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Bragg properties of efficient surface relief gratings in
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Abstract

Closed form analytical solutions of diffraction efficiency for transmission surface relief gratings in the resonance

domain are presented. These are obtained by modeling the surface relief gratings with equivalent graded index gratings

having Bragg properties, so as to allow for an optimum choice of grating parameters that would lead to high diffraction

efficiencies. The calculated and experimental results reveal that the diffraction efficiency can be greater than 85% with

optimized grating parameters within their certain strict limits.

� 2004 Elsevier B.V. All rights reserved.
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Surface relief gratings in the resonance domain,

where the grating period is comparable to that of

the illumination wavelength, have a unique dif-

fraction efficiency peak [1,2]. The physical nature

of this peak is not yet understood completely [3,4].

In order to analyze such gratings, it is usually

necessary to resort to extensive numerical methods

of rigorous diffraction theory, presented for ex-
ample in [1,2,5–8]. This is particularly so when

optimizing the various grating parameters and
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trade-offs for surface relief gratings in the reso-

nance domain in order to obtain the best diffrac-

tion efficiencies.

In this paper, we present a new approach for

analyzing resonance domain surface relief grat-

ings. It is based on ‘‘equivalent’’ sinusoidal graded

index gratings model, and provides analytic, closed

form solution for evaluating the performance of
surface relief gratings with arbitrary groove shapes

and diffraction efficiencies. Moreover, the model

explains the unique diffraction efficiency peak and

provides constraints on the grating parameters for

which high diffraction efficiencies can be achieved.

We begin by considering a basic surface relief

grating, recorded on a planar substrate, that is il-

luminated with a monochromatic oblique plane
ed.
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wave of wavelength k at an incidence angular

orientation of hinc. The period of this grating is Kx,

and the grooves are slanted for obtaining high

diffraction efficiency. The relevant parameters and

geometry of one groove from such a grating are

depicted on the Fig. 1. The refractive index of
groove material is nM , refractive index of upper

layer ni, maximum depth of grooves hmax measured

normal to the plane substrate. The distribution of

the refractive index n of the groove has the values

of either ni or nM . Finally the normalized groove

shape is defined by function gðvÞ, where the nor-

malized coordinate v ranges from 0 to 1, within a

single grating groove, and 06 gðvÞ6 1.
In dealing with slanted grooves, we found it

convenient to rotate the coordinate system by a

slant angle u0, whose value must be optimized. In

the rotated coordinate system the grooves are

characterized by a normalized coordinate vn, a

normalized ‘‘slanted groove shape’’ gfðvnÞ, a slan-

ted grating period Kn ¼ Kx cosu0 and a slanted

maximum depth of groove hmax f ¼ hmax= cosu0.
Applying usual coordinate rotation equations,

followed by simple algebraic manipulations, yields

gfðvnÞ ¼ gðvÞ and vn ¼ v� pgðvÞ ð1Þ
Fig. 1. Parameters and geometry of one groove in the surface

relief grating before and after coordinate rotation at angle u0.

Here hinc denotes the angle of incidence; nM and ni the refractive
indices of the grating groove material and the upper layer; Kx,

Kn the grating period, hmax, hmax f the maximum groove depths

and gðvÞ and gfðvnÞ the groove shapes before and after coor-

dinate rotation.
with the ‘‘slant parameter’’ defined as p ¼
hmax tanu0=Kx.

We now develop the sinusoidal graded index

model of the surface relief grating with slanted

grooves. We begin by approximating n2 with a
two-dimensional complex Fourier series, as

n2 ¼ n20 þ Dn2M
X
j

Gj expði2pjvnÞ; ð2Þ

where Dn2M ¼ n2M � n2i , and a slant angle u0, which

is incorporated in vn (see Eq. (1)), must be opti-

mized. The essentially constant parameters n20 and
Gj can be determined by routine mathematical

least square approximation, to yield

n20 ¼ n2
� �

; Gj ¼
n2 � n20
Dn2M

exp
��
� i2pjvn

��
;

ð3Þ
where h i denotes averaging within a single grating

groove, both in width and height. The mean-
square refractive index n20 in Eq. (3) is calculated

by integration of function n2 along the normal to

the grating, to yield

n20 ¼ n2i þ Dn2M�g; with �g ¼
Z 1

0

gðvÞdv: ð4Þ

The value of the dominant first harmonic term

coefficient G1 is found by integration of piecewise

constant function n2 along the slant angle u0 di-

rection, to yield

G1 ¼
Z 1

0

gf vn
� �

exp
�
� i2pvn

�
dvn: ð5Þ

We now introduce a refractive index modula-

tion term Dn, which is derived by comparing Eq.

(2) to that obtained for sinusoidal graded index
gratings [9], as

Dn ¼ Dn2M
n0

G1j j: ð6Þ

The refractive index modulation Dn in Eq. (6)

depends on the difference between nM and ni, the
groove profile shape and slant parameter p. In

order to determine the ‘‘equivalent’’ graded index

grating, which best characterizes the surface relief

grating, it is necessary to properly choose the slant

angle u0 or alternatively the slant parameter p.
Denoting ps as that value of p at which the maxi-
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mum values of Dn and jG1j, occur, i.e. Dn ¼ Dns
and jG1j ¼ G1s, we find that the optimum slant

angle us can be determined from

tanus ¼
Kx

hmax

ps: ð7Þ

Eq. (7) leads to the dominant ‘‘equivalent’’

graded index grating that corresponds to a specific

surface relief grating. Such an equivalent grating

thus simulates most accurately the surface relief

grating in terms of the highest possible value of Dn,
i.e. Dn ¼ Dns. Specifically Eqs. (4) and (5) together
with Eqs. (1) and (7) essentially denote the most

important relations between the surface relief

grating and its sinusoidal graded index grating

model. Together they simplify the complicated

calculation of diffraction efficiencies for surface

relief gratings in the resonance domain to those of

relatively simple calculation for sinusoidal graded

index model gratings.
Besides the dominant equivalent graded index

grating with ps and us, there are additional grat-

ings with p and u0 that degrade the overall effi-

ciency. In general, it is necessary to consider only

those additional gratings, which have relatively

high Dn. In particular, only those with

jDn=DnsjP dlow, where dlow is a fixed small

threshold value. In other words, we consider only
additional gratings with p between boundaries p�low
and pþlow defined by equations p�low ¼ ps � Dplow and

jDn=Dnsjjp¼p�
low

¼ dlow.
As a representative example we investigate the

surface relief grating of slanted sinusoidal groove

shape characterized by a relative groove peak po-

sition qc, with 06 qc 6 1 within the groove. In ac-

cordance to Eqs. (4) and (5), �g ¼ 0:5, ps ¼ qc � 0:5
and the parameters G1 and n0 are

jG1j ¼
1

2

J1 pðp � psÞ½ �
pðp � psÞ

����
����; n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2M þ n2ið Þ=2

q
:

ð8Þ

Eq. (8) indicates that G1, and consequently Dn
of Eq. (6), have maximum values G1s ¼ 0:25 and

Dns ¼ 0:25Dn2M=n0 at p ¼ ps, and side lobes. In this

example, Dplow ¼ 1:052, in accordance with a

threshold value dlow which was chosen as the ratio
of the first side lobe peak to the maximum value.
For an arbitrary slant parameter p, the jth or-

der Bragg conditions [9] can be written as

s2j þ c2j ¼ 1; ð9Þ

where, in our notations, sj and cj are

sj ¼
ni
n0

sin hinc � j
k

n0Kx
;

cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s20

q
� j

k
n0hmax

p: ð10Þ

Solving Eqs. (9) and (10) leads to the Bragg

incidence angles hinc;j at wavelength k for the res-

onance domain surface relief grating, as

ni sinhinc;j ¼
jk
2Kx

� Kxp
hmax

n20
1þ Kxp=hmaxð Þ2

"
� jk

2Kx

	 
2
#1=2

:

ð11Þ

The dominant +1st Bragg incidence angle
hinc;1jp¼ps

of the surface relief grating can be ob-

tained from Eq. (11) with j ¼ þ1 and p ¼ ps.
Using the equivalent grating model, the calcu-

lation of the +1st order diffraction efficiency g1 for
highly efficient surface relief gratings, is now re-

duced to exploiting the relatively simple closed

form analytic relation from the theory of the si-

nusoidal graded index grating [9], of

g1 ¼ sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m21 þ n21

q	 

1
h

þ n1=m1ð Þ2
i�1

: ð12Þ

The parameters m1 and n1 are now specific for

surface relief gratings, where n1 for either TE or

TM polarization is

n1 ¼
phmaxn0
2c1k

1
�

� s21 � c21
�

ð13Þ

and m1 is different for TE and TM polarizations, as

m1TE ¼ phmax

k
ffiffiffiffiffiffiffiffi
c0c1

p
n2M � n2i
� �

n0
G1s ð14Þ

and

m1TM ¼ m1TE 1

(
� 1

2

k
n0Kx

	 
2

1

"
þ kps

hmax

	 
2
#)

ð15Þ
with c0, c1, s1 defined by Eq. (10) when p ¼ ps.

Using Eqs. (5) and (12)–(15), we can draw
several important conclusions. Letting n1 ¼ 0 in
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Fig. 2. The diffraction efficiency of the +1st order as a function

of groove depth to period ratio hmax=Kx, for symmetrical sinu-

soidal surface relief gratings. The Bragg incidence angle was

45�, ratio of readout illumination wavelength to the period

k=Kx ¼ 1:414, refractive index of grooves nM ¼ 1:50, 1.66 and

2.0, and TE polarization. The thick-line curves are analytically

calculated within the equivalent grating model of this paper,

whereas the thin-line curves are numerically calculated by the

rigorous coupled wave theory [11]. Analytical: - - - nM ¼ 1:50, –

nM ¼ 1:66, � � � nM ¼ 2:0. Numerical: - - - nM ¼ 1:50, – nM ¼
1:66, � � � nM ¼ 2:0.
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Eq. (12), is equivalent to satisfying the Bragg

condition whereby g1 becomes the Bragg efficiency

gBragg. Then for a specific value of gBragg, the depth
of groove hmax can be found as a function of

grating period Kx. Another interesting conclusion

derived from Eqs. (5) and (12)–(15) is that in our
treatment the Bragg efficiency of surface relief

transmission gratings in the resonance domain is

fully determined by the first Fourier coefficient of

normalized slanted groove shapes calculated in the

dominant slant direction of equivalent graded in-

dex grating. Still another conclusion is that surface

relief gratings with different groove shapes will

have the same Bragg efficiency when the Fourier
coefficients of the normalized slanted groove

shapes are equal. This conclusion is in agreement

with the empirical criterion of ‘‘equivalence rule’’

for surface relief gratings [1,10].

Any small deviation of the incidence angle hinc
from the Bragg incidence angle hinc;1jp¼ps

or devi-

ation of the illumination wavelength from the

Bragg wavelength at given Bragg angle, corre-
sponds to varying the parameter n1, i.e. n1 6¼ 0.

This leads to a small relative reduction of the

Bragg efficiency to gmisgBragg, where the reduction

factor is gmis (0:8bgmis 6 1). From Eq. (12) we can

readily determine analytical expression for the

angular Dhinc;1 and spectral Dk1 selectivities for

highly efficient surface relief gratings as the band-

width of diffraction efficiency response corre-
sponding to the threshold level gmisgBragg.

In order to determine the constraints of our

approach, we must include in the analysis the de-

grading influence of additional gratings with slant

parameter p between boundaries p�low and pþlow. In
accordance to Eq. (11), when j ¼ �1, some of the

light from each additional graded index grating, in

particular for increasing values of Kx=k, will be
diffracted into the )1st order instead of the +1st

order. To ensure that this undesirable diffracted

light is minimal, the Bragg incidence angle

h�inc;low ¼ hinc;�1jp¼p�
low

of the ‘‘worst case’’ additional

grating with p ¼ p�low must be sufficiently different

from the +1st Bragg incidence angle hinc;1jp¼ps
of

the dominant equivalent grating. In such a case the

diffraction efficiency g1 at the boundary h�inc;low
should be lower than gmisgBragg and, in the worst

case, becomes
g1 hinc¼h�
inc;low

���� ¼ gmisgBragg: ð16Þ

Eq. (16) gives main restriction of applicability

of our model. For a given groove depth hmax, the
ratio Kx=k is constrained to be smaller than an

upper bound value Kx;up=k. This upper bound va-

lue is found by substituting Eq. (12) with j ¼ þ1

and p ¼ ps and also Eq. (11) with j ¼ �1 and

p ¼ p�low into Eq. (16).

To verify our model, we performed numerical

calculations using rigorous coupled wave analysis

[1,5,6]. We found that the results with our analytic
model are in agreement with the numerical calcu-

lations, especially those for deep gratings [11] as

depicted by thin and thick curves in Fig. 2. For

example, for symmetrical sinusoidal gratings with

k=Kx ¼ 1:414, hmax=Kx ¼ 1:9 and nM ¼ 1:66, the

agreement for diffraction efficiency values is within

3% over the incidence angles ranging from 34� to
54�, with the Bragg incidence angle of 45�. This is
shown in Fig. 3.



Fig. 4. Depth of grooves as a function of grating period and

their limits for different Bragg diffraction efficiencies for sinu-

soidal surface relief gratings with slanted grooves shape. Slant

angle us ¼ 17�, refractive index of groove material

nM ¼ 1:63992 at the illumination wavelength k ¼ 0:6328 lm,

and TE polarization.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 35 40 45 50 55 60

Incidence angle

D
if

fr
ac

tio
n 

ef
fi

ci
en

cy
,1

st
 o

rd
er

Analytical Numerical

Fig. 3. The diffraction efficiency of the +1st order as a function

of incidence angle, for symmetrical sinusoidal surface relief

gratings. Ratio of groove depth to period hmax=Kx ¼ 1:9, ratio

of readout illumination wavelength to the period k=Kx ¼ 1:414,

refractive index of grooves nM ¼ 1:66, and TE polarization.

Solid-line curve is analytically calculated within the equivalent

grating model of this paper, dotted-line curve is numerically

calculated within the rigorous coupled wave analysis.
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To determine the relationship between the

depth of grooves, the grating period and the dif-

fraction efficiency within the bounds of our model,
we considered a surface relief grating with slanted

sinusoidal grooves shape and coefficient G1 defined

by Eq. (8). Incorporating Dplow ¼ 1:052 into Eq.

(16), and using Eqs. (12)–(15) and (8), we calcu-

lated the depth of grooves as a closed form ana-

lytical function of the grating period at different

Bragg diffraction efficiencies and found the limit of

operation for such surface relief gratings, when the
incident illumination wavelength is k ¼ 0:6328 lm
and slant angle us ¼ 17�. The results for TE illu-

mination are presented in Fig. 4. As shown, there

are two ranges, where for a specific grating period,

two different groove depths would result in the

same diffraction efficiency. Also shown, at the right

side border of the graph, is an upper bound Kx;up

that the grating period cannot exceed at a certain
Bragg diffraction efficiency and groove depth. This

important bound indicates that Bragg efficiency

for surface relief gratings can be achieved only by

satisfying both the Bragg condition and the bound

Kx;up determined from Eq. (16).
To experimentally verify our approach, we ho-

lographically recorded nearly sinusoidal surface

relief gratings with slanted grooves shape, and

measured their diffraction efficiency as a function

of incident beam angular orientation. The gratings

were obtained by recording the interference pat-

tern of two plane waves that were derived from an

Argon laser of wavelength k ¼ 0:363 lm. The re-
cording material was Shipley 1813 photoresist with

nM ¼ 1:6399 at the readout wavelength of

k ¼ 0:6328 lm. The angular orientations of the

recording plane waves and exposure levels were

chosen to obtain a desired slant angle us ¼ 17�,
grating period Kx ¼ 0:47 lm, and groove depth

hmax ¼ 0:63 lm. Fig. 5 shows a magnified scanning

electron microscope photograph of a cross-sec-
tional portion of this grating having a groove

shape with slightly hard clipped planar upper part,

but substantially sinusoidal lower part. Using the

experimentally measured grooves profile shown in

Fig. 5, we numerically estimated coefficient G1 as

function of slant parameter p and found that the

actual slant angle of the equivalent grating is

us ¼ 17�, as desired.
The experimental arrangement for measuring

the diffraction efficiency of the gratings is sche-



Fig. 5. Scanning electron microscope photograph depicting a

magnified part of holographically recorded surface relief grat-

ing. Period Kx ¼ 0:47 lm, groove depth hmax ¼ 0:63 lm and

slant angle us ¼ 17�.
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Fig. 7. The diffraction efficiency of the +1st order as a function

of incidence angle for sinusoidal surface relief gratings with

slanted grooves shape. Period Kx ¼ 0:47 lm, groove depth

hmax ¼ 0:63 lm and slant angle us ¼ 17�, readout illumination

wavelength k ¼ 0:6328 lm, and TE polarization. Solid-line

curve is analytically calculated within the equivalent grating

model of this paper, dashed-line curve is numerically calculated

within the rigorous coupled wave theory.
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matically shown in Fig. 6. It is comprised of a He–
Ne laser L with k ¼ 0:6328 lm, a grating G re-

corded in a photoresist layer which was deposited

on a plane glass substrate, a prism P , a rotation

stage S and a detector D. In order to measure the

+1st diffraction order, which normally would be

trapped by total internal reflection inside the glass

substrate, we attached the substrate to the prism

with index matching liquid. The prism and grating
were placed on the rotation stage, so as to allow

variation of incidence angles from 15� to 35� with
1� steps.

The results of the diffraction efficiency mea-

surements, namely the power of +1st diffraction
Fig. 6. Schematic experimental arrangement for measuring the

grating efficiency. Here L denotes He–Ne laser with wavelength

k ¼ 0:6328 lm, G – grating, D – power meter, P – prism, and S –

a rotating stage.
order over the incident power (after accounting for

Fresnel reflections on the prism facets), as a
function of incidence angle for TE illumination are

presented in Fig. 7. Also included are the calcu-

lated results obtained both by the analytical cal-

culations of our equivalent grating model and by

numerical calculations of the rigorous coupled

wave analysis. The analytically calculated maxi-

mum diffraction efficiency gBragg ¼ 87:5% occurs at

a nonzero Bragg incidence angle hinc;1 ¼ 19:5�. The
Bragg angular selectivity is Dhinc;1 ¼ 15� and

spectral selectivity Dk1 ¼ 0:2 lm at a threshold

level gmis ¼ 0:9. As evident, the calculated and

experimental results are in good agreement.

In this paper, we developed and experimentally

verified an equivalent graded index grating model

explaining the Bragg behavior of resonance do-

main surface relief gratings and providing analytic
solutions that can aid in grating design and opti-

mization. Our results reveal that in order to

achieve high diffraction efficiency for surface relief

gratings certain constraints must be imposed, in

addition to the Bragg conditions. These constrains

define an upper bound for the grating period at

given groove depths.
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