 1) = / (Fl) Flw) ) explit — iwt (‘;T; (719
/ exp(iwt)dt = 210 (w) , (7.1h)
Double correlator in stationary case:
(F@)f()) = 2m(w + ) Fo(w), (7.1)
(w, 7)-relations:
~ N .
Fy(T) = /Fg(w) exp(—sz)%, (7.1j)
Fy(w) = /FQ(T) exp(iwT)dT . (7.1k)
Example:
~ 2 Y F2
Fy(1) = Fhexp(—y|7|) & Fh(w) = g (7.11)

Statistics and evolution of free fields (H, = 0)

Our goal is to go from dynamical description in terms of amplitudes |c(k,t)|
and phases of paves p(k,t): c(k,t) = |c(k,t)|explip(k,t)] to a kinetic descrip-

tion in terms of the correlation function of the wave amplitudes n(t, k) = ny -



classical analog of the occupation numbers
ndass(t, k) = hnquantum(t, k:) = ﬁNk, N;{; > 1. (72)
At Hine = 0 |c(k, t)] = const. @(k,t) = ¢, = w(k)t. Thus

(cr) = (leklexp(ipr)) =0, (7.3a)

{crew) = (lexllew|explivr +ipw)) =0, (7.3b)

(cxcpr) = (lexllewlexplior — ivw)) = n(k)Apy , (7.3c)

(cicsesey) = n(ky)n(ko)[A13Aos + A14Ao3] (7.3d)
(C]C5C5C4C5C6) = NyNans [AM(A%A% + AggAszs5) (7.3¢)
+A15(A0sA 36 + AggAsy) + Avg(AoaAgs + AosAga)] ... (7.3f)

Gaussian decomposition of high-order correlators " by all possible pairing”.

e Kinetic equation for H;,; = 0, Temperature © # 0

Consider [Equation 4.2 with H;, = 0 and Langevin random force fi(?):

acgt(t) = —(iwk + vk)ck + fk , (7.4&)

Fie(1) = (fi(7) f£(0)) = 2yknord(7) , (7.4b)

Here Rayleigh-Jeans (thermodynamic-equilibrium) distribution

nok = O/wg - (7.4c)
Compute:
0 0
T _ oRe { L8N — 9y + 2Re( fi(t)ci (1)) | (7.5a)
ot ot
and define different-time correlation function
~ . dw
Ui(7) = (fr(1)c(0)) = /\Ifkwexp(sz)g, (7.5Db)

To find \Tfkw consider [Equation 7.4a| in w-representation:

[i(wr — w) + M) er(w) = fr(w) (7.5d)

- p—




giving B
ka

Uy, = C Fp, =2 , 75
k i@ — @) + 7] k VENOK (7.5e)
Now in [Equation 7.53|
i} ~  dw
<fk<t>ck<t>> = Re\Ifk(()) = Re/@kw% = YeNok - (75f)

This gives kinetic equation of free waves, interacting with the thermostat:

0

2#211: = Ye(nox — nk) - (7.6a)

It describes relaxation to the thermodynamic equilibrium with the relaxation time
nk(t) = [nk(()) — nok] exp(—2fykt) + Nk (76b)

e Space Inhomogeneity, but H;,y = 0, and temperature © = 0:
Let

Hz = /Qkk/CkC;;/dkdk/, (77&)
Recall: in homogeneous case Oprr = wid(k — k).
With H,, Eq. ([Z.7al), motion equation becomes:
0
[a + ’)/k] Cr + 1 / Qkklck’dk/ =0 . (77b)

Define;

Niw(t) = (crcy) , ng(r) = /Nk/ku exp(ik - 1)dK , (7.7¢)

1 1
k’:k+§/<c, k”:k—én (7.7d)

and using [Equation 7.7b| derive

aN/ " .
akl;k _ _(,yk/ + ’)/k:”)Nk:’k” — /(Qk’lnlk" — Qlkunk/l)dl (776)

Replacing k' — k1 = v/, k' — k1 = k' and substituting inverse of [Equation 7.7

Ny = /nk(r) exp(—ik - 1) <2d7:)3 : (7.7%)




one gets
0 [ dr'dr”
(a + 2%) ng(r) = —z/ oy dr'dK" (7.79)

x explic’ - (r—v")+ix" - (r — ")

X [wkﬁﬂ/z(7"/)7’&1«—5'/2(7"”) - Wk:—,w/z(T/)nkﬂf/z(?“”)] ;

where wi(r) = /Qk/k// exp(ik - 7)dK . (7.7h)
a / a 1/
Expanding |...] ~ [ wgl(:) kg (r") — ng;: ) -/@’wk('r’)] . (7.7)
and noticing that in 7-representation ix’ — i ik — 0 (7.75)
or'’ or"’ '

one finally gets kinetic equation for n;(r) in inhomogeneous media

(2 )ty [0 ) _omte) o) g

Mean-field approximation (linear in #;,)

Consider 4-wave equation of motion in homogeneous media

) :
[a + ’Yk:] Cr + iwgCr = —% Z Ti1.23 €1 C2C3 (7.9a)
k+1=2+3

in which Tg1 23 has non-hamiltonian part (origin of which will be clarified later):

D = % [T((k, Kk, k) — Tk, Kk, k’)] (7.9b)
and derive straightforwardly:
ek —29ENg — 5 Z [Th1,23 (crpcicacs) — Ti o3 (Crcicacs)] .
k+1=2+3

With the Gaussian decomposition, [Equation 7.3d|, one finally has

on

k/

In general, for slow space inhomogeneity one has

[



Mean-Field Equation for the “Number” of Quasi-Particles:
on(k,r,t)

e 20(k,r)n(k,rt) (7.10a)
N Ow_ (k,r) On(k,r,t) Ow_ (k,r) On(k,r,t) _ 0
ok or or ok ’
with Self-consistent “nonlinear” frequency
w (k.7 t)=wk,r)+2 / T(k,k)n(k,r t)dk (7.10Db)
and Self-consistent “nonlinear” damping:
D(k,r t) =~(k)+2 / n(k,kn(k,r t)dk . (7.10¢)

Some solutions of these equations and their analysis will be discussed later.

Approximation of kinetic equation (quadratic in H;,)

e The three-wave Classical Kinetic Equation (KE)

With the 3-wave interaction Hamiltonian, given by [Equation 3.14a|, one derives

onyg(t 1
;t( ) = Im /[5 Vie12Ji 120k —k; —ky (7.11a)

—Vik2J1 k20K, —k—ky| d1d2, dj = dk; .

We replaced =
2.7 G

(b1babs) = J1230(k1 — ko — ks3), triple correlation function. (7.11Dh)

/dk, redefined accordingly V% 12 and introduced

J1.23 = 0 for a free field. Compute:

0 1,
[Za + (wl — W9 — W3)}J1,23 - /[_§V1,45J45,235k1—k4—k5
V2515340, kg ks + VissJ15.240k, by ks | dKadks . (7.11c)

Here (cicicscq) = Ji2.340(k1 + ko — ks — k4) — quadruple correlator which can
be taken for the free field:

J12734 = n1n2[5<k1 — k3> + 5<k1 — k4>] . (711(1)

AN



0
This gives: Za + (w1 —wo —w3)| J123 = —Vi9g Nio3, (7.1le)

N1723 = NoNg — n1(72,3 + TLQ) . (7.11f)

In the spirit of perturbational approach one neglects time dependence of .J; 23:

V1*23 N 1,23

J123(t) = — :
1’23() wl—wz—w3+z’5

(7.11g)

The term i specifies how to circumvent the pole. Finally, from Eqs. ([Z.11al),
(7.11g)) one has The Three-Wave Classical KE:

on(k,t 1
E?t ) =T / [5 \Vk712|2/\/’k,12(5(k — k1 — ko) (wg — wy — wo)
Vo N ka0 (k1 — ke — K)o (wr — wy — wz)] dk,dk, | (7.12)

e The four-wave Classical Kinetic Equation

With the 4-wave [Equation 6.1bjof motion, which accounts for the contribution

of the 3-wave (forbidden) processes into full scattering amplitude Tj; 23, one
derives
(’9nk(t)
ot

= Im / Tk1,23<]k:1,235<k + ki — ko — kg) dkidkodks , (713&)

where Ji; 23 is 4th-order correlator. In 0-th order in H4 one finds J,iOl)% by the

Gaussian decomposition, [Equation 7.3d]

on(k,t
This is the mean-field approximation. In the 1st order in H, one has
1934 Ni1.23
JU = 1234 7 TH1, 7.13
k1,23 W1+ Wy — w3 — wy + 30 ( °)
Nk1,23 = TZQTL3(711 + nk) — nlnk(nz + TL3) . (7.13(1)

In ‘]15711).23 the 6-th order correlator J123 456 Was decomposed to ./\/'12734 according

(1)

to|Equation 7.3fland we neglected the time derivative of J;, 5, like in the 3-wave




case. This finally gives The Four-Wave Classical KE:
on(k,t)
ot

70
-7 / Tinos|'Niras ok +1-2-3)  (T.14)
X 0wk + w1 — wy — w3) d1d2d3 .

Applicability limits for kinetic equations

e Applicability Criterion of the Three-wave kinetic [Equation 7.12|

— Phase-randomization Estimate:
Consider a broad packet n(k,t) with the k-width Ak ~ k and wg-width Awy,.

The characteristic time of n(k, t)-variation is T, = 1/7k, where

277,]{;]6

Te = ‘Vk kk| ‘kak‘ N = /n(k) dk ~ nkk’d . (7.15&)

For applicability of the random-phase approximation 7 > T ~ 1/Awy, phase
randomization time, or 51(k) = v/ Aw < 1. It gives

&1k |kak’ N/(Awg)® < 1. (7.15b)

— Weakness-interaction estimate: Validity of perturbation theory: & < 1.
(H3)  Re [ Vi3 1230k, —ky—ky dk1dkadks

k)= — 7.16
k) =) [w(k)n(k) dk (7.162)
Using |[Equation 7.11g| one gets:
2
Viag| MV kidkodk
(k) = | 123| 123 dkidkydks (7.16)

0 :
W1 — Wy — Wy Fi—he = kgfw (k)dk

For the wave packet with Ak =~ k it gives the same estimate: & ~ &.



— Estimate for Narrow Packages:

Consider interaction of 3 narrow packets with amplitudes c; ~ cpax VN
and the widths ¢, =~ { ~ 1/Ak, j =1,2,3.

Interaction time (from 3-wave Bloembergen egs.)
Tint 2 [|Vi23Cmax]] ™! (7.17a)
. Their overlapping or | collision time is
Teol 2 U/V123, U123 = max“vl — 9|, |v1 — w3, |v2 — ’Ugu : (7.17b)

If tint > teo1, the amplitude and phase of each packet will change only slightly
during one collision. The interaction of an ensemble of such packets may be
described statistically, i.e by KE. Thus — Applicability criterion of the 3-wave KE

for narrow packages

Tcol

o €|‘/1236max| |‘/123|\/N
123 = <1, &g~ ~ <

1. 7.17c
Tint U1,23 Ak - v193 ( )

For wide packages

w VN
Ak ~ k, U123NUN?I€ = &193 ~ "/123’w—kN V& (k). (7.17d)

For acoustic waves
wk)=ck.ki| ke | ks, vi =v2=1v3=ck;/k; (7.17e)

and vio3 = 0. Therefore

The classical KE isinapplicable at any sound amplitudes.
For applicability of the KE one needs deviations from linear dispersion law:
For w(k) = ak'™

ViV N

YN (7.17f)

0<exl, &3

O



For w(k) = Cok(1 + p k?)
[VizsV/N

<1 ~ 7T
pk™ <1, &o3 CAk ik (7.17g)
e Applicability Criterion of the Four-Wave Kinetic [Equation 7.14
Interaction time is |
— =~ [Tepa|* ~ TN . (7.18a)
Tint

The most strict applicability criterion is due to self-interaction within one nar-
row in the k-space wave package: the interaction process must be restricted by

the diffusion of the package during the time
1

i~ — 7.18b
T AR (7.18b)
For applicability of the Four-Wave Kinetic [Equation 7.14| one has
i TN
g o LU <1. (7.18¢)

Tt W (Ak)?

Quantum kinetic equations

e Three-Wave Quantum Kinetic Equation

ON kat mh
ét ) — 5 /[\Vk,12]2Fk,125(wk — W] — W2)5<k — 1= 2)
Vi Fisafin —n i~k atiz . (110

Here F}, 12 accounts for a difference between the probability of direct and inverse
processes:
Fk,12 = (Nl + 1)N2N3 — N1<N2 -+ 1)(N3 + 1) (719b)
= NoN3 — Ny(Na+ N3+ 1) .



If we neglect the unity in this expression and replace N(k;) by in(k;), the

quantum KE will turn into the classical Kinetic [Equation 7.12]

e Four-Wave Quantum Kinetic Equation

8Ng:’ 2 = 71'2h / |Th123* Fr1,23 6 (Wi + w1 — wa — ws)
< 8(k+1— 2 — 3)d1d2d3, (7.20a)
Fri2s = (N + 1)(N1+ 1)Na N3 — N N1 (Na + 1)(Ns + 1)
— NoNa(Ni + Njy +1) — Ny Ni(Na + Ng + 1) . (7.20b)

As expected, it goes in to the classical Kinetic [Equation 7.14] at N > 1.

Exercises

TO BE PREPARED



Lecture 8.

Dissipative Self-Consistent Dynamics

Background: Nature of Nonlinear Damping

Stationary “Jet” Solutions and their stability

Integral of motion H and Hidden Hamiltonian Structure
Nonlinear “S-theory of parametric excitation of waves

Exercises

Background: Nature of Nonlinear Damping

Consider 3-wave interaction of high- and low- frequency waves, wg > ()

(Light scattering on phonos, Lengmuir wave scattering on ion sound, etc) with

H= Zwkakak+Zbe*—l—z (Vi qOrarrbg + c.c .

k=k'+q

Dynamical motion equations, accounting for damping of waves are

Tt dnar = =13 [V b+ Ve g aw
k=k'+q

Ob,

E + (F + 4§ ) = —1 Z Vk K/ akak/Ak k'+q -

k=K'+q

A

(8.1a)

(8.1b)

(8.1c)



Our goal is statistical description of high-frequency waves in terms of 1y, = (agay,).

Directly from [Equation 8.1b| one gets

0 * "
(f% + 2'yk> nE = 2 Im Z [Vk;k/7q<bqakak/> (8.2a)

k=k'+q

+ Vk/;k,_q<bfqakak/>] .

Next step is to compute the triple correlators (...), which is convenient to do in

the w-representation:

. dQdwdw’ , .
(bgagaz) = /W exp[—i(Q — w + W)t by, ar.)- (8.2b)
Fourier transform by = [ by (t)exp (i€2t) dt, (Z.1€l), one finds from [Equation 8.1c]
dwidw2d (2 + W' — w)aky, a;,
b — 3 Vi 2 8.2
ol Zkzk; foik ’q/ 2Ly + i(Qq — Q)] (8.2¢)
=k'+q

This allows one to present [Equation 8.2b| as

dw dwsdwdw’ <akw1a;;,w2azwak/w/>

<bq&z&k/ = —1 Z Vk k' q / (27‘(‘)4[Fq n Z(Qq T w>] . (82d>

=k/+q

In the spirit of the mean-field approximation, linear in ., one should consider in

Eq. (8.2d) (...) as free-field correlator and can find it by Gaussian decomposition:

dwdw’nkwnk/w/
/ o7l , ] : (8.2¢)

(bgagay) ~ —2i Z Viek'

r_
vl g +i(Q+w —w)]

Generalized Fluctuation-Dissipation Theorem (FDT) for weak wave turbulence:

29k Nk
"k (wk — w)? + 72 i Re{Gro} (8.3a)
1

H(w—wk) + 7%

Py



Substituting FDT, [Equation 8.3 into [Equation 8.2¢| for (byajas) one gets for

dwdw Yy nEng

= _ 8.4
] / g+ i(Qq + W' — w)][(wk — w)? + Vi) [(wr — W) + 73] (8:4)
NNy / dwdw'’
2m)2 ) Dg+i(Qq + ' —w)|[ve — i(we — w)|[ vk + t(wpy — W')]
NN
= : , 8.5
Fk‘k’q + Z(Qq -+ Wyt — CUk) ( )
where 1/I";, is the triad decay time. Here
Py =Tq+ 76 + Ve (8.6)
Substituting this into [Equation 8.2¢]| one gets
. sz'k’ NEny
(bgaya) ~ —2i L : (8.7)
1 k;—q Fk‘k"q + Z(Qq + Wy — (,Uk>
Now [Equation 8.2a| can be presented as the Mean-Field Equations:
8nk, o
E = —2Fknk , Fk =Y+ ; nkk/nk/ , (88&)
in which 77k:,k:’ = —Nk'k
Vi ol Vi ke —al?
— 9Tm ‘ k,k,q‘ . 4 Kk, q| .
Qq + Wy — W — ZFk:k:’q Qq + W — Wy + ZFk:k:’q
_ 2wl T 21 Viek ol Ty (8.8)
(Qq + C(.)k/ - Wk;)2 + Fik/q (Qq —|— CUk; - Wk/)2 + Fik/q ’
with ¢ = k — K’. Equations (8.8)) follows from the dynamical Eq. for ag:
9 »
% + (Y + twk)ag = 72 Z Ti1:2,3070203 (8.9a)
k+1=2+3
with the effective 4-wave interaction amplitude
Va13-1Vig s
Tk123 = — STk ko (8.9b)

w1 + Qg_l — W3 — Z(’)/l + Y2 + F3_1)
VZ;k,2—kai3,1—3

— : + two terms with ko < k3 .
w3 + 213 — w1 + Z(”Yl + Y3 + F3_1)

~Ao



This vertex has non-hermitian part, originating from the damping in the triads.
Stationary “Jet” Solutions of Eq. (8.8) and their stability
Stationarity ['yng =0 requires ngp =0, or ['y =0; (8.10a)

Stability: for k, where ng =0 requires 'y >0, giving (8.10b)
Stable, stationary solutions: ng >0, where dl'y/dk =0 (8.10c)

Geometrical interpretation of [Equation 8.10d produces " jets” distributions in the

k-space for degenerated kernels np/.

e Differential approximation:

!
= ]

[ cosd

For wg > (0 > ', one approximates 7/, [Equation 8.8H8.114a)
2\ Ve e | Tkt 2 Vi o, —e | Lokt

ikt = Qe+ — k)2 +T2,  (Q+wp —wp)? + T2,
as follows:
d ) o Qg g
Mk == —1(k, 9)%(]{ — k), n(k,0) = 47| Vi gy | dwgJdk (8.11Db)
This yields the differential approximation for
/
[h = 7 — / (;ZS)Sn(k,Q)%an(k,Q’), (8.11c)
where Q = {0, ¢}
e Simple scale-invariant example of the “jet” solution:
Let
w=kF(Q), 0k, 0) =k'700), m=E7Q), (8.12a)
Then

I = k° [a“(@) - @(2;;_;1 / <Y 7(0) ﬁ(Q’)] >0, (8.12h)

~A



end r =a+-1. / is ) -independent: n(§2) # 0 at the set €2; , where

(€2j) = Ymax - Clearly:

G — O‘(;W;-;l / d0T(0) () . (8.12¢)

For cos (6;) = £1 there are 2 jets:

n(2) = N[d(cosd — 1) + d(cos @ + 1)], (8.12d)
(Oz - _l_l)n(ej) N = 27—‘-27max . (8126)

Integral of motion 7/ and Hidden Hamiltonian Structure

Consider
H = /dk [nk+ln(nk)/dk’Rkk/ 'yk/] : (8.13a)
in which Ry is the matrix, inverse to np/»
/dk’Rkk/nk/ku = (k — k") . (8.13b)
Using |[Equation 8.8a] compute
%—i[ = dk% [nk + /dk’Rkk/ yk/] (8.13¢)

= /dk [f)/k+/dk//?7kk//nk//] [nk+/dk’Rkk/ ’yk/] (813d>

= /dkvknk —/dkdk,dk””}/k/ Rk’kznkk”nk” (: /dk/’}/k/nk/>

+ / dkedk'~i Ry + / dkdk" ngmgry,, = 0 . (8.13¢)

One can show that A is a Hamiltonian of the system, [Equation 8.8al

It Hinit # Hgae one will not reach the stationary solution within the system,
described by [Equation 8.8a|

Nonlinear “S-theory” of parametric excitation of waves

S



WAVE TURBULENCE is a state of a system of many simultaneously excited
and interacting waves characterized by an energy distribution which is not in any
sense close to thermodynamic equilibrium. Such situations arise, for example,
in a choppy sea, in a hot plasma, in dielectrics under a powerful laser beam, in
magnetics placed in a strong microwave field, etc. Among the great variety of
physical situations in which wave turbulence arises, it is possible to select two
large limiting groups which allow a detailed analysis. The first is fully developed
wave turbulence arising when energy pumping and dissipation have essentially
different space scales. In this case there is a wide power spectrum of turbulence.
This type of turbulence will be described in next Lectures within the approxima-
tion of Kinetic Equation, explained in lsubsection 7.4l

In the second limiting case the scales in which energy pumping and dissipation

occur are the same. As a rule, in this case a narrow, almost singular spectrum of
turbulence appears which is concentrated near surfaces, curves or even points in
k-space. One of the most important, widely investigated and instructive exam-
ples of this kind of turbulence is parametric wave turbulence appearing as a result
of the evolution of a parametric instability of waves in media under strong ex-
ternal periodic modulation (laser beam, microwave electro-magnetic field, etc.).
Extremely reach and deeply nontrivial dynamics of wave turbulence under para-
metric excitation can be described in main details within the mean-field approx-
imation, called “ S -theory and described in details in Sec. Sec. 5 of my book

“Wave Turbulence Under Parametric Excitation”.

Exercises

TO BE PREPARED
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Lecture 9.

General properties of wave Kinetic Equation (KE)
Conservation laws in the 3- and 4-wave KE
Boltzmann's H-theorem and Thermodynamic Equilibrium in KE

Stationary Non-equilibrium Distributions in KE

Exercises

Conservation laws in the 3- and 4-wave KE

Consider Kinetic Equation

R 1
Y Iy (9.1a)

with the “collision integral” for the 3-wave KE given by [Equation 7.12}

Ik = T Z ‘Vk712’2 [711712 — nk(nl + nz)] 5(wk — W1 — CUQ)

k=1+2
+27 Z ]V1,k2\2 [n1ng — ng(ng — nq)])d(wy — wg — wa) . (9.1b)
1=k+2

For the 4-wave KE the collision integral, [Equation 7.14} is

I =7 Z ’Tk1,23’2 [nzng(nl + nk) — nlnk(nz + ng)]
k+1=2+3
X(S(wk +wp — wy — wg) . (91(3)

Sy



e Conservation of Energy
KEs conserve the total energy of non-interacting waves, given by
E = Z €k, energy density e, = wipnyg . (9.2)
k

This energy does not include (small) correction to the total energy of the system

of interacting waves, described by ;. .

dE
Compute rr for the 3-wave KE, using I , [Equation 10.1b}

dE
— =7 Z Vieaz|? [nane — ni(ng + na)) (9.3a)

dt
k=142
X (W —wp —wa)d(wg —wy —wy) =0

The same calculations for the 4-wave KE with the collision integral|Equation 10.1c|

dEl. m
At 4 Z [ The1.23]" [n2ns(ny + ng) — nang(ng + ng)]
k+1=2+3

X (W + w1 — wy — w3)d(wk +wp —we —wsz) =0. (9.3b)

One sees that formally the conservation of energy follows from the d(w...) , that
originates from the time-invariance.
Equations (9.3]) allows to present the 3- and 4-wave KEs as the continuity
Egs.:
(‘kk

T divpr,  with the Energy flux py : divpr, = —wily . (9.4)

e Conservation of the mechanical moment defined by

I1 = Zﬂ'k, e = kny (9.5)
k

is due to the delta functions A(k —1 — 2) and A(k — 1+ 2) in the 3-wave
KE and A(k+1—2—3) in the 4 wave KE. Corresponding proof is similar

to that for the conservation of energy. The momentum conservation allows to



present the KEs as the

0 ~
Continuity equation for the density 7y, : % + divR=0. (9.6)

e Conservation of N = >, ny in 4-wave KE can be proven similarly.

e Nontrivial integral of motion in degenerated systems.
From the above discussion it follows: If there exists a function f(k) such
that

f(k1)+f(k2):f(k1—|—k2), f(k)#Awk—i‘B'k, W1 + W2 = W142,
(9.7)

then there exists additional, independent integral of motion, given by
F = Zf(k)nk, : (9.8)
k

Example of the degenerated system, in which one found a function f(k) with the
properties (9.7)) is Quasi-one-dimensional, k, > k,, shallow-water gravitational-

capillary waves with the dispersion law:

k? 2ok
Wi = ck (1+2k§> ~ ck, 1+2k§+2_k:§ : (9.9a)

To see this introduce p = 2k,(c/k,)'/? and ¢ = kyc2/3/\/§ki/3 . Now the
RHS of Eq. (9.9al) can be written as

3 2
P’ 3q

=2A — 4+ — 9.9b

Wi P+ 16+ » ( )

with some constant A . With given two wave-vectors k; and ks, introduce

three variables &, & and & via py, po and ¢ :

pP1 = 2(51 - 62)7 q1 = 5% - 637 P2 = 2(52 - 53)7 (910&)

and let ¢o to be dependent on p;, ps and ¢; according to

Q=8&-&. (9.10b)



Now we can present

wipt, @) = A€ = &) +2(& — &), (9.11a)
W(pa, go) = A& — &) +2(& — &), (9.11b)
and to see that with our choice of dependence (9.10)) the frequencies Eq. (9.11)

satisfies the conservation laws:

w(p1, 1) + w(ps, g2) = w(pr +p2, 1 + q2) - (9.12)
Next introduce the function f(k)
_ (e ) (a_m
o) = ole) - ple) = p (2 +2) — o (L-2) . 013
i) = o(e) — ol = (2 +22) — o (2-2) . a3

with an arbitrary even function ¢(§) .

Then
f(p1+p2,q1 + q2) = (1) — 0(&3) = f(p1,q1) + f(P2, @2) - (9.13¢c)

This relation produces an infinite set of independent integrals of motion ([0.8]),

which corresponds to an integrability of Kadomtsev-Petviashvili equation.

Boltzmann’s H-theorem and Thermodynamic Equilibrium in
KE

Introduce the entropy of the wave system

S(t) =) In[ng] (9.14a)
k
and study its evolution, computing with the help of KE (9.15d)
dsS ong Iy
R i = 9.14b
dt ; nk(‘?t . ng ( )

u——



Using [Equation 10.1b| for the 3-wave collision integral one gets for the 3-wave

KE

dS
—_— =T Z |Vk12\25(wk — W1 — w2)<

dt
k=1+2

ning — NEn1 — NknN2

2
) >0 (9.14c)
NEnin9

and, using [Equation 10.1b|, we have for the 4-wave KE

dS m
E = Z Z \Tk1,23\25(wk + W — w2 — w3) (9-14d)
k+1=2+3
B 2
y (nans(ny + ng) — ning(ng + ng)] >0
NEN1Nan3 B

So, any evolution only increases the entropy. In the state of thermodynamic

equilibrium in the 3-wave KE (..) = 0 . To find the equilibrium transform
(..) = ngnang (ng' —ni' —ny') . (9.15a)

The equilibrium is the Rayleigh-Jeans distribution

T
— 9.15b
Mk WE — k . V 7 ( )
with two free constants, temperature 1" and velocity V' .

In the 4-wave KE one should put |...] =0 . Transform

] = ngninang|ngt +nyt —nyt — gt (9.15¢)
T

d find: = . 9.15d
and fin Nk on—k-V —p ( )

The conservation law N = const. generate new constant: 1 — chemical poten-
tial.

Stationary Non-equilibrium Distributions in KE

Introduce I'(k) to mimic energy pumping [['(k) > 0] and damping [['(k) < 0]
in well separated regions of k:
8nk

=Tt Tun, Te=0, for K <k < ks . (9.162)

-



Necessary requirements for the stationarity:
Lpng + Ik{nk} =0. (9.17)

Notice: Entropy output from the system that produces entropy.

From the H-theorem

Zﬁ > (0. Thus: ZF(k) <0. (9.184a)
k

n
L k

Conservation of energy, momentum & particle numbers produces three addi-

tional constrains

Y Tkwkn(k)=0, Y T(kknk)=0, &Y T(knk) =0.
* ' ' (9.18h)

Exercises

TO BE PREPARED
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Lecture 10

Wave damping and kinetic instability

[10.1]1 Wave damping in 3- and 4-wave processes
10.2] Linear theory of kinetic instability: 3- and 4-wave interactions
[10.3 Nonlinear theory of kinetic instability

10.4] Exercises

Wave damping in 3- and 4-wave processes

Consider KEs with the with the the 3- and 4-wave “collision integrals”, [.12]

(14
8nk
5 = Iy = —veng + Oy, (10.1a)
I, =7 Z \Vk712|2 (n1ng — ng(ny + ng)] d(wk — w1 — we)
k=1+2
+27 Z |V1,k2\2 [n1n9 — nk(ne —ng)|)o(wy — wg —ws) . (10.1b)
1=k+2
Iy =m Z |Tk1,23\2 [nans(ny + nk) — ngny(ne + ns))
k+1=2+3

><5(wk, + W1 — Wy — (,L)3) . (101(3)



Function in the front of 7, in the collision integrals can be considered as the

wave damping (frequency), in the decay, confluence, and scattering processes:

e =T+ (10.22)
Namely
T = 7T/ d(lzf)’?wk,mf(nl + ng)d(wg — w1 —we)d(k —1—2),
decay (10.2h)
o / %\VLMF(W )0 (e — w — w2)d(1 — ke — 2)
confluence (10.2¢)
e = 7T/ dkl(ggg a [ Tho1, 2" [ (12 + ng) — nany|
XO(wk + w1 —we —wsz)d(k+1—2—3), (10.2d)
scattering

In the thermodynamic equilibrium I, = 0 and all 74 > 0 .

In general this is not the case and if 7, < 0 one has a kinetic instability.

e Example: Damping of sound in solids due to the sound-sound interaction
Recall Debye model of sound in crystals (Peter Joseph Wilhelm Debye, 1884-
1966)

4 2\’
wp = sk, = kD = (;> = (ak,)’ =61, T,=hckp .  (10.3)

Usually the Debye temperature in crystals 7, ~ (100 <+ 200) K. Our dimensional

Vias =~ V/kikoks, V =+\/c/p, p=M/a’ . (10.4a)

Consider first the decay damping, [Equation 10.2b}

V2% / dk;dk;
(2m)?

estimate:

Vi - krka(ny +ng)d(k—ky—ko)d(k—1—2)  (10.4b)

Sy



T
Substitute nx = —-, ky = V2 + kP — 2k kycos =k — ky

d$21dS)y = 4m 27Tdcsos@ . This gives:
TV?k 1 1
’}/2 ~ / dklklkg /dCOS(g(S(/C /61—/{2) . (104(3)
cz Jo k /fz

Now we account that:

k ks
D=L and [.="2.
L= re / ko

With Egs. (10.4d) and (10.4a)) this gives the following estimates

TV?k (* Tk 4 T
d k 3
/Vk Cg /0 1 1( 1) Cs ) . a ) A[Cg ( )

Next we estimate the confluence damping:

V2k [ dk,dk
N / 1082 el — na)o(k — By + ko)o(k — 1+ 2)
Cq (27)?
TVZk Emax 3 T
~ 2 /k dk1ki(k — k1) ~ wy (@ Fpax) M—cg . (10.5a)
For low temperatures, T' << T hcskmax =~ T and (restoring numerical factors):
3
% T\’ T
— ~ 1607 | — : 10.5b
Wk 7T(TD> Mcg ( )
For 1"> T, one similarly gets
Y gt 2 |
o M Mec; ~ 100 Tiusion - (10.5¢)

e Next example: Damping of light due to the light-sound scattering

Consider the Hamiltonian of the problem:

H = Zwkakak + ZQ baby 1 Viw qtnan [bg + b o] Aririg -
k.k'q
(10.6a)

inwhich w, =ck, ¢ = , € isthedielectric constant of the media, (2, = c.k

Q_S‘ )
™

, Cs Is the speed of sound. The light-sound interaction is caused by the sound



modulation of the speed of the light via dielectric constant. Therefore

_Olne
Viowg = Vi/BF, Vi 2557 /ch . (10.6b)

Here p is the media density and we used the dimensional estimate of the

connection between p, and b, , given by [Equation 3.20al Now we are ready

to compute the Decay and confluence damping:

V2% [ dkdq ., s
~ s Kq(N, £ np)s(k—k'£q)0(k — kK £ =¢q).  (10.
o i [ TR, £ oK £k — K £ 2a) . (1060)
Accounting that
T
Ny=— and ny — 0
Csq
one gets
TV2k2 [ Ck (OIne\’ K*pT dlne\*
~ 5 d ~ ~ Ck
=" /0 “ave=5\Z, )~ =9\ g, )

(10.6d)
where p ~ M/€3 with ¢ being intermolecular distance, M is the molecular
mass in gas or fluid and we estimated Mc? ~ T .

The conclusion is that

Vi X Wy (10.6e)

This is why the sky is blue and the sun near the horizon is red.

Linear theory of kinetic instability: 3- and 4-wave interac-

tions

(0)

Take a wave distribution 7 as the sum of thermodynamic equilibrium 7,
and intensive “god-given” narrow package with k =k :
0, ~ ~ Ny
N =mny + Nk, Nk =
& ’ drk?

and consider confluence, Eq. (10.2d)), and scattering, Eq. (10.2d)), contributions

to damping of all other “secondary” waves in the system, caused by distribution

5(]€ — ]{0) , NO == /ﬁk dk, (107&)

-~ 1



~ dkidk
Ve = /W’VLM\Q(W —n1)o(w1 — wk — w2)6(1 —k —2), (10.7b)
e /dkldkgdkg
- (2m)°

XO0(wg +wp —ws —ws3)d(k+1—2—-3).

‘Tk1723‘2 [nl(nz + TZ3) — nzng] (107(3)

Evaluate the damping ~;, of arbitrary chosen package of secondary waves

Ny [dkidks,
Te = — ]{8 / (271')3 |V1,k:2 (108&)
51—k —2)

21 ’

where (...)/2m — 1/kkiks . Define wave vector k of the 2nd package of

X 5(]61 — k0)5(w1 — Wk — CUQ>

secondary waves, ‘complementary” to the initial one by

_ 4w

Wiy = Wy — W, U=—. 10.8b)
;= = <
Equations (10.8al) and (10.8b)) give
- QNO/]; 9 NO‘Vk k%‘2
o ——— |V ]t~ — o <0. 10.8
Tk Wkk(ﬂ}‘ ko’kk’ kv (10.8¢)
Similarly one finds the scattering contribution to the damping of secondary waves:
N2 T ~ 2
A~ o /’;’ikoko <0. (10.8d)
v

Negative contributions to the wave damping, caused by the narrow package N

Ve =Tkt Tk (10.9a)
(o< N, or oc N?) can exceed the positive contribution ~y; caused by the wide
wave thermodynamic-equilibrium distribution n) . This leads to the “kinetic
instability”. To describe the kinetic instability, consider KEs for the secondary
waves:

dn -
d—tk = Yk [ng)) — nk} — Vg Nk - (10.9b)

A



This equation has the stationary “under-threshold” solution

%ng))

ng = ——, (10.9¢)
Ve[Vl
which describes the kinetic instability with the threshold
Vi = [Tk| - (10.9d)
Nonlinear theory of kinetic instability
e Limitation mechanism by positive nonlinear damping:

k/
Assuming, that the confluence 3-wave processes for the secondary waves are

allowed, consider a “confluence” mechanism for positive nonlinear damping.

Eq. (I020):

dk,dk
fyl(;; = 27‘(’/ (2171_)32“/1’]62’2(7’&2 — n1)5(w1 — WE — w2)5(1 —k — 2)

immediately gives:

Nk = Nk'k — 2W‘Vk+k’,kk’|25(wk+k’ — W — wk/) > 0. (1010b)

Nonlinear theory of self-consistent dynamics, described in lsubsection 9.2 yields

Singular wave distributions in the limit n!” — 0 - ng # 0 on the set of singular
g k g

points k; , where
Tk, =T — k| =0, dly,/dk; =0. (10.10¢)
This can happens on

— sphere|k;| = ky in case of spherical symmetryl(.11a)
— circles|k;| = ko, cosf; = Ecosby in case of axial symmetif).11hb)

— set of points, in case of no symmetry. (10.11c)

PR



In all cases: PR
[y =74+nN, N= / L : (10.12a)
n

where N is the total number of secondary waves, and 7 is the mean value

of 7 on the manifold, where n; # 0 . One sees, N oc super-criticality

~

Y= :?th .
Demonstrate a stationary solution with ngﬂo) =+ () for spherical symmetry
(0) (0)
n n 1
ng = = YNIIkO 7N: /ka ’ 5k0(~ —~ -
((5F) + §F (k’ — k0)2 T 2(5?)?’” Y — 7th

(10.12b)

e Universal (4-wave) “collision mechanism” of limitation
When 3-wave processes for the secondary waves are forbidden one has to account

for their 4-wave scattering. In that case the 4-wave KE is

dnyg, ~ d1d2d3
— = — k+1—-2-3 10.13
7 (Ve %)nkJrW/ )8 (k+ ) (10.13a)

X(S(u}k + W) — Wy — wg)’TkngP [nzng(nl + nk) — nlnk(nz -+ ng)] .

In the case of spherical symmetry:

N, B
nk:4ﬂ-k§w7 K=k — ke, N:/Nﬁdﬁ:
After the angular integrations Eq. (L0.13al) gives:
dridkod
N, = /N,ﬂN,@NHg(S(& + K1 — Ko — K3) i %22 e ., (10.13b)
r+1 57 K2 (2)
where
dS2 $21dS)odS 25 T?
Pr=_" / Thaos) k2, (k+1—2—3) ~
b0 ) iyt (Tl ko )™ e
(10.13¢)

and additional “scattering” contribution 7 . to the damping of the secondary

Wwaves

~

F — fyksw + ’}/]Sﬂsw T fikfsw ) fyzsw — F2N2 : (1013d)

After the substitution N, = /dTNT exp(—ikT) one has “Newtonian” equation

for the material point at “position” N, in “time" 7, “mass’ M. , in with

~ 4



the “potential energy” TI(IN) and “total (kinetic plus potential) energy E are:

N ,}//l dQNT 2 3 fy//
N, — = F2N? | Mg =~ 10.14
2 dr? T ff 2 ( a)
N2 F2N4 " AN\
I(N) = —— + L E=1(52) 41N . (10.14D)
2 4 4 \ dr

A particular solution of Eqgs. Eq. (10.14]) with zero total energy is:

AN N
= . VF2N?2—2, (10.15a)

dr 4
N 1 ~
N, = cosh™* ( s ) vy ko= F*N*=2. (10.15Db)
2K;SW '%SW

The physical mechanism of the “scattering” limitation is the “scattering widen-
ing” of the wave package to the region with positive total damping, which allows
to balance the energy pumping into a central part of the secondary wave package
system, due to the kinetic instability, and the energy damping on the tails of the
package.

Exercises

TO BE PREPARED



Lecture 11

Kolmogorov spectra of weak wave turbulence

[11.1] Self-similarity analysis of the flux-equilibrium spectra
Direction of fluxes

[11.3 Many-flux Kolmogorov spectra

Exact flux solutions of the 3-wave & 4-wave KEs

11.4] Exercises

Self-similarity analysis of the flux-equilibrium spectra

e Amplitudes of interaction. In Lect. [3 we considered dimensions of the
interaction amplitudes, and got Egs. (B.19b)) and (3.19d):

Vi3] = g /2. emFl T2 Tioz] =g ' em?™2.

Introduce scaling exponents of the frequency « , 3-wave amplitude m , and

4-wave amplitude m as follows:
WE X k’a, ‘/123 ~ Vb ]{m, T1234 ~ TO k’m . (111&)

For the case of complete self-similarity take as two basic parameters p and

WE -

-~



W fo—d
‘/123 ~ (f) k(5—d)/27 T1234 ~ 7 ] (111b)

In this way we found the scaling of the vertices via only one media parameter «
1 ~
m:§(a+5—d), m=(5-—d). (11.1c)

e Continuity Eq. for energy:

dwknk dpk, dpk, 9
=0, —/— = —wil = dnk" P, 11.2

where ¢; the energy flux (through the sphere of radius k), in d-dimensions is

estimated as
Ep = k‘dwk]k . (11.2b)

From the 3-wave KE it follows & = &; ~ k*V?k*"n2, and therefore:

1
r=d+m = §(d+5+oz). (11.3a)

In particular, for the 3D acoustic waves we found Zakharov-Sagdeev spectrum

ep
ﬁ\/; oy (11.3b)

and for the 2D deep capillary waves — Zakharov-Filonenko spectrum

wr=ck, a=1,n; ~

ok3 VEP

In the case of the 4-wave KE, ¢ = ¢, ~ k?’dTngmn% . and therefore:

1/3 2m d+ 10
,§:d+?m:> +3 . (11.4a)

3
TP

In particular, for the 2D deep gravity waves we found Zakharov-Filonenko spec-

ne =~

trum

= p2)1/3
wr =19k, np= ( pkz , (11.4b)

N



and for the physically very different cases of the Langmuir wave in plasmas and

spin waves in magnetically ordered dielectrics, for which v = 2 , it follows

m=0, r=d. (11.4c)

e Constant Particle-flux (11 = 1) spectra in 4-w KE. Replacing in[Equation 11.43|

£ = wy [+ one has

1/3 . 1/3 ~
Wy i B 2m — «
nk_—TOQ/?’k:f o<y y=d+ 3 (11.4d)
e Simplification for full self-similarity:
— Constant energy flux spectra:
5—d
Py, (5k: )
ng = —— ; (11.5&)
k5 pwy
in the 3-wave KE
/| EP
and in the 3-wave KE
2\ 1/3
Ep
Flz)~a2'3, nj~ ( 11074 ) : (11.5¢)
— Constant Particle-flux spectra in 4-w KE:
2\ 1/3
[ HwEp
Direction of fluxes
e Direct energy cascade in the 3-w KE:
From one side, in [Equation 11.3a) we showed:
1
ngp o< k™, x:d+m:§(d+5+a) :
. : . T —a
From other side, in the thermodynamic equilibrium n; = — oc k™" . Because
W,

d+ 5 > a and x > « energy goes toward toward equilibrium distribution, i.e. to

PR



large k. Therefore we have “Direct energy cascade” (toward large k).

e Direct energy and inverse “particle” cascade in the 4-w KE:
Following Bob Kraichnan consider energy and particle-number influxes, ¢* and
ut at some k =~ kg. Denote as
w4+, and v+ — the wave frequencies and dampings at k£, > ky and k_ < ky,
n+ = n(ky) — particle numbers at k = k.

Then in the ki areas the rates of particle-number dissipations are

M+ = N4,
and the rates of energy dissipation:
E4 O Wit .
Clearly the total dissipations:
U=y + i, e=cr+e=wifly +w_pi_ . (11.6a)
Solving these two equations in the limit w_ — 0, and w; — oo one has:
,u:,u_+wi — oy, e—eytw_put = el (11.6b)
+
This mean that the energy mainly dissipates at large k£ and we have
Direct energy cascade,

whereas the particle number mainly dissipates at small & and one has

Inverse particle cascade.

Many-flux Kolmogorov spectra

— Anisotropic corrections due to a small additional momentum-flux d:

k-omw Wy 0T
ny = n,io)qu [%] ~ n}(€0) [C’l + Cy cos(6y) f — | (11.7a)

(0)

where n, "’ is the constant energy-flux spectrum.

In the decay case ((wy ox k%, o > 1), when the 3-wave processes are allowed,

N



one sees the increase of the anisotropy toward large k, i.e. “structural instability”.

— Isotropic corrections due to a small additional particle-flux o :

5 5
g = O, [ “g“"f] ~ " [01 +C “;"’f] . (11.7b)

Again, correction increases toward large k, now as wy.

— Correction to the particle-flux spectrum due to a small energy flux

can be found similarly.

Exact flux solutions of the 3-wave & 4-wave KEs

e Exact flux solutions of the 3-wave KE (Kraichnan, Zakharov, Kats, Kon-
torovich)
Consider 3-wave collision integral (7.12]), written in the form:

dkydk
I — Wfl—d?{yvm\? nang — n(ny + )] (118)
(2m)

X(k—1—2)0(wk —wy — wy)

HVljkz\Q[nlnz —ng(ne —n1)](1 — k — 2)0(wy — wg — wa)

HVagal*frane = n(nn = n2)))(2 = k = 13wz — wy —wn) b

Kats-Kontorovich version of the Kraichnan-Zakharov transformation:

In red marked term: Rotate the (k, ki, ko) -triangle on angle ¢; from k; to
k in the (k, ki, k>)-plane (denote this transformation by ﬁl) and elongate the
triangle in Ay = k/k; times. This gives )\1]31k1 =k; )\1151]-:: = k' = k;, and

2 kk
K = 1 APk = k' = ky, k' = k—Q . (11.9a)
1 1

As a result the [red marked term| =—[grey marked term] x\;¢ where

(=2m —d — a —2x + 3d. (11.9b)

N



The origin of five contributions to ( in their ordering in Eq. (I1.92)) is as follows:

VE ), 0, e, Dk

Transform also the [green marked term| as follows:

(11.9¢)

. ~ ~ k
Mo DPoko =k ; Ao Pk = k' = k- , Mo Pk = K = k; , Ao = /{_ . (119d>
2

As a result the [green marked term]=—[grey marked term] x\.¢ . Now the

[grey] +red]+ [green][grey] [1 - (kﬁ)C - (5)1 S (1%

Clearly, at ¢ = —a, the collision integral (11.8]) vanishes due to the factor

[1 (5 (;2)1 mwi—w) 0. (1190

IEquation 11.9c|with ( = —a gives

sum

z=(m+d), (11.10)

in full agreement with our preliminary result (11.3al), which now gets the status

of Exact solution of the 3-wave KE in the “inertial interval of scales’.

e Exact flux solutions of the 4-wave KE
Consider the 4-wave collision integral ([7.14))

T 2
[k' = 5 /’Tk1,23’ Nk17235(k + 1—-—2— 3) (1111&)
X0 (wk + w1 — wo — ws3) d1d2d3,
Ni1.23 = nang(na + ng) — ning(nz + ng)

and mark in grey, red, blue and green each one quarter of it:

1
[k:Z[[k—FIk—I—Ik-F]k] . (11.11b>



Let }A)j - rotation operator from k; to k and A\; = k/k;. Anzats in [}, I} &1}

MNPk =k, \Pik =k = ki, \Pky=k'=ky,,  (11.11c)
MPiks = K" = ky:

NoDoky =k, MPok = k' = ko, MoPoki = k" = ks,  (11.11d)
NoPoks = k" = ky:

AiPiks =k, \sPok = k' = ks, \sPyk; = k" = ko, (11.11e)
N Poky = K" = ky

replaced k < ki in [, k & ko & k1 < ksinlgand k < ks in [, & k1 < ks

giving factor

HONGEGI

(=2m—3%—a+3d. (11.11f)

where

In this ordering, the contributions to ( originated from

T, N, (K..), (0..) and from the Jacobian.

As before, due to (w...) the collision integral vanishes at Z: —a, giving
- 2
LC:d—Fgm : (11.12a)

This in agreement with the preliminary Eq. (I1.4al) for the energy flux spectrum.

The second exact solution of the 4-wave KE in the inertial interval of scales

~

one gets, putting ¢ = 0 . With |[Equation 11.11f| this gives

2m — «
3 )
and agrees with Eq. (I1.4d]) for the exponent of the particle flux spectrum.

r=d+

(11.12D)

e Locality of the interaction = Convergence of the collision integral

~Ay



Consider again the 3-wave collision integral in the form (11.8)):

dk;dk
In=m / (217T>d2{\vk,1212 (n1ng — ng(ny + ng)| (11.13a)
X(k—1—2)0(wk — w1 — ws)

+|V1,k2|2[n1n2 —ng(ne —nq)](1 — k — 2)0(w1 — wg — wa)

_‘_‘VQ’kl‘Q [ning — ng(ny —n2)])(2 —k — 1)6(we — wg, — wl)} .

— Infrared locality: Region ki < k =~ ko: k = k1 ,, where [grey|~[green]|>>>[red].

lgnoring red term, present the sum of the grey and green ones as follows

I ~ /dn\Vkﬁan,{ (Ng—x — Nk)0 (W — Wg—x) + term K — —K]

2

Expanding (...) and (...) in K upto k° one finds a Double cancellation in

the collision integral (I1.13al) (of the zero-order and linear in Kk terms):

() +() = % (5 — )+ i G T %) i

The resulting estimate of the collision integral in the infrared regime is as

follows
dk g
I ~ | — K™ k% / dr k™1, (11.13b)
RUL 0
Here m; is the k -scaling exponent of the (k < k) -asymptotic of the vertex
Viewk o £"E™T™ 1 and (11.13¢)
z=d+2m —x+1=2m —m+1, (11.13d)

where 1z , the scaling exponent of ny is taken from [Equation 11.10| Integral
(I1.13B)) converges in the infrared region x — 0 at z > 0, which gives the

condition of

Infrared locality of 3-wave interaction: z=2m;—m+1>0. (11.14)

— Ultraviolet Locality: Region ki ~ ko > k , in which [red] =~ [green| > [grey].

In both terms the leading contribution o< n;; and one has only one cancellation

~y



in the ng-expansion. In particular, in the red term:

dm k

_ e AR
(n1 n2> dkl ni ]{1 < Ny
The resulting estimate of the collision integral in the infrared regime is as follows
> k1 > .
I, nk/ Ak VA P — nk/ dkik;i ', (11.15a)
k o k1 kv L
Z=d+2(m—mi) —r—a=m—2m; — «. (11.15Dh)

Clearly, for convergence of integral (I1.15al) one needs z < 0, i.e. the condition
of

Ultraviolet Locality of the 3-wave interaction: 2m; —m+a >0 (11.16)

Only fully (IR and UV) local flux spectra of weak wave turbulence (found by
the dimensional estimate or as exact solution of KE with the help of Kraichnan-
Zakharov conformal transformation) can be realized. The most of known flux-
spectra are local indeed.

Example: For acoustic turbulence oo =1, m; = %, m = % and Zakharov-
Sagdeev spectrum is local (with equal IR and UV gap of locality).

Non-local spectra of turbulence require separate study and were found for some
physical systems, for example, surface roughening within the 2D Kardar-Parisi-

Zhang model and some others.

Exercises

TO BE PREPARED



Lecture 12

Kolmogorov spectra of strong wave turbulence

[12.1] Universal spectra of strong wave turbulence
12.2] Matching of spectra of the weak and strong wave turbulence
[12.3] Spectrum of acoustic turbulence

12.4] Exercises

Universal spectra of strong wave turbulence

For large enough wave amplitudes, the theory of weak wave turbulence, based
on the random-phase approximation, leading to the KE, no longer valid. At
this condition there is a possibility for strong phase correlations of waves with
different k , corresponding to creation singularities of the wave profile (in
-space). In the k -representation this reflects in new universal spectra of strong
wave turbulence, independent of the (energy or whatever) fluxes, and depending
only on a wave profile near the singularity.

Remarkably, in the case of Full self-similarity one finds these spectra by dimen-

sional reasoning, as follows. Generalizing [Equation 11.53]

P < e ko~
ne — ———
k> pw;

we have to assume F'(00,00,...) — F, flux independent dimensionless con-

, ...other possible quxes) : (12.1a)



stant:

2
PWk - P
ne =~ ?, Ek = wkkd L ne = k6—_];, (121b)

where Ej. is the so called one-dimensional energy spectrum.

— Gravity surface waves [ with d =2 and wyp =+/gk |:

When acceleration on the top of waves exceed the gravity acceleration there
are discontinuity of the first derivative of the wave profile (creation of “white

horses”). In the k -representation this corresponds to universal

Fillips" spectrum of the surface gravity waves: B ~ Z—g , (12.2a)
or in terms of “occupation numbers”  n; ~ Zg—\//g, (12.2b)
which agrees with Eq. (I12.1b]) and is confirmed in experiments.
k3 .
— Capillary surface waves with d =2 and wp = 7% one finds from
P

Eq. (12.1h)
Hix' f the capill SRS
ix's spectrum of the capillary waves: FEj ~ 7o T Py (12.3)

— Plasma Langmuir waves Collapse = Point-singularities = Universal spec-

trum.

Matching of spectra of the weak and strong wave turbulence

Presenting applicability parameter &; of the 3-wave KE, [Equation 7.15b| as

1> &~ 5 — (12.4a)

NG

and substituting n; for the constant-energy flux nj ~ - one gets
| Viere |k
& \Vicki,
&l VE V] 5 | (12.4b)
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In the case of full self-similarity, when V. ~ , ff becomes

/wpk5—d
NG

c k.5—d
£~ ‘ (12.4c)
k P W}i
This allows to rewrite Eq. (I2.1al) for the energy-flux spectra in 3-wave KE as
/)wk
ng = (&) - (12.5)
Repeat the same job for the energy—flux spectrum in the 4-wave KE. Defining:
T 2 de
& =~ o Tkl — (12.6a)
213
and taking n; for the energy spectrum in 4-wave KE, n; ~ \Tk\—2/3kd one
gets
. 82/3 ’Tk’2/3
§r 5
Wi
5—d s
In the case of full self-similarity, when 1), ~ —— | parameter 5,{;/ becomes
the same as &/ , Eq. (124d):
3/ c ]{?5_d
&7~ : (12.6b)

3
P W
Now, we can rewrite Eq. (I2.1al) for the energy-flux spectra in 4-wave KE in the
way, similar to Eq. (I2.5):
Pk 3/2
Thus, The crossover scale between weak and strong turbulence, ks is given
by
kWSE)—d
P

For wyock® and a < i(5—d) wave turbulence in the small % region,

&~ gkm ~1, = eky pwiws : (12.8)

k < kys , i1s weak and in the region k > kys is strong.
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This is the case for the deep gravity waves with o =1 < 3(5—d) =1. Thus

“Weak” Zakharov-Filonenko sp. (IL4b): ny o EY k< ks (12.9a)
“Strong” (& deeper) Fillips sp. (I23): ny o< k™%, k> kys.
For a > % (b — d) the picture is opposite: strong wave turbulence for k < Ky
, and weak turbulence for k > ks . For example, for deep capillary waves with
a=32>1(5—d)=1 one has
“Strong” Hix's sp. (I23): np o< k72, k < kys; (12.9b)
“Weak” (& deeper) Zakh.-Fil. sp. (II3d): ni o k174 &k < ks

Summary for surface waves. When £ increases:
Small k= Weak Zakharov-Filonenko: k™% = Strong Fillips: k9?2 =
Strong Hix: k~7/2 = Weak Zakharov-Filonenko: k~'"/* = Large k

Real life even more complicated: particle-flux spectrum, wind—wave interaction,

gravity-capillary wave interaction, anizotropy of spectra...

Spectrum of acoustic turbulence

Recall “Weak” Zakharov—-Sagdeev spectrum, [Equation 11.3b}

\VEpP \VEP Cs
~ \/Esk3/2+d’ E, ~ Ty (12.10a)
and derive “Strong”, non-universal, Kadomtsev-Petviashvili spectrum:

2m F
E;, ~
k l;kQ )

N

E = / Eidk , with L — outer scale of turbulence. (12.10b)

27 /L

In 1D sound waves with w; = ¢,k is described by the Burgers [Equation 5.313|

U+ (cs +u)uy — Vg, =0, (12.11a)

for the fluid velocity u . Sound propagation with an effective nonlinear velocity

(cs +u) leads to creatio