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a b s t r a c t

Ultrasonic neurostimulation is a potentially potent noninvasive therapy, whose mechanism has yet to be
elucidated. We designed a system capable of applying ultrasound with minimal reflections to neuronal
cultures. Synaptic transmission was pharmacologically controlled, eliminating network effects, enabling
examination of single-cell processes. Short single pulses of low-intensity ultrasound were applied, and
time-locked responses were examined using calcium imaging.

Low-pressure (0.35 MPa) ultrasound directly stimulated ~20% of pharmacologically disconnected
neurons, regardless of membrane poration. Stimulation was resistant to the blockade of several puri-
nergic receptor and mechanosensitive ion channel types. Stimulation was blocked, however, by sup-
pression of action potentials. Surprisingly, even extremely short (4 ms) pulses were effective, stimulating
~8% of the neurons. Lower-pressure pulses (0.35 MPa) were less effective than higher-pressure ones
(0.65 MPa). Attrition effects dominated, with no indication of compromised viability.

Our results detract from theories implicating cavitation, heating, non-transient membrane pores
>1.5 nm, pre-synaptic release, or gradual effects. They implicate a post-synaptic mechanism upstream of
the action potential, and narrow down the list of possible targets involved.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A major issue hindering the advancement of US neuro-
stimulation is the lack of a concrete understanding of the under-
lying mechanism through which acoustic pressure stimulates
neuronal activity. Several possible mechanisms have been pro-
posed, but as yet, none are widely accepted in the field. Mecha-
nisms discussed [1e4] include sonoporation [5], membrane
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distortion [6] and temperature increases [7e16], as well as synaptic
vesicle fusion [17,18] and direct effects on ion channels [5,19e24].

Several experimental issues can confound mechanistic study of
US neurostimulation. First, acoustic reflections can distort the
spatial and temporal characteristics of the applied US pressure
[25e28]. While these reflections can be modeled and accounted for
using computational methods that will be critical for the trans-
lational applications of US [26,29e33], these reflections make
quantitative studies more complex, and demand higher accuracy in
the experimental system. Second, when stimulating highly con-
nected neuronal networks, recurrent activity can obscure single-
cell level mechanisms, and observed responses may reflect down-
stream effects of processes occurring outside the examined area.
Third, US pulse trains can contain confounding envelope fre-
quencies that emerge from the initiation and termination of indi-
vidual pulses [34].

We present an experimental system that addresses these issues,
enabling the examination of processes governing US stimulation at
the single-neuron level. We applied single US pulses to neuronal
cultures with minimal acoustic reflections. Synaptic transmission
was pharmacologically blocked, eliminating network effects. Op-
tical methods were used to measure neuronal activity and integrity
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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under the application of US, while pharmacological interventions
disrupted specific cellular processes, allowing the examination of
each process’ role in the mechanism of US neurostimulation.

We used this system to examine and rule out many of the
proposedmechanisms, as well as eliminate the candidacy of several
ion channels and receptors as the main players in US stimulation.
We report a surprising observation of effective stimulation using
single extremely short pulses.We also observed significant attrition
effects, who's source has yet to be identified.
2. Methods

2.1. Neuronal cultures

This study was approved by the Weizmann IACUC.
We used dissociated rat hippocampal neural cultures grown on

circular glass coverslips [35,36]. These cultures develop into flat,
interconnected networks containing 70%e80% excitatory and 30%e
20% inhibitory neurons [37]. Neuronal activity was monitored via
calcium imaging. This allowed measurement of hundreds of neu-
rons simultaneously while affording easy pharmacological
intervention.

Neuronal connectivity was disconnected using a cocktail of
synaptic transmission blockers consisting of bicuculline (GABAA
inhibitory receptor antagonist) with CNQX and APV (non-NMDA
and NMDA excitatory glutamate receptor antagonists respectively).

In the disconnected cultures, we used TTX to block NaV chan-
nels, eliminating neuronal APs; PI to image membrane poration; RR
and GsMTx-4 to block MS ion channels; and suramin to block P2
purinergic receptors.

These methods are detailed in the supplementary.
2.2. Experimental system

The system consisted of a US transducer in a water chamber
mounted onto an inverted fluorescence microscope. Cultures were
positioned at the convergence of the acoustic and optic focus,
enabling imaging of the cultures while simultaneously exposing
them to US (Fig. 1A).

US reflections were minimized by optimizing acoustic imped-
ance matching, having minimal obstructions in the acoustic path,
and absorbing the residual acoustic energy.

A 2D large-scale simulation of the basic chamber architecture
(Fig. 1B) shows that the interaction of US with the air chamber that
houses the objective doesn't disrupt the homogeneity or location of
the US focus. A 3D high-resolution simulation near the culture glass
(Fig. 1C) shows that the US pressure is mostly constant over the
entire FOV, and reflections from the thin coverslip glass are
minimal.

The low level of reflections in the system was verified using a
hydrophone in the experimental chamber (see supplementary text
and Fig. S4). The location and size of the US focus were examined
using a TLC sheet (Supplementary Fig. S5).

We used single pulses, a fundamental frequency of 500 kHz,
peak pressures of 0.35e1.32 MPa, and durations of 4 ms-40 ms. The
parameters for each experiment are detailed in the supplementary.

The pressure output of the transducer, as well as the duration of
the extremely short pulses were verified using a hydrophone in a
large water tank.

The design, simulation, and verifications of the system are
detailed in the supplementary.
770
2.3. Experimental procedure

Cultures were placed into the experimental chamber, and their
spontaneous activity was first imaged to verify vitality and identify
active cells. Pharmacological agents were then introduced and
allowed 10 min to take effect.

For each stimulation, cultures were exposed to a single US pulse,
and time-locked images were acquired for 5 s before and 10 s after.

Calcium imaging was done using Fluo-4. Such chemical calcium
indicators can compromise the culture's vitality over time, so cul-
tures were imaged for a few hours and then disposed of. Alterna-
tively, where stated, the genetically encoded indicator GCaMP was
used, and measurements were conducted over a longer period, and
over multiple experimental sessions.

The experimental procedure is detailed in the supplementary.

2.4. Analysis

In experiments involving intact networks, the mean fluorescent
intensity for the entire FOV was taken.

In experiments involving disconnected networks, ROIs were
automatically defined over active cell bodies. Automated response
detection was then performed for each ROI by examining changes
in its intensity following the stimulation. The unstimulated base-
line activity was characterized by examining changes in the in-
tensity before the stimulation. Comparison of the evoked activity to
this unstimulated baseline aided in the differentiation of the
evoked activity from any spontaneous activity that remained after
network disconnection and from noise-related false detections.

These methods are detailed in the supplementary, along with
the calculation of a response's amplitude, duration, and latency.
Statistical tests and figure methods are also detailed in the
supplementary.

Spontaneous network activity was evaluated before discon-
nection and the number of neurons that participated in a burst
were counted. The number of these “generally active” neurons was
used to normalize the number of neurons that respond after
disconnection. There were typically ~200 generally active cells
within the FOV (191.4 ± 10.2, mean ± SEM, nc ¼ 78).

Throughout this paper nc refers to the number of cultures
included in the analyses, ns to the number of stimulations, and nn to
the number of cells.

3. Results and discussion

3.1. Single US pulses stimulated fully connected neuronal cultures

US reproducibly generated robust group calcium responses
immediately following stimulation. Fig. 2A shows example stimu-
lations of a fully connected culture.

These cultures naturally display spontaneous bursts of all-or-
none synchronous activity, stemming from their extensive con-
nectivity [38]. The evoked responses were consistent in amplitude
and shape over time and similar to spontaneous bursts. Sponta-
neous activity continued even after multiple stimulations, and
stimulations given during a previously occurring spontaneous
burst didn't initiate additional bursts, as is demonstrated by the
fifth burst in the example in Fig. 2A. This all hints at a non-
destructive stimulation mechanism involving physiological
neuronal activation processes.

The pressure levels (0.67 MPa) at the frequency used are too low
to cause cavitation [39] or significant thermal effects, detracting
from these mechanisms, which is encouraging for safe use in
humans. To further rule out the possibility of cavitation, we present
Supplementary Fig. S7, in which passive cavitation detection (PCD)



Fig. 1. Experimental chamber
A: The US transducer was mounted in a water chamber on an inverted microscope. The culture was positioned at both the acoustic and optic focus within an inner chamber filled
with imaging medium. US passed from the transducer, through a mylar sheet into the inner chamber, through the culture, through a second mylar sheet back out into the water
chamber, and into an acoustic absorber. US was applied to the culture from the side, at a 90� angle to the optic axis, keeping the objective out of the acoustic path, preventing
reflections. Cross scale: 10 mm. B: 2D large-scale simulation of the basic chamber architecture. Culture glass is shown as a guide, and is not part of the 2D large-scale simulation.
Spatial resolution of simulation grid: 500 mm. Scale bar: 10 mm. C: 3D high-resolution simulation of the acoustic pressure being applied to the culture glass. Image slices of the 3D
volume are located at the center of the culture glass. Spatial resolution of simulation grid: 50 mm.
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[40] indicates that cavitation is not a factor at the pressures and
durations of the pulses we use.

This is in line with several other studies that have reported
successful stimulation of in-vitro CNS neurons [14,17,20,23,41e50].

3.2. Single US pulses stimulated pharmacologically disconnected
neurons

We disconnected the neurons by pharmacologically blocking
synaptic transmission, enabling examination of mechanisms at the
single-cell level without population effects, and separating post-
synaptic processes from those upstream. When disconnected,
spontaneous activity shifts from all-or-none bursts to sporadic,
uncorrelated single-neuron events [51].

Single US pulses successfully generated calcium responses in
disconnected cultures. As shown in Fig. 2B (blue), ~20% of the
generally active cells were stimulated by US after disconnection.

This shows that US can generate supra-threshold neuronal
excitation without requiring network amplification. Stimulation of
neurons with blocked synaptic inputs indicates that US has a direct
effect downstream of the synaptic transmission, and is not just
causing pre-synaptic neurotransmitter release.

This is in line with Tyler et al. (2008) [17], who showed that US
stimulation, measured as vesicle exocytosis, was resistant to
blockade of excitatory input. They also showed that disruption of
771
the neuronal machinery for vesicle release eliminated this effect,
indicating that US didn't directly cause vesicle membrane fusion.

Recent in-vitro studies paint a more complex picture of the
necessity of a pre-synaptic mechanism. Some showed, in line with
our observations, that blockade of excitatory connectivity didn't
completely eliminate US stimulation, while others reported that it
did [20,50,52]. Interestingly, those experiments that agreed with
ours both used calcium imaging, as we did, while those that dis-
agreed both used multielectrode arrays.

One hypothesis as to why only a subset of neurons are respon-
sive to stimulation is that the neurons differ in their excitation
thresholds. This could be similar to what we have previously re-
portedwith electrical stimulation [53], where the orientation of the
neuronal processes with regard to the vector of the applied electric
field affects the neuron's sensitivity. Another possibility is the dif-
ferential expression of certain MS channels in distinct neuronal cell
types [54]. Neuronal cell types also differ in their morphology
which can affect the overall mechanical properties of their mem-
brane [55].

External activation of bursts in connected cultures requires the
initial stimulation of only a small fraction of neurons (3e5%) [51], so
these 20% are more than enough to generate the stimulation we
observed in connected networks. Nevertheless, it is still possible
that additional neurons were directly activated in the connected



Fig. 2. Stimulation of connected and disconnected cultures
A: Example stimulation of a connected culture. Mean calcium traces from the entire FOV. Shown is an unstimulated spontaneous burst, three successful stimulations, and an
unsuccessful stimulation applied during a previous spontaneous burst. B: Percentage of generally active cells responsive to stimulation in disconnected cultures. ~20% (19.4 ± 4.4%,
UB ¼ 1.3 ± 0.4%, ns,c ¼ 9, blue) of the cells responded to US. With additional TTX the efficacy was much smaller and similar to the unstimulated baseline activity (3 ± 0.3%,
UB ¼ 2.5 ± 0.4%, ns,c ¼ 13, orange). (mean ± SEM, UB - unstimulated baseline activity) C: Median calcium traces from the responsive cells, corresponding to B. nn(blue) ¼ 179,
nn(orange) ¼ 65. D: Median calcium traces of an evoked response after disconnection (blue) and of a spontaneous burst prior to disconnection (magenta), in the same responsive
cells. nn ¼ 179. E: Same as D, each trace normalized by its peak intensity (before averaging). In this, and in all following figures unless indicated otherwise - Boxplot lines mark the
median, boxes extend 25th-75th percentiles, whiskers extend to the most extreme data that are within 1.5 � IQR from the box. In traces, 25th-75th percentiles are shown shaded,
vertical gray line marks the time of stimulation. *p < 0.05; **p < 0.01; ***p < 0.001; p > 0.05, not significant (n.s.). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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culture and that some part of that response was eliminated by
blocking the synapses.

Fig. 2D and E show the evoked response after disconnection
(blue) and the spontaneous burst prior to disconnection (magenta),
in the same responsive cells. Although the overall response dy-
namics were similar, the evoked response had a lower amplitude
(0.19 ± 0.02 vs. 0.61 ± 0.06 DF/F) and a shorter duration (1.01 ± 0.05
vs. 1.91 ± 0.08 s) (mean ± SEM, p < 0.001, nn¼ 179). 28 ± 7.8% of the
US responsive cells were not considered responsive during the
spontaneous burst. The shorter duration and lower amplitude
make sense, as the neurons in the disconnected network are ex-
pected to have fewer APs than in the connected network, due to
lack of feedback excitation loops.

To get a sense of scale for the response amplitude, electrical
stimulation of a disconnected culture generated an amplitude of
0.04 ± 0.002 DF/F (mean ± SEM, nn¼ 131), although this is reported
772
to strongly depend on the stimulation and imaging parameters
[53].

The observed spatial distribution was not significantly different
between the responsive cells after network disconnection and the
generally active cells prior to disconnection. This was measured by
the mean distance of the cells (within the 0.9 mm2 FOV) from their
centroid: (312 ± 26 mm for responsive cells vs. 337 ± 11 mm for
generally active cells, mean ± SEM, p¼ 0.20, ns,c ¼ 9). This confirms
that the focal area of effective stimulation covered the entire FOV.
3.3. AP blockade abolished the response to US

We used TTX to block NaV channels, eliminating neuronal APs,
separating postsynaptic processes from those downstream.

Fig. 2B (orange) shows the efficacy of US, after network
disconnection and additional AP blockade. AP disruption
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eliminated the response to US. This indicates that the mechanism
being affected by US is upstream of the AP or is the AP process itself.
It's not a lasting poration of the plasma membrane, nor is it a large
calcium influx or intracellular calcium release directly generated by
US, as these processes would not depend on functioning APs.

This is in linewith Tyler et al. (2008) [17], showing AP disruption
eliminates the response to US in hippocampal slices. This was also
shown in connected networks [41,43,50].

3.4. US stimulation was not associated with membrane poration

A membrane integrity assay using PI showed that only a small
percentage (4.6 ± 1%, mean ± SEM, ns,c ¼ 5) of successfully stim-
ulated disconnected cells became permeable during stimulation.
An example is shown in Fig. 3.

This confirms that long-term poration is not part of the stimu-
lation process. Pores that are very transient, or smaller than the
1.5 nm detection level of PI [56], may still be relevant [57].

3.5. Extremely short US pulses stimulated disconnected neurons

Several proposed mechanisms of US neurostimulation rely at
low intensities on a gradual accumulation of effects. To exclude
such mechanisms, we used extremely short pulses of only a 2-cycle
duration, corresponding to 4 ms at 500 kHz, 10,000 times shorter
than the 40 ms pulses common in the literature.

Fig. 4A shows the efficacy of 40 ms and 4 ms duration pulses,
after network disconnection. A clear response even to the
extremely short pulses is evident.

This is a surprising result. It points at molecular scale processes,
which could occur at these time scales. It precludes mechanisms
such as stable cavitation, which can generate strong forces through
energy accumulation [58], but would necessitate longer pulses. We
calculate heating with our pulse parameters at ~5 � 10�5 �C/ms
which would also require longer pulses to matter.

This is encouraging from a translational standpoint, as
extremely short pulses are much safer than longer ones [59], with
intensities far below many regulatory limits [60]. They also allow
more intricate spatiotemporal patterning and are less prone to form
standing waves. While previous studies have used shorter pulses as
part of long pulse trains, the shortest single pulses shown to
stimulate unmodified neurons were 100 ms long [46], an order of
Fig. 3. Example of membrane integrity assay using PI
A single stimulation in a disconnected culture. 68 of the generally active cells responded (
imaging baseline before stimulation. Right: PI fluorescence imaging. Intensity increase from
erences to colour in this figure legend, the reader is referred to the Web version of this art
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magnitude longer than ours. This remarkable result warrants
extensive further investigation.

Standard duration pulses activated more cells than the
extremely short ones. This is in line with a recent in-vitro study
showing lower stimulation thresholds for longer pulses [25].

Longer pulses may simply recruit additional cells as the pulse
goes on. To test this, we imaged the initial response dynamics at a
high sampling rate (~1 kHz). At this rate technical camera limita-
tions constrain imaging to the averaged response over the entire
FOV, including many cells. Fig. 4C and D show an observable dif-
ference in the initial dynamics of the responses, with a longer la-
tency in response to the longer pulse than to the shorter one
(27.5 ± 3.1 ms, ns ¼ 6 vs. 16.8 ± 1.5 ms, ns ¼ 7; nc ¼ 4; mean ± SEM;
p < 0.05), indicating that the longer pulse doesn't simply accu-
mulate responsive cells, rather that the two pulse durations have
different effects. There may be an ongoing interaction of the pulse
with the neuronal physiology, disrupting the initiation of the
response. Alternatively, different pulse durations may be exciting
different types of neurons with distinct inherent dynamics.

The NBLS model [6] suggests that during the pulse there is an
accumulation of charge, due to changes in the membrane's capac-
itance, which gradually depolarizes the neuron with each cycle.
This mechanism is therefore strongly dependent on pulse duration.
We implemented the model using Matlab, and it projected gener-
ation of APs only for pulses longer than 5 ms (for a pressure peak of
0.5 MPa). Thus, it is at odds with our observation. Fig. 4F shows the
model's projected membrane potential during stimulation both
with an extremely short pulse and with a standard duration one.

3.6. P2 receptor blockade did not eliminate the response to US,
efficacy increased with pressure

P2 purinergic receptors play a crucial role in MS processes [61],
and may be relevant for US stimulation. Fig. 5A shows the efficacy
of pulses at peak pressures of 0.35 MPa and of 0.67 MPa, after
disconnection and additional blockade of P2 receptors using
suramin.

Blocking P2 receptors did not prevent stimulation. Thus, puri-
nergic signaling is not a necessary part of the mechanism. It should
be noted that suramin (in reference to P2Y2 receptors) was used at a
moderate concentration of twice the IC50. Suramin is neurotoxic
above this concentration [62].
blue), only 2 of them had become permeable during stimulation (red). Left: Calcium
before stimulation to 10 min after. Scale bar: 100 um. (For interpretation of the ref-

icle.)



Fig. 4. Stimulation with extremely short pulses
A: Percentage of generally active cells responsive to short 4 ms (8.3 ± 3.3%, UB ¼ 2.2 ± 0.3%, ns,c ¼ 14, red), and to standard 40 ms (19.4 ± 4.4%, UB ¼ 1.3 ± 0.4%, ns,c ¼ 9, blue) pulses,
in disconnected cultures (mean ± SEM). Removal of the outlier in the short pulse group did not change this outcome. UB - unstimulated baseline activity. B: Median calcium traces
from responsive cells, corresponding to A. nn(red) ¼ 164, nn(blue) ¼ 179. C: Mean, full FOV, calcium traces of the initial response dynamics, in responsive disconnected cultures, at a
high sampling rate. SEM shown shaded. Blue bar along the x-axis shows the standard pulse duration, the bar for the short pulse is too short to be visible. ns(red) ¼ 7, ns(blue) ¼ 6.D:
Same as C, each trace normalized by its peak intensity (before averaging). E: Hydrophone measurement of the 4 ms pulse. The hydrophone was positioned ~1 mm above the center of
the face of the culture glass within the experimental chamber. F: Simulation of the response in the NBLS model. Membrane voltage calculated with a standard 40 ms pulse (left, blue
bar) and a short 10 ms pulse (right, red bar) using a peak pressure of 0.5 MPa. Multiple APs occur with the standard duration pulse, but none with the short one. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The higher pressure activated more cells than the lower pres-
sure. It also generated a higher response amplitude (0.55 ± 0.05 DF/
F, nn ¼ 532 vs. 0.32 ± 0.04 DF/F, nn ¼ 88; mean ± SEM; p < 0.001).
The response is shown in Fig. 5B. A possible cause for the increased
amplitude is that longer bursts of multiple APs are generated in the
responsive neurons, but this has not been verified. These results
align with previous in-vitro [25,43,45,48] and in-vivo studies
[20,63e65] showing stimulation efficacy increases with pressure.
774
3.7. MS ion channel blockade did not affect the efficacy of US

Several MS ion channel types have been implicated in the
literature, notably TRPA, TRPC, TRPV, K2P, and Piezo channels
[20e24,66,67].

Of these, RR blocks the TRPA, TRPV, TREK-2, and Piezo channels
[68e70]. Fig. 5C shows the efficacy after network disconnection,
with and without additional MS channel blockade using RR. RR



Fig. 5. Pharmacological blockade of MS ion channels and receptors
A, C, E: Percentage of generally active cells responsive to stimulation. UB - unstimulated baseline activity. B, D, F: Median calcium traces from responsive cells, corresponding to
A,C,E. A: Suramin did not block the response in disconnected cultures. The higher pressure of 0.67 MPa was more effective (36.4 ± 6.1%, UB ¼ 1.7 ± 0.5%, ns,c ¼ 7, red) than 0.35 MPa
(11.5 ± 6.6%, UB ¼ 2.7 ± 1.2%, ns,c ¼ 4, green) (mean ± SEM). B: nn(green) ¼ 88, nn(red) ¼ 532. C: The efficacy in disconnected cultures with additional RR (12.3 ± 4.6%,
UB ¼ 2.6 ± 0.3%, ns,c ¼ 7, magenta), was similar to without RR (9.5 ± 2.5%, UB ¼ 3.9 ± 0.9%, ns,c ¼ 9, blue) (mean ± SEM, p ¼ 0.31). Removal of the outlier in the RR group did not
change this outcome. D: nn(magenta) ¼ 146, nn(blue) ¼ 188. E: The efficacy in a single disconnected culture with additional GsMTx-4 (10.1 ± 2.9%, UB ¼ 2.1 ± 0.3%, ns ¼ 5, orange),
was similar to without GsMTx-4 (11.4 ± 6.1%, UB ¼ 2.7 ± 0.4%, ns ¼ 5, blue) (mean ± SEM, p ¼ 0.43). F: nn(orange) ¼ 278, nn(blue) ¼ 220. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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didn't significantly affect the efficacy of US. This considerably nar-
rows down the list of candidate channels.

This result conflicts with a recent study reporting that TRPA1
disruption did eliminate the response in hippocampal neurons [20].
However, as the authors suggest, they probably actually blocked the
response in astrocytes, andmeasured the downstream effect on the
neurons. This is an example of the complexity in interpreting ob-
servations from connected networks.

GsMTx-4, a blocker of Piezo1 and TRPC(1,5,6) channels [71e73],
was applied to a single culture (Fig. 5E). As with RR, GsMTx-4 didn't
significantly reduce the efficacy of US.

This conflicts with a recent study showing GsMTx-4 did elimi-
nate the response in cortical cultures [23]. One possible cause of
this discrepancy may be that certain MS channels, that are not
blocked by GsMTx-4, and are much more highly expressed in the
hippocampus than in the cortex (such as TRPM3 [74]), may be able
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to support a response in the hippocampal cultures, even when the
other GsMTx-4 sensitive channels are blocked, but are not able to
support a response in the cortex, due to their low level of expres-
sion there. Additionally, we used GsMTx-4 at a moderate concen-
tration of twice the IC50 (in reference to TRPC channels), while they
used a much higher concentration (1 mM vs 40 mM), which may
have increased blocking efficacy or may block a broader array of
channels.

The response is shown in Fig. 5D,F. The responses from cultures
with RR had a higher amplitude (0.5 ± 0.06 DF/F, nn ¼ 146 vs.
0.2 ± 0.02 DF/F, nn ¼ 188; p < 0.001) and a longer duration
(1.12 ± 0.08 vs. 0.85 ± 0.04 s, p < 0.01) than from cultures without
RR (mean ± SEM). The responses from the culture with GsMTx-4
also had a higher amplitude (0.42 ± 0.05 DF/F, nn ¼ 278 vs.
0.23 ± 0.01 DF/F, nn ¼ 220; p < 0.001), and a longer duration
(1.1 ± 0.05 vs. 0.76 ± 0.03 s, p < 0.001) than the responses from the
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culture without GsMTx-4 (mean ± SEM). A possible cause for this is
the inhibitory effect these compounds can have on large-
conductance calcium-activated potassium channels [75,76], which
contribute to post-AP repolarization [77].

These results do not rule out the possible relevance of other MS
channels or receptors. On the contrary, we believe this remains the
most probable mechanism generating the effects we observe.

3.8. Attrition effects were dominant and occurred at the single-cell
level

In disconnected cultures, after an initial successful stimulation
at a given pressure, the following stimulations were not effective
until the pressure was increased, at which point another successful
stimulation would occur. This could be repeated for several stim-
ulations (example in Supplementary Fig. S8). In order to avoid these
attrition related confounds, in most of the experiments described
only the first stimulation was used.

Fig. 6A compares the first stimulation and the following three at
the same pressure (with a 25 min recovery period between stim-
ulations). While the first stimulation was effective, the following
three were much less effective. These three following stimulations
didn't differ in their efficacy (Supplementary Fig. S9).

To check if an even longer recovery time made repeated stim-
ulations more effective, we increased the time between consecu-
tive stimulations to 3 days. In order to do this, we used GCaMP, a
genetically encoded calcium indicator that doesn't significantly
reduce the viability of the cultures, and thus the cultures can be
imaged over an extended period. Connected cultures were stimu-
lated several times, and then returned to the incubator. After three
days, the cultures were first checked for spontaneous activity to
ensure their viability, then pharmacologically disconnected, and
stimulated again. Fig. 6C shows the response (after the 3-day re-
covery period) in these previously stimulated cultures, and for
reference the response in fresh disconnected cultures that were not
previously stimulated. We can see that even after this 3-day re-
covery period, attrition effects remained, and there was no
observable response in the previously stimulated cultures.

Increases in pressure did generate additional successful stimu-
lations, with no need for an extended recovery time. We examined
if this resulted from new cells being recruited at higher intensities,
or if the same cells that were responsive to the first stimulation but
didn't respond to additional stimulations at the same pressure,
became responsive again at higher pressures.

Indeed, most of the cells that were responsive to a first, lower-
pressure (0.35 MPa) stimulation, were also responsive to a
following, higher-pressure (0.67 MPa) stimulation (78.8 ± 4.6%,
mean ± SEM, ns,c ¼ 8). However, most of the cells that were
responsive to a following higher pressure stimulation were new
cells that didn't previously respond to a lower pressure stimulation
(74.3 ± 6.7%, mean ± SEM, ns,c ¼ 8). Fig. 6D shows an example. This
indicates that the attrition effects occur, at least partially, at the
single-cell level.

Fig. 6E compares the response to the lower-pressure stimulation
in cells that responded only to the lower-pressure stimulation, and
in cells that also responded to a later higher-pressure stimulation.
There was no difference, and thus no indication of different pro-
cesses taking place during the first stimulation.

These observations align with several studies showing that
repeated or continued US stimulation coincides with a degradation
in the response [44,78e80]. They may also be related to reports of
US having long-term effects in-vivo, at timescales ranging from
minutes [16,80e84] to weeks [85,86]. The mechanism responsible
for attrition is unclear. One possibility is that MS channels undergo
inactivation after being affected by US, and that other MS channels
776
with higher stimulation thresholds are activated by the following
higher-pressure pulse. MS channels may also undergo adaptation,
requiring higher pressures to reactivate [87]. Another possibility is
that the adherence of the cells to the glass is partially disrupted,
reducing associated US shear forces, requiring an increase in US
pressure for subsequent stimulation.

The ability of cells to respond multiple times to stimulation
indicates that their viability is not dramatically disrupted by stim-
ulation. This is also supported by the calcium levels in the
responsive cells returning to baseline fairly quickly after
stimulation.

3.9. Experimental limitations

One potential issue is our use of a glass substrate. Its rigiditymay
affect the mechanical sensitivities of the neurons grown on it [88].
Neurons in flat cultures also grow and connect differently than
neurons in the complex 3D environment of the brain. Additionally,
the glass-neuron interface may subject neurons to unphysiological
shear forces under US [89].

A second potential issue is that our experiments were conducted
at room temperature, which may alter the dynamics of cellular
processes in comparison to physiological temperatures [90,91].
Additionally, our calcium concentration was modified from that of
other in-vitro studies, to better represent the concentration in-vivo
[92]. This may complicate comparing results, as calcium concen-
trations can substantially affect excitability in these cultures [93].

Third, mechanisms which we found to be negligible in our
experimental conditions, may still be relevant at different stimu-
lation parameters, or when targeting different neuronal pop-
ulations. Additionally, our pharmacologically disconnected
cultured neurons are not fully representative of neurons in vivo,
and thus our conclusions may not completely translate to that
domain.

A very recent publication by Yoo et al. (2022) [94] examined US
stimulation of cortical neurons cultured on a flexible substrate.
Their results complement and support our conclusions that pora-
tion, heating, and NBLS effects are not involved. Furthermore, their
results using pharmacological interventions with RR and suramin
align with ours, despite methodological differences. Their study
provides substantial evidence implicating MS channels in the
mechanism.

4. Conclusion

In conclusion, our results detract frommechanistic theories that
implicate cavitation, heating, non-transient membrane pores
>1.5 nm, pre-synaptic release, or gradual effects. They implicate a
post-synaptic mechanism upstream of the AP process and narrow
down the list of relevant receptors and ion channels.

We hope this work will advance US neurostimulation and help
realize its potential as an effective tool for research and the treat-
ment of human distress.
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Fig. 6. Response attrition
A: Percentage of generally active cells responsive to stimulations at a constant pressure with a 25 min recovery time between pulses, in disconnected cultures. After an initial
successful stimulation at the given pressure (9.5 ± 2.5%, UB ¼ 3.9 ± 0.9%, ns,c ¼ 9, blue), the following 3 stimulations at the same pressure had a low efficacy, close to their
unstimulated baseline activity (3.4 ± 0.5%, UB ¼ 2.3 ± 0.3%, ns ¼ 27, gray) (mean ± SEM). UB - unstimulated baseline activity. B: Median calcium traces from responsive cells,
corresponding to A. nn(blue) ¼ 188, nn(gray) ¼ 225. C: Response to stimulation in disconnected cultures that were previously stimulated at the same pressure 3 days before (gray,
ns,c ¼ 3), and in fresh disconnected cultures that were not previously stimulated (magenta, ns,c ¼ 6). Shown is the mean calcium trace from the full FOV. SEM shown shaded. Calcium
imaging was done using GCaMP. D, E: Successful stimulation with a lower-pressure pulse, followed by a second successful stimulation with a higher-pressure pulse, in disconnected
cultures. D: An example culture. Shown are cells responsive only to the first stimulation at the lower pressure (green squares), those responsive only to the following stimulation at
the higher pressure, (red circles), and those responsive to both stimulations (orange triangles). 90% (26 of 29) of the cells responsive to the first stimulation were also responsive to
the second stimulation in this example. Scale bar: 100 mm. E:Median calcium traces of the response to the lower-pressure stimulation, in the cells that responded only to the lower-
pressure stimulation (green, nn ¼ 30), and in those that responded to both pressures (orange, nn ¼ 124)(nc ¼ 8). (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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