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AAbbssttrraacctt  

The DNA microarray technology enables simultaneous measurement of the 

expression levels of thousands of genes in cells of a given biological sample. It 

provides a high-throughput quantitative survey of the transcriptional activity 

within the sample cells by measuring the mRNA concentration of many genes. In 

this work, we have used clustering algorithms and various statistical methods to 

analyze gene expression data in two different studies. In the first study, we have 

researched mesenchymal stem cell differentiation by analyzing 17 human 

samples including embryonic stem cells, mesenchymal stem cells and 

differentiated fat and bone samples. Our analysis explored general properties of 

the dataset and also identified different groups of genes involved in the 

differentiation process. The second study dealt with the identification of genes 

that are over expressed in human cancer and also show specific patterns of 

tissue-dependent expression in normal tissues. To this end, we have analyzed 

gene expression data from three different kinds of samples: normal human 

tissues, human cancer cell lines and leukemic cells from lymphoid or myeloid 

leukemia pediatric patients. The results indicate that many genes that are over 

expressed in human cancer cells are specific to a variety of normal tissues, 

including normal tissues other than those from which the cancer originated. 





PPaarrtt  11  

GGeenneerraall  MMeetthhooddss  

DNA microarray technology 

The living cell is a dynamic system, continuously changing through 

developmental pathways and in response to environmental conditions. The cell 

changes its properties by producing different subsets of proteins at different 

times according to its functional needs.  Out of the entire genomic repertoire, 

only needed genes are transcribed to messenger RNA (mRNA) molecules, which 

in turn are translated to sequences of amino acids composing the proteins. Gene 

expression regulation on the transcription level is one of the major known gene 

control mechanisms. It involves a complex network of transcription factors acting 

to activate or repress the expression of their target genes.   

The set of genes transcribed in a cell (the cell transcriptome, representing the 

collection of all transcribed mRNAs floating in the cell) therefore reflects the 

current cell “state", and can tell us a lot about the genetic makeup, response 

environmental conditions and developmental stage of the examined cell. Clearly, 

this is an approximation, since a cell's "state" depends on a variety of other 

factors, such as protein concentration, chemical changes on the protein level 

(such as phosphorilation and complex formation), protein localization in the cells 

and more. Nevertheless, one assumes that knowledge of the transcriptome does 

provide a relevant characterization of the biological state of a cell (and tissue). 

The DNA microarray technology enables simultaneous measurement of the 

expression levels of thousands of genes in cells of a given biological sample. It 

provides a high-throughput quantitative survey of the transcriptional activity 

within the sample cells by measuring the mRNA concentration of many genes.  
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DNA microarray technology is based on the tendency of a given mRNA molecule, 

extracted from cells in the experimental system, to specifically hybridize by base-

pairing to a complementary DNA sequence located on the microarray. 

There are several types of DNA microarray 

technologies; however, this work will focus on high-

density oligonucleotide microarrays manufactured 

by Affymetrix, using their patented ‘GeneChip’ 

technology (For a review of the available microarray 

technologies, see [1]). 

Figure 1. Affymetrix GeneChip 
microarray 

Affymetrix’ GeneChip microarray is a coated quartz 

surface divided to many thousands of cells forming 

a two dimensional array. Each microarray cell 

(named a feature by Affymetrix terminology) 

contains many short identical single-stranded DNA fragments (named probes), 

that are imbedded on the chip surface using photolithography during the 

microarray manufacturing process. The Affymetrix HG-U133A microarray, which 

is used in this work, contains 500,000 features of size 11 μm each. Each feature 

contains thousands of 25 nucleotide long DNA probes [2].  

 

Figure 2. Affymetrix GeneChip microarray is composed of thousands of 
spots, each one containing millions of 25 base-pair long probes. 

http://en.wikipedia.org/wiki/DNA
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Microarrays are used to measure gene expression by extracting mRNA from the 

experimental sample (for example body tissue or cultured cells), converting it to 

complementary DNA (cDNA) which is easier to amplify than RNA, reverse 

transcribing it to RNA which is then fragmented and tagged with a fluorescent 

label that will enable to measure the hybridization level for each feature 

independently. The resulting solution is injected onto the microarray and so RNA 

fragments originated from the experimental sample are hybridized, with different 

affinities, to the probes on the array. The microarray is then washed and 

scanned with a laser scanner that yields a quantitative reading of the fluorescent 

light.  The fluorescencnt light intensity of each microarray feature is proportional 

to the number of RNA molecules that hybridized to the feature's probes. 

 

Figure 3. Standard eukaryotic gene expression assay. Labeled cDNA or cRNA targets 
derived from the mRNA of an experimental sample are hybridized to nucleic acid probes 
attached to the solid support. By monitoring the amount of label associated with each DNA 
location, it is possible to infer the abundance of each mRNA species represented. 
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Figure 4. Hybridization of fluorescently tagged mRNA sample to the microarray 
probes 

The HG-U133Av2 microarray is capable of measuring the expression levels of 

more than 14,500 genes represented by 22,788 different probe-sets. 

The expression of each gene is measured based on the hybridization of RNA 

extracted from an experiment sample (called target) with several probe pairs 

located on the microarray. Each probe pair consists of Perfect-Match probe (PM) 

and a Mis-Match probe (MM); The Perfect Match probe is a 25 base long 

oligonucleotide, which is a perfect complement to a 25 base long sub-sequence 

of the target gene. The Mismatch probe differs from the Perfect-Match probe in 

one nucleotide, positioned in the middle of the probe. It is used for specificity 

control, enabling evaluation and subtraction of background noise and unspecific 

hybridization.  

The HG-U133Av2 microarray contains 11 probe pairs for each target gene; this 

group of probes, aimed at capturing a specific transcript, is called a Probe-Set. 

Using several independent probe pairs (instead of just one pair) to detect the 

concentration of a certain RNA molecule, significantly increases the measurement 

accuracy. Probe-sets are designed, using the known genomic sequences, to be 

as specific as possible for the target gene sequence, reducing false positives and 

miscalls[3].  
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Figure 5. Oligonucleotide probes and the probe-set. Probes are 25 base long 
oligonucleotide sequences chosen from RNA reference sequence. The probe set contains 
11 pairs of PM and MM probe cells. Each probe cell contains millions of copied of the 
cell-specific oligonucleotide probe. 

 

 

 

It is also worth mentioning that microarrays usually contain more than one 

probe-set per gene, thus enabling to distinguish different transcript isoforms 

generated due to alternative splicing or other mechanisms.  

After scanning the microarray, the fluorescence intensity for each probe is 

stored. The final expression measurement for each given gene is calculated as a 

weighted average of all probe pairs representing the gene, and can be conducted 

in several ways – each having its advantages and disadvantages. 

In MAS 4.0, gene expression was calculated as the average of differences 

between the perfect-match and the mis-match probes of all the pairs 

representing the gene. 
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E is the expression value of one probeset, representing a certain gene. In our 

case, n=11 as probe-sets in the HG-U133Av2 microarray are composed of 11 

probe-pairs.  

According to the more recent MAS 5.0 algorithm, gene expression is calculated 

based on a similar principle (averaging of PM/MM differences), but in a more 

robust manner. It is using the one-step Tukey’s biweight algorithm, which is a 

method to determine a robust average unaffected by outliers. For details, see 

http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

The MAS 5.0 algorithm also provides p-Values, calculated for each expression 

reading, representing its detection reliability and thus enabling removal of genes 

that were found “absent” on all or on most of the samples from the dataset. 

 

 

 

 

 

 

 

http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
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Dataset compilation and preprocessing 

General 

A typical microarray experiment is aimed at identifying differences in gene 

expression between two or more biological conditions such as tissue samples 

taken from healthy individuals versus cancer patients, samples taken from 

different cell lines, or samples taken at different time points along some 

biological pathway. In addition, a good microarray experimental design should 

include sample replications - ideally biological independent replications (enabling 

to asses the biological variation), rather than technical replications (using same 

biological sample on multiple arrays, used to asses measurement variability)[4]. 

A typical gene expression analysis therefore involves working with data 

originating from a set of microarrays – a gene expression dataset. Datasets 

originating from a microarray experiment composed of as many samples as 

possible enables the employment of powerful statistical methods to detect genes 

that are differentially expressed in one sample group compared to the other, and 

optimizes the potential of the dataset-based analysis to yield solid reliable 

results.  

After all microarrays of the experiment are produced and scanned, their data is 

joined to compose one big table that will be the basis for gene expression 

analysis. In this table, each column contains data coming from one microarray 

(sample), and each row represents a probe-set (gene). See, for example, Table 1 

on the next page. 
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  Probeset 
ID 

Gene 
Symbol S1 

S1 
detection S2 

S2 
detection S3 

S3 
detection S4 

S4 
detection

1316_at THRA 16.8 A 11.7 A 21.9 A 26.3 P 
1320_at MMP14 20.3 A 27 A 17 A 16.9 A 
1405_i_at TRADD 15 P 8.3 A 2.2 A 0.5 A 
1431_at FNTB 4.8 A 7.5 A 6.4 A 8.6 A 
1438_at PLD1 16.7 P 3.9 A 4.5 A 26.5 P 
1487_at PMS2L11 106.9 P 155.6 P 82.8 M 68.5 A 
1494_f_at BAD 12.8 A 12 A 12.7 A 2.4 A 

1598_g_at PRPF8 4532.9 P 
4103.

1 P 3302.4 P 2831.4 P 
160020_at CAPNS1 284.8 P 271 P 288.4 P 316.8 P 
1729_at RPL35 135.6 P 148.3 P 129.5 P 121.2 P 
1773_at RPL28 61.2 P 50.1 A 55.5 P 45.5 P 
177_at MMP14 11.9 P 16.1 P 11.6 A 16.8 P 
179_at TRADD 53.1 A 33.3 A 57 A 24.6 A 
1861_at FNTB 127.7 P 128.6 P 117.1 P 141.4 P 
200000_s_at PLD1 577.6 P 534.7 P 492.5 P 517.3 P 

200001_at PMS2L11 2045.8 P 
2277.

2 P 1635.1 P 1837.6 P 

200002_at BAD 5472.2 P 
5159.

8 P 4648.6 P 4342.6 P 

200003_s_at PRPF8 7850.8 P 
6521.

3 P 5837.3 P 7389.4 P 
 

 

 

 

Table 1. Example dataset table. The above table contains 18 rows, each representing a probe-set 
(associated with a gene symbol). The table contains data coming from 4 microarrays, measuring gene 
expression in sample S1, S2, S3 and S4. The first column for each sample indicate the expression 
signal, whereas the second one contain the detection call – Absent or  Present. 

Several standard steps are routinely conducted before the data can be 

successfully and efficiently analyzed. The term ‘preprocessing’ is used to describe 

a series of mathematical manipulations conducted on the data, making it 

compatible to the subsequent high-level analyses.  

Preprocessing goals usually include the following: 

1) Reducing dataset dimensionality by removing un-informative probe-

sets, such as probe-sets exhibiting low variability over the samples. 

2) Applying mathematical transformations that will moderate the 

effect of outliers and emphasize mid-range expression values. 
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Different analyses may require different preprocessing steps. Here are some of 

the most commonly used preprocessing steps applied to a standard gene 

expression dataset: 

Scaling 

Scaling is a transformation of the expression values conducted on the array level, 

aimed at making data originating from different microarrays comparable. In this 

work, we have used the scaling conducted by the MAS 5.0 algorithm, which 

applies scaling on each microarray independently, by bringing the average of all 

expression values spanning between the 2nd and 98th percentile in the analyzed 

microarray to a predefined target average (usually set to ~250). The key 

assumption of the global scaling strategy is that most of the genes do not 

change between the analyzed arrays, and therefore the values of each 

microarray should roughly have the same average. 

Removal of all-absent probe-sets 

Affymetrix MAS 5.0 algorithm provides each probe-set reading in a given 

microarray with a detection p-value. The detection p-value indicates whether the 

corresponding transcript is reliably detected (Present) or not detected (Absent). 

Calculation of the detection p-value is based on probe pair intensities, and is 

then compared against a user-defined cutoff (of 0.05 in most cases) to be 

translated to the Absent/Marginal/Present detection calls. (For more details, 

please refer to 

http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf) 

A standard microarray data preprocessing step is to remove probe-sets that are 

labeled as ‘absent’ on all (or most) dataset samples. Such genes are of little 

interest, as they were not detected as expressed on any of the experiment 

samples and thus do not seem to play a role in the investigated biological 

process.  

http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf
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Applying Log2 transformation 

A common early step in microarray data analysis is log transformation. Many 

statistical methods are based on the assumption that measurement errors are 

additive and hence normally distributed. In microarray data there is evidence 

that indicates that the errors are multiplicative. Hence applying Log2 

transformation brings the noise distribution close to the normal distribution and, 

in addition, quenches the data to reduce the effect of outliers [5, 6]. 

Setting a threshold 

Data generated by microarrays is known to be noisy in the low value range due 

to measurement noise. In the following figure, a scatter plot of log2 transformed 

expression data of two microarray replicates is shown (Same biological sample). 

The left figure displays the log2-transformed data before applying any threshold. 

Such a plot can help us determine the threshold value by identifying the minimal 

value at which the relation between the two replicates becomes linear. In the 

displayed figure, a reasonable threshold can be defined as ~3.    

The right figure displays the data after applying a threshold of 3. Threshold is 

applied by setting to the threshold, all expression values below it. 

A B 

 

 

Figure 6. Scatter plots of replicates expression before setting a threshold of 3 (A) and 
after (B). 
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Variability filter  

Since we are usually interested in genes whose expression changes between the 

experiment samples, a typical preprocessing procedure includes the removal of 

genes whose expression variance is below a certain variability threshold. This 

threshold is usually defined depending on the number of probe-sets in our 

capacity to computationally process later on. 

Assuming a given dataset includes ns samples (columns) and ng probe-sets 

(rows), and that Egs represents the expression value of gene g on sample s, the 

standard deviation of probe-set g (representing a gene) is denoted as  

1

)( 2

−

−
=
∑

s

s
ggs

g n

EE
σ  

Centering and Normalization 

Quite often, we are interested in the way genes relatively change their 

expression between samples rather than absolutely. Therefore, before applying 

high-level analysis on the data, we first standardize the dataset rows (each row 

corresponds to a probe-set/gene).  Standardization includes centering (mean of 

each gene equals 0) and normalization (standard deviation of each gene equals 

1). 

The following equation demonstrates how standardization is performed; 

g

ggs
gs

EE
E

σ
−

='  

Comments 

Through this work, the terms ‘probe-sets’ and ‘genes’ are used interchangeably. 

‘Sample types’ are used interchangeably with ‘sample groups’. 

Unless stated otherwise, rows represent genes and columns represent 

microarrays or samples. 
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Supervised data analysis methods 

Analysis of gene expression data is a challenging task due to the high 

dimensionality of a typical microarray dataset. Many statistical methods and 

bioinformatic algorithms have been developed or adopted from other research 

fields in order to face this challenge. In general, these methods are aimed at 

identifying statistically significant expression patterns that are inherent in the 

usually noisy expression data. This section includes a brief overview of several 

data analysis techniques that were used in this work. 

We start with a group of supervised methods, characterized by the use of 

external labels (such as clinical label of the dataset samples or functional class of 

genes). These methods are routinely used to identify genes that are differentially 

expressed in two or more sample subsets representing different biological 

conditions.  

Fold change 

‘Fold Change’ is a metric for comparing gene expression levels between two 

distinct experimental conditions. It is one of the first methods used to identify 

differentially expressed genes and it is still very popular today. ‘Fold change’ 

represents the ratio between the averaged expressions of a given gene in one 

sample group versus its averaged expression in a second sample group. For log 

transformed data, fold change is calculated (for each gene independently) as the 

difference between the means (or medians) of the two sample groups. 

Nowadays, fold change is applied mainly as a measure of effect size, used to 

rank genes by their expression difference between two sample groups. It is 

considered to be an inadequate inference statistic because it does not 

incorporate variance and offers no associated level of ‘confidence’ [4].  
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T-test and Rank-sum 

The Student T-test and Mann-Whitney-Wilcoxon Ranksum test are statistical 

hypothesis tests used to assess whether the means of two groups are statistically 

different from each other [7, 8].   

An important and common question in microarray experiments is the 

identification of differentially expressed genes between two distinct groups of 

samples (e.g. genes that are differentially expressed in normal versus tumor 

tissue). The basic statistical approach is to test for each gene the null hypothesis 

by which the gene is similarly expressed between the two groups (test for 

equality of means). If the P value that is calculated is less than the threshold 

chosen for statistical significance (usually the 0.05 level), then the null 

hypothesis that the two groups do not differ is rejected in favor of the alternative 

hypothesis, which typically states that the groups do differ. 

T-test is a parametric test; it assumes that the data is normally distributed. The 

Rank-sum test is a non-parametric test used when the data is not normally 

distributed. The Rank-sum test is thus more permissible in its requirements, but 

the trade off is a reduced statistical power. 

ANOVA 

Like the t-test and the rank-sum test, ANOVA (Analysis Of Variance) is a 

statistical test used to assess means equality between groups; however, ANOVA 

is used to compare the means of more than two groups. 

ANOVA tests for mean differences between groups by analyzing the variance, 

that is, by partitioning the total variance into the component that is due to true 

random error (variance within groups) and the components that are due to 

differences between means. These variance components are then tested for 

statistical significance, and if significant, we reject the null hypothesis of no 

differences between means, and accept the alternative hypothesis that the 

means (in the population) are different from each other  [7, 8]. 
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The multiplicity problem and FDR 

The simultaneous testing of the null hypothesis in many thousands of genes in a 

DNA microarray dataset raises the multiplicity problem. The multiplicity problem 

refers to the situation where the expected number of `false discoveries` 

becomes large relative to the number of true discoveries. For example, if we use 

the customarily statistical threshold of α=0.05 on a microarray experiment of 

10,000 genes, where 50 genes are truly differentially expressed, then we can 

expect approximately (10,000-50)*0.05 ~ 500 false positives (genes that are not 

truly differentially expressed but did pass the independent statistical tests).  

The multiplicity problem was originally addressed by methods to control the 

family-wise type I error rate (FWER) which is the probability of having at least 

one false significant test result within the set of tested hypotheses. The simplest 

FWER approach is the ‘Bonferroni correction’ method. This method controls the 

group-wise error rate by rejecting the null hypothesis for a threshold of  
N
αα ='    

where N is the number of tests performed. The division of the test-wise 

significance level by the number of tests insures that the expectancy of false 

positives is α, and thus the probability to get even one false positive is less or 

equal to α. A major drawback of this method is that it is too conservative. When 

the number of tests is high, such as in microarray experiments, legitimately 

significant results will fail to be detected.   

Recently, Benjamini and Hochberg [9] have proposed a less conservative 

approach to multiple testing which calls for controlling the expected proportion of 

falsely discovered predictions among the list of predictions that are identified; the 

expected proportion is called the false discovery rate (FDR). 

Let R denote the number of hypotheses rejected by the procedure, V the number 

of true null hypotheses that are wrongly rejected. Then: 

⎟
⎠
⎞

⎜
⎝
⎛=

R
VEFDR  
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For example, if the FDR procedure returns 100 genes with a false discovery rate 

of 0.25 then we should expect 75 of them to be correct. 

Gene Ontology (GO) and gene class testing 

Gene ontology (GO) is a gene annotation system which is based on a hierarchical 

vocabulary that is species-independent. GO is used for describing gene products 

in terms of their associated biological processes, cellular components and 

molecular functions in a species-independent manner. ‘Biological Process’ refers 

to biological goal or objective (example ‘biological process’ terms include mitosis, 

DNA replication or metabolism). ‘Molecular Function’ refers to the biochemical 

activity of the gene product (i.e. DNA binding, ATPase activity). Lastly, the 

‘Cellular Component’ GO category refers to the location or complex of the given 

gene product (i.e. nucleus, cell-membrane). Each gene is independently assigned 

with GO terms from any of the 3 GO categories, and usually with more than one 

term from each category [10]. 

 
Figure 7. Example: The ‘DNA metabolism’ GO term and its descendant 
terms, which are part of the ‘biological process’ class.  
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The result of analyzing microarray datasets is often a list of differentially 

expressed genes or a list of genes included in a given gene-clusters. In an 

attempt to interpret such gene lists, they are analyzed in terms of the functional 

categories of the genes – usually based on Gene Ontology (GO) categories. A set 

of genes which is found to be enriched with a certain GO term, is more likely to 

be involved in the underlying biological process. GO enrichment is routinely used 

to validate the “biological sense” of a given set of genes. 

Gene class testing identifies functional GO categories over-represented in a gene 

list relative to the representation within the proteome of a given species. Hyper-

geometric based p-value is calculated for each GO term, assessing its over-

representation in a given cluster compared with the total number of probe-sets 

on the microarray. 

Gene class testing conducted in this work is based on GO annotations 

downloaded from the Affymetrix web site, updated to January 2006. Enrichment 

analysis was conducted using the Profiler software. 
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Unsupervised data analysis methods 

Unsupervised methods use only the expression data points for the analysis 

without relying on any external predefined data labels. Clustering algorithms are 

an implementation of unsupervised learning approach, and they are used to 

organize huge numbers of unlabeled data points in a gene expression dataset 

into a structure. Each cluster within that structure contains a collection of data 

points that are similar to each other and have a similar expression pattern. 

Clustering can be applied on genes (rows) as well as on samples (columns). 

Gene clustering is used to explore gene expression assuming that genes whose 

expression is correlated (and thus are assigned to the same gene cluster), may 

have a related function. Examination of the produced clusters may provide 

insights on different biological processes reflected in the data.  

Hierarchical clustering 

In Hierarchical clustering [11], the expression data is partitioned to clusters in a 

series of steps. The algorithm iteratively joins the two closest clusters starting 

from singleton clusters (agglomerative hierarchical clustering) or iteratively 

partitioning clusters starting with the complete set (divisive hierarchical 

clustering). After each joining of two clusters, the distances between all the other 

clusters and the new joined cluster are recalculated. The complete linkage, 

average linkage, and single linkage methods use maximum, average, and 

minimum distances between the members of two clusters respectively. Like 

several other clustering algorithms, hierarchical clustering may be represented by 

a two dimensional diagram known as dendrogram, which illustrates the fusions 

or divisions made at each successive stage of analysis. Note that for hierarchical 

clustering, in order to obtain a particular partitioning into clusters, the distance 

metric, linkage methods and threshold distance must be defined by the user.  
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Figure 8. Example of a dendrogram 
representing hierarchical clustering. 

 
The SPC clustering algorithm 

The Super Paramagnetic Clustering algorithm [12] is based on the properties of 

an inhomogeneous ferromagnetic model. SPC is used to yield a temperature 

dependant hierarchical clustering of the given data (higher temperature values 

yield a higher resolution clustering, where at very high temperatures each data 

point is assigned to a different cluster). SPC uses a particular cost function for 

each partition and generates an ensemble of partitions at a fixed value of the 

average cost (average over the ensemble). The SPC cost function uses a 

distance function between the elements, and penalizes assignment of close 

elements to different partitions. The probability for a given partition configuration 

is given by the Gibbs distribution where the temperature defines the average 

cost. At every temperature, the probability that a pair of elements is assigned to 

the same partition is calculated, by averaging over all the different partition 

configurations at that temperature, according to their probabilities. Elements will 

be assigned to the same cluster only if they appear with a high enough 

probability in the same partition. Hence, for each temperature we have a 

different natural configuration of clusters.  

SPC’s advantages over other clustering algorithms include robustness against 

noise, creation of a hierarchy based clustering represented by a dendrogram. 

Furthermore, SPC does not require the specification of the number of clusters in 
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advance; SPC provides a reliable cluster stability measure that is used to define 

final output clusters. SPC uses a Euclidean distance measure. 

CTWC 

The Coupled Two Way Clustering algorithm [13-15] is using iterative clustering 

executions in order to identify stable gene and sample clusters. The algorithm 

finds stable gene clusters using an external clustering algorithm (such as SPC), 

and then uses these clusters to find stable sample clusters. These sample 

clusters are again used to find stable gene clusters, and so on – until no 

additional stable clusters are found. On each such iteration, one subgroup is in 

focus, and therefore it is minimally affected by the noise present in the total 

dataset containing thousands of data points. In this work, CTWC was used as an 

envelope for SPC only and was not executed iteratively. 

Gene expression profiling 

In gene expression profiling (a method developed as part of this study), dataset 

samples are grouped by sample type and their expression values are averaged 

independently for each gene. The distribution of the averaged expression values 

is sliced to N bins, and each expression value is then mapped to one of the bins. 

The expression of every gene is then represented by a vector with an alphabet of 

size N (such as [1 2 1 5 5]). 

Using this simplified representation of the expression data, genes sharing the 

same profile are clustered together. The output of the profiling operation is a set 

of gene clusters, each one with a defined expression profile. 

N – The number of bins, is a user-defined parameter defining the resolution of 

the profiling operation. 

Profiling is useful for several reasons:  

• It is intuitive and simple to understand. 

• Runs very fast and thus can be applied on a very large number of probe-sets. 
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• After profiling is applied on a given dataset, profiles can be filtered based on various 

criteria (such as ‘all monotonically increasing profiles’, or ‘all profiles exhibiting 

minimal expression on sample type X’) to form meta-profiles of interests. 

• Profiling can be applied on both un-standardized data and standardized data. 

The following figures demonstrate applying gene expression profiling on a sample 

dataset. 

Expression matrix
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MMeesseenncchhyymmaall  SStteemm  CCeellll  DDiiffffeerreennttiiaattiioonn  

BBiioollooggiiccaall  BBaacckkggrroouunndd  

Stem cells are special kind of undifferentiated cells that can give rise to different 

types of mature cells [16]. Their main characteristics are multipotency, self-

renewal and immortality. Multipotency refers to the ability of these 

undifferentiated cells to give rise to different types of mature cells. Their capacity 

for self-renewal enables them to proliferate and maintain their own cell 

population size. Immortality means that these cells do not die after a 

predetermined number of divisions. 

There are several different types of stem cells, which differ in their differentiation 

potential (the range of mature cells they can differentiate into): The totipotent 

zygote, the pluripotent embryonic stem cells and the multipotent adult stem 

cells. 

The totipotent zygote, formed by the fusion of an egg and a sperm cell upon 

fertilization, is the most potent stem cell of all. It has the capacity to generate an 

entire mammalian fetus and its surrounding supporting tissues. Within several 

days, the zygote develops into a blastocyst. The blastocyst is composed of a 

hollow ball of cells (Trophoblast) that will form the placenta, and a compact body 

of cells called inner cell mass (ICM), from which the fetus develops. The 

totipotent nature of the zygote is defined by its capacity to specialize into both 

the trophoblast and the ICM. The cells composing the ICM, develop to the 3 

embryonic germ layers (ectoderm, mesoderm and endoderm) that will eventually 

give rise to the more than 200 mature differentiated cell types found in a 

mammalian organism [17]. 

Embryonic stem cells are cells derived from the inner cell mass of a 4-5 days 

old embryo that was created by in-vitro fertilization. Embryonic stem cells (ESCs) 
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are called pluripotent as their differentiation potential includes all three fetus 

germ layers that will differentiate during embryonic development into the more 

than 200 different mature cell types composing the adult organism. However, 

ESCs cannot differentiate into trophoblast (the extra-embryonic placenta 

progenitor) to form a complete blastocyst as the totipotent zygote can.  

Murine embryonic stem cells were first isolated in 1981 [18], and human 

embryonic stem cells were isolated in 1998 [19]. Both exhibit normal and stable 

karyotype, express embryonic cell surface markers and can be cultured in vitro 

for very long periods in an undifferentiated state and yet retain their pluripotent 

differentiation potential. 

In order to maintain their self-renewal and multi-

lineage differentiation potential, both mouse and 

human embryonic stem cells were originally co-

cultured in the presence of mouse embryonic 

fibroblast feeder layer that derives substances 

that block differentiation. Without a layer of 

feeder cells, cultured embryonic stem cells 

maintain their pluripotency only for a short time 

[20]. The feeder layer also provides the ESCs a 

sticky surface to which they can attach, and 

releases nutrients into the culture medium. 

For mouse ESCs, it has been shown that 

continuous presence of leukemia inhibitor factor 

(LIF, a member of the interleukin-6 cytokine 

family) is sufficient to sustain self-renewal and 

pluripotency. LIF binds to the gp130 receptor on 

Figure 1. Derivation of Embryonic Stem 
Cells. Embryonic stem cells are derived from 
the inner cell mass of the blastocyst; cells 
composing the inner cell mass are isolated and 
then plated on culture medium, below which is 
a layer of feeder cells.  
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the murine ESC surface, which results in JAK kinase-mediated activation of the 

transcription factor STAT3 [21]. 

Human ESCs are indifferent to LIF, and it is not known to date which of the 

compounds derived from the fibroblast feeder cell layer (either of mouse origin, 

or of the more recently developed human fibroblast feeder cell layer) are 

responsible for keeping the cultured cells in an undifferentiated state.  

Several molecular markers for undifferentiated pluripotent human ESCs have 

been identified. These markers are expressed in undifferentiated human ESCs 

and are turned off after differentiation. The identified markers Oct-4, Nanog, 

Rex1, TDGF1, Sox2, LeftyA, FGF4 are some of the most prominent 

[22],[23],[24]. Human ESCs also express high levels of telomerase [19] 

Upon induction by specific differentiation compounds, cultured embryonic stem 

cells can differentiate in-vitro into a variety of mature cell types, including: 

neurons and skin cells (indicating ectodermal differentiation); blood, muscle, 

cartilage, endothelial cells, and cardiac cells (indicating mesodermal 

differentiation); and pancreatic cells (indicating endodermal differentiation) [22]. 

One of the most important goals of current stem cell research is the development 

of specific protocols for efficient directed differentiation of ESCs into any mature 

cell of interest. 

Adult stem cells are multipotent stem cells found in the adult organism. Like 

Embryonic stem cells, they are capable of self-renewal throughout the organism’s 

life, and also capable of differentiating into different mature cell types (usually 

through an intermediate cell of increased commitment called a progenitor). 

However, adult stem cells are already committed to a certain cell lineage and 

thus they are restricted in their differentiation range.  

Adult stem cells reside within mature tissues and serve as a limitless source for 

new mature cells, enabling maintenance and repair of the tissue by continuously 

regenerating mature tissues either as part of normal physiology or as part of 

repair after injury. 
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Adult stem cells have been identified in many animal and human tissues, 

including blood, brain, skin, gut, muscle and in the mesenchyme – which is the 

focus of this work (see table 1) [23]. 

 
Table 1. Adult stem cells.  Adult stem cells have been found in small amounts in 
many mature tissues. 

 

Adult stem cells are usually found within compartments (called niches), where 

they respond to a variety of extrinsic signals that determine their fate. The stem 

cell niche is a dynamic multi-cellular structure, which serves as a controlled 

microenvironment, balancing the stem cell tendency to proliferate or to give rise 

to differentiated tissue cells. The exact interactions composing the 

microenvironments of the different stem cell niches are still mostly unknown 

[25]. Stem cells are considered quite rare, composing only a small fraction of the 

tissue cellularity.  



 
 

37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The hierarchy of stem cells. The totipotent zygote give rise to the blastocyst. 
Pluripotent embryonic stem cells derived from the inner cell mass of the blastocyst can 
be cultures in vitro.  Multipotent adult stem cells exist in many mature tissues, used as a 
reservoir of renewing cells. 

 

 

In recent years, an increasing body of research suggests that multipotent adult 

stem cells are much more flexible in their differentiation potential, capable of 

trans-differentiating across tissue lineage boundaries into mature cell types other 

than their tissue of origin. One example for adult stem cell plasticity  is 

demonstrated by studies showing that hematopoietic stem cells (derived from 
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the mesoderm) may be able to generate both skeletal muscle (also mesoderm 

derived) and neurons (ectoderm derived) [26]. 

Mesenchymal Stem Cells 

Mesenchymal Stem Cells (MSCs) are multipotent adult stem cells that have the 

potential to differentiate to lineages of mesenchymal tissues, including bone 

(osteogenic cells), fat (adipocytes), muscle (myocytes), cartilage (chondrocytes), 

tendon (tenocytes) and hematopoiesis-supporting bone-marrow stroma cells 

[27]. 

Mesenchymal stem cells are mainly derived from the bone marrow stroma 

(complex array of supporting structures), but they were also  isolated from 

peripheral blood [28], umbilical cord blood [29] and adipose tissues [30]. 

MSCs were originally isolated from bone marrow aspirate based on their 

tendency to adhere to a plastic substrate in the cell culture plate, whereas most 

other bone marrow derived cells (like the highly researched hematopoietic stem 

cell that also resides in the bone marrow) do not possess this plastic-adherence 

property [31].  

In order to further distinguish mesenchymal stem cells from hematopoietic cells, 

the cultured cells can be selected against the hematopoietic characteristic 

markers CD34, CD45 and CD14. In addition, the cell surface marker CD105 

(endoglin) and others, are used as positive selection in order to gain MSC 

enriched cell population. However, there are no currently known MSC-specific cell 

surface markers that exclusively identify mesenchymal stem cells. Therefore, 

isolated MSC populations are still not entirely homogenous [32].  

Mesenchymal stem cells can be expanded in vitro for many passages, and still 

retain their multipotential differentiation. Upon induction of differentiation 

compounds, MSCs differentiate in-vitro to several different mesenchymal lineages 

such as bone, cartilage, fat, tendon, muscle, and marrow stroma [27].   
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Figure 3. Differentiation of bone marrow derives adult stem cells. Hematopoietic stem cells give rise to the 

many different types of mature blood cells. Mesenchymal stem cells, derived from the bone marrow stroma can 

give rise bone, fat and stroma cells. 

 

 

 

 
Figure 4. Isolated marrow-derived stem cells differentiate to mesenchymal lineages. 

A. Adipocytes (Fat), indicated by the accumulation of neutral lipid vacuoles that stain with oil red; B. 

Chodrocytes (Cartilage), indicated by staining with the C4F6 monoclonal antibody to type II collagen and 

by morphological changes; C. Osteocytes (Bone), indicated by the increase in alkaline phosphatase and 

calcium deposition.  
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It was discovered that under certain culturing conditions, mesenchymal stem 

cells can also “trans-differentiate” to mature specialized cells other than those of 

the mesenchymal tissues, including neurons, cardiomyocytes and others [26]. 

This work will focus on mesenchymal stem cells’ differentiation into bone and fat 

mature cells. 

Importance of stem cell research 

The self-renewal and multipotent differentiation capacity of both embryonic stem 

cells and adult stem cells make them highly valuable for promoting our 

understanding of basic developmental processes, and for the development of 

new revolutionary therapeutic methods. 

Stem cells also have potential applications in toxicology and pharmacology, 

where they can be used to generate mature tissue of different types that may be 

used for screening of pharmacological compounds [33].  

Many diseases (like leukemia) involve a depletion of the stem cell pool in charge 

of supplying new specialized cells to different mature tissues. Other diseases (like 

diabetes, Alzheimer and Parkinson) involve destruction or wearing out of tissues 

as a result of trauma or inadequate replenishment from stem cells pools [33].  

Once we know how to control the development of cultured stem cells, we may 

be able to induce directed differentiation that would yield specific types of 

mature cells that are required for replacing damaged tissues. 

Embryonic stem cells have raised a lot of controversy, as their extraction from 

young embryos destroys potential human lives and thus raises ethical dilemmas. 

In recent years, it was shown that adult stem cells are capable of trans-

differentiating to yield many types of mature tissues, and thus may be used 

instead of embryonic stem cells for therapeutic applications. In addition, since 

adult stem cells have decreased proliferation capacity and tumorigenecity 

compared to ESCs, they may be  also safer for use [34]. 
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Therefore, the emerging field of regenerative medicine is now making use of 

stem cells in general and mesenchymal stem cells in particular (which are ideal 

candidates thanks to their proliferative and versatile differentiation potential). For 

example, mesenchymal stem cells can be used in tissue-engineering strategies 

where they can be cultured in-vitro to expand their numbers, incorporated into 

three-dimensional scaffolds to assume required shape, and then transplanted in-

vivo to the injured site. Also, MSCs can be used in cell replacement therapy, in 

which genetic defects can be cured by replacing the mutant host cells with 

normal allogeneic donor cells [35].  

The many versatile applications of stem cell research may explain the 

tremendous interest that they have triggered in recent years. 

 
Figure 5. Using adult stem cells to repair 
damaged heart tissue.  
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Gene expression and stem cell differentiation 

Although most cells in a multi-cellular organism contain the entire genetic 

information, different cell types express genes in different levels, according to 

their developmental or functional state. Some genes are found to be highly 

expressed in most adult tissues (“house keeping” genes), whereas others are 

highly expressed only on a small subset of adult tissues (“tissue-specific” genes).  

The subset of expressed genes in a certain time point, determines the properties 

of the cell and its phenotype. 

During differentiation of a stem cell into a mature cell, the cell changes its 

phenotype as it becomes committed to a certain function by acquiring specific 

characteristics. A mature osteogenic cell (specialized in aggregating minerals to 

form the bone) is thus likely to have different transcriptional program compared 

to a mature adipocytes cell (specialized in fat metabolism). Discovery of genes 

whose expression is changed along differentiation into a certain lineage may 

shed light on biological pathways associated with that specific differentiation 

process and its induction methods. 

Little is known about the underlying genetic program that allows stem cells to 

proliferate for long periods, and yet retain their potential to differentiate into 

mature cells upon induction. Two attempts to identify “stemness” signature 

genes common to embryonic, neuronal and hematopoietic murine stem cells 

have been performed in 2003 [36, 37]. Each study provided a list of genes that 

allegedly provide stem cells with their unique properties capacities. However,  

only 6 genes appeared in both gene lists [38, 39]. The small  number of common 

genes may be ascribed to differences in isolation methods, type of computational 

analysis used to identify shared genes, or differences in microarray chip used in 

the analysis [23]. 

On a higher level, several studies tried to detect global expression patterns 

characterizing embryonic and adult stem cells compared to differentiated cells. 
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Those studies suggest that stem cells express more genes compared to 

differentiated cells. Transcription profiling has revealed that most differentiated 

cell types express only 10–20% of the genome, whereas ESCs express 30-60% 

of their genes [23].  

Golan-Mashiach et al. [40] compared gene expression levels of embryonic, 

hematopoietic and keratinocyte stems cells with differentiated hematopoietic and 

keratinocyte tissues, and found a notable down-regulation of genes along the 

differentiation pathway, accompanied By up-regulation of a smaller set of genes 

that are needed by the target tissue..  

These observations are consistent with the ‘priming’ hypothesis by which stem 

cells promiscuously express many different lineage-specific genes at low levels 

[41]. This transcriptional profile may exist due to the relative open and accessible 

chromatin state in stem cells compared to mature cells [42]. A transcriptionally 

permissive chromatin structure may provide stem cells with a rapid 

differentiation potential when needed during development or in response to an 

injury [23]. This hypothesis was also named “Just In Case”; stem cells express 

many genes just in case they are needed in the future (contrary to the 

parsimonious “just in time” strategy where genes are expressed only when they 

are needed) [40].  
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RReesseeaarrcchh  QQuueessttiioonn  

• Global dataset gene expression exploration 

o What are the prominent differentiation dependant expression 

patterns observed in the data? 

o How many genes go up/down along the differentiation pathway? 

o Exploration of internal relationships between the samples types. 

• Identification of biological themes, pathways and genes involved 

in mesenchymal differentiation 

o What are the major pathways taking part in the differentiation 

process? 

o What genes play a pivotal role during the differentiation pathway?  
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Materials and Methods 

Embryonic stem cells 

Cited from Gerecht-Nir et al., 2003 [43]:  “Nondifferentiating hESC lines H9.2 

were grown as previously described (Gerecht-Nir et al.,2003 [44]). In brief, the 

cells were grown on mouse embryonic fibroblasts and passaged every 4 to 6 

days using 1 mg/ml type IV collagenase (Gibco Invitrogen Co., San Diego, CA). 

hESCs were removed from the feeder layers using 1 mg/ml type IV collagenase, 

further dissociated into small clumps by using 1,000- l Gilson pipette tips, and 

cultured in suspension in 50-mm nonadherent Petri dishes (Ein-Shemer, Israel). 

For analysis, hESC were separated from the feeder layer by type IV collagenase 

treatment followed by microscopic inspection for the absence of contamination 

by feeder cells”.  

Mesenchymal cells 

The following section, elaborating mesenchymal stem cell isolation and 

differentiation, describes the work of Hadi Haslan from Prof. Dan Gazit’s Skeletal 

Biotech lab at the Hebrew University, Jerusalem. 

Bone marrow samples were derived from three donors undergoing orthopedic 

surgery under general anesthesia. Subjects did not suffer any hematological 

deficiencies. Samples were collected from femur or iliac crest during surgery. 

Mesenchymal stem cells were immuno-isolated from bone marrow samples 

based on the CD105 cell surface marker, after being grown in culture for one 

week. Then, the mesenchymal stem cells were cultured in different culture 

media, in order to induce one of the several desirable differentiation states 

including: no differentiation (minimally cultures MSCs), osteogenic differentiation 

and adipogenic differentiation. 

 

 

 

http://www3.interscience.wiley.com/cgi-bin/fulltext/109857839/main.html,ftx_abs#BIB13#BIB13
http://www3.interscience.wiley.com/cgi-bin/fulltext/109857839/main.html,ftx_abs#BIB13#BIB13
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Donor ID Age Gender Derived samples 

#236 63 male (A) Mesenchymal stem cells 

(B) Bone Control 
#220 83 female 

(C) Bone Induction 

(D) Fat Control 
#225 76 male 

(E) Fat Induction 

  
 
Table 2. Mesenchymal dataset samples 

 
Media used:  

2. complete growth medium (GROW): DMEM (low glucose) + 10% FCS 

3. bone induction medium (OSTEO IND): DMEM (low glucose) + 10% FCS 

+ osteogenic supplements 

4. bone control medium (OSTEO CTRL): DMEM (low glucose) + 10% FCS + 

buffers used to dissolve the osteogenic supplements 

5. fat induction medium (ADIPO IND): DMEM (high glucose) + 10% FCS + 

adipogenic supplements 

6. fat control medium (ADIPO CTRL): DMEM (high glucose) + 10% FCS + 

buffers used to dissolve the adipogenic supplements 

 
Culturing details: 

1. Minimally cultured hMSCs – donor#236 – male 63 years old. 

Day 0:  Cells were first plated and grown for 1 week in GROW 

medium.  

Day 7: Immuno-isolation using CD105 and replating in culture in 

GROW medium. 
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Day 17:  Isolation of RNA and sending to GeneChip (yielding sample 

type A). 

2. Osteogenic differentiation – donor#220 – female 85 years old. 

Day 0:  Cells were first plated and grown for 1 week in GROW 

medium. 

Day 7: Immuno-isolation using CD105 and replating in culture in 

GROW medium until -> 

Day 22:  Start of osteogenic differentiation: cells replated, addition of 

OSTEO IND medium or OSTEO CTRL medium.  

Grown with the above medium for 2 weeks until -> 

Day 36:  Isolation of RNA and sending to GeneChip (yielding sample 

types B and C). 

3. Adipogenic differentiation – donor#225 – male 76 years old. 

Day 0: Cells were first plated and grown for 1 week in GROW 

medium. 

Day 12: Immuno-isolation using CD105 and replating in culture in 

GROW medium until -> 

Day 26: Start of adipogenic differentiation: cells replated,  addition of 

ADIPO IND medium or ADIPO CTRL medium.  

Grown with the above medium for 4 weeks until -> 

Day 54: Isolation of RNA and sending to GeneChip (yielding sample 

types D and E). 
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Microarrays production 

Three Affymetrix Human Genome U133A version 2.0 microarrays were produced 

for each one of the above mentioned cell types (there are six different samples 

types: ESCs, MSCs, Bone control, Bone induction, Fat control, Fat Induction). 

One microarray was damaged (Bone control), leaving 17 microarrays composing 

the analyzed dataset. The U133Av2 microarray contains 22,215 probesets 

representing 14,500 well-characterized genes. Affymetrix Microarray Suite 

Software (MAS, version 5) was used to process the raw microarray data, yielding 

the scaled data that was used for the bioinformatics analysis.  
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Global gene expression analysis along the differentiation pathway 

We start by examining global expression patterns on the microarray level, trying 

to determine whether ESC, MSC or differentiated mesenchymal samples differ 

significantly in the number of genes they express highly.  

For this step of the analysis, the data was preprocessed in a permissive manner 

in order to keep a large number of genes to work with. Starting with 22,215 

probe-sets on the original dataset, 5,292 probe-sets were filtered out for being 

‘absent’ on all 17 samples composing the dataset, leaving 16,923 probe-sets. A 

threshold of 1 followed by log2 transformation was then applied to the data. 

A B

C D

Figure 7. Dataset preprocessing.  Plots A and C on the left show expression value histograms for 
the 6 sample groups (replicates are averaged) before (A) and after (C) applying a threshold of 1 and 
log2 transformation. The images on the right show the corresponding expression matrices before (B) 
and after (D) applying the threshold and log2. In the expression matrices, red represents high values, 
blue represents low values. The color bar shows the mapping of values to colors. 
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A brief examination of the expression matrix reveals that the three rightmost 

columns, representing the embryonic stem cell samples, are quite different from 

the other 14 mesenchymal samples. 

In order to examine gene expression similarity between pairs of sample types 

(e.g. ESCs versus MSCs), we have first averaged the replicates of each sample 

type, and then subtracted the first average from the second average for each 

gene. Since the data is log2-transformed, the difference values we got are 

equivalent to fold change of each gene between the two sample types.  

The following two histograms and accompanying tables (the first focuses on fat 

samples and the second on bone) summarize the distribution of the differences 

we have calculated. In general, narrow distributions (low standard deviation) are 

typical of many very small differences and thus indicate high microarray-level 

similarity between the pair samples. Wide distributions indicate that many genes 

have a high fold change between the two sample types and are therefore 

correlated with significant expression level differences. 
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 Figure 8. Distribution of probe-set expression difference between sample pairs including 
ESC, MSC and Fat samples. 
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Compared pair Diff. Mean Diff. STD Rank sum pValue 

ESC – Fat-Induction 0.185 2.070 1.75e-013 

ESC – Fat-Control 0.182 2.093 5.90e-012 

ESC - MSC 0.216 1.862 7.10e-015 

MSC – Fat-Induction -0.031 1.151 0.57 

MSC- Fat-Control -0.033 1.092 0.34 

Fat-Control – Fat-Induction 0.002 0.809 0.68 

 

 

 

Table 3: Sample comparison. Mean and standard deviation relate to the difference distribution 
of the corresponding sample pair, as plotted above. p-value refers to Wilcoxson rank sum test 
conducted on replicate-averaged expression values of first sample type versus the second (test 
conducted on expression values, not on difference). 

Analysis of these histograms and tables reveals the following: 

• Fat-control and Fat-Induction samples are highly similar on the 

microarray-level (The black histogram exhibits the lowest standard 

deviation). This is expected, as both samples come from the same donor, 

and their culturing media are very similar (differ only in the presence 

induction compounds). 

• Embryonic stem cells differ significantly from the three other cell 

types (the red, magenta and green histograms exhibit the highest 

variances). This suggests that the expression of many genes is either 

lower or higher on the ESC samples compared to MSC, Fat-Control and 

Fat-induction samples. ESCs therefore express many genes in an extreme 

(either lower or higher) manner compared to MSC, Fat-Control and Fat-

Induction samples. Since the areas under the red, magenta and green 

curves are larger for positive difference values compared to negative 

values, we concluded that the number of genes that are expressed by 

ESCs at a higher level than by the mesenchymal cells exceeds significantly 

the number of genes with the opposite difference pattern.  

• Mesenchymal stem cells exhibit medium microarray-level 

similarity to the Fat-Induction and Fat-Control samples. Dark blue 

and light blue curves represent comparison of mesenchymal stem cells 
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with Fat-Induction and with Fat-Control respectively. These two difference 

histograms display a distribution similar to the black curve representing 

the Fat-Control versus Fat-Induction comparison, but their standard 

deviation is larger. This suggest that MSCs somewhat differ on the 

microarray-level from both Fat-control and Fat-Induction; however MSCs 

are still more similar to the two fat sample types compared to ESCs. 
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Figure 9. Distribution of probe-set expression difference between sample pairs, including 
ESC. MSC and Bone samples. 

Compared pair Diff. Mean Diff. STD Ranksum pValue 

ESC – Bone-Induction 0.136 1.947 3.08e-005 

ESC – Bone-Control 0.157 2.022 2.64e-008 

ESC - MSC 0.216 1.862 7.05e-015 

MSC – Bone-Induction -0.080 1.046 0.0005 

MSC- Bone-Control -0.058 1.004 0.02 

Bone-Control – Bone-Induction 0.002 0.809 0.17 

 Table 4. Sample comparison. Mean and standard-deviation relate to the difference distribution of 
the corresponding sample pair, as plotted above. p-value refers to Wilcoxson rank sum test 
conducted on replicate-averaged expression values of first sample type versus the second (test 
conducted on expression values, not on difference). 
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Similarly, examination of the above histogram and table raised the following 

observation: 

• Bone-Control and Bone-Induction samples have the highest level 

of similarity (the black histogram exhibits the smallest standard 

deviation). 

• ESC samples compared with MSCs, Bone-Control and Bone-

Induction show large dissimilarity (red, magenta and green curves). 

ESCs express many genes at lower levels than in the other samples. ESCs 

also express an even larger number of genes at higher levels than in the 

other samples. 

• MSCs exhibit high similarity to the Bone-control and Bone-

induction samples, closer than MSCs are to Fat-Control and Fat-

Induction. 

 

The rank-sum p-value columns in the last two tables reveal that the mean 

expression (after averaging replicates) of ESCs differs significantly from the 

mean of all five mesenchymal sample types, using a significance level of 0.05. 

Interestingly, the only mesenchymal sample type that differs significantly from 

mesenchymal stem cells is the Bone-Induction sample type. This observation 

may be explained by higher biological difference induced during osteogenesis, or 

by basal genetic differences between the two different donors whose tissues 

were used to prepare the MSC and Bone samples. 
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When applying standardization on the dataset rows (centering and normalizing 

the 16,923 probe-sets), the global dissimilarity between the embryonic stem cell 

samples and other mesenchymal samples is prominently demonstrated. The 

standardization changes the distribution of the embryonic stem cell samples to a 

bi-modal distribution, emphasizing that ESCs express many genes at a lower 

level than the mesenchymal samples, and even more genes at a higher level 

than the mesenchymal samples. 

This remarkable change in ESC expression value distribution due to 

standardization may be explained by the existence of many rather small 

differences in expression between the ESC samples and the other mesenchymal 

samples that are being magnified by the standardization transformation. For 

more on this issue, please refer to Appendix I. 

 

 

 A B

 

 

 

 

 

 

 

 

 

Figure 10. The effect of standardization on sample distribution. (A) Standardized expression 
distribution for the 6 sample types (replicates are averaged). (B) The corresponding expression 
matrix. The last three columns represent the Embryonic stem cells. Matrix genes are sorted according 
to ESC replicates average. 
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Counting differentially expressed genes 

In order to asses the number of differentially expressed genes significantly 

varying between the dataset samples, we have conducted a statistical test aimed 

at filtering out unvarying genes and then compared gene expression between the 

sample types. 

For this analysis, a more stringent set of preprocessing parameters was used. As 

before, 16,962 probe-sets were left after removing 5,292 ‘all-absent’ probe-sets 

from the initial 22,215 probe-set dataset. A threshold of 16 was applied to any 

expression values lower than this threshold, and the data was log2-transformed. 

586 probe-sets were detected as having a standard deviation of zero, and were 

removed. The remaining 16,337 probe-sets were used for this analysis, and for 

several of the subsequent analysis steps. 

We have used one-way ANOVA (Analysis of Variance) to keep only genes that 

vary significantly between sample groups (their variance between groups is 

larger than the total variance within the groups). FDR of 0.05 was then applied 

on the six sample groups, yielding 12,461 differentially expressed probe-sets. 

In the following figure, ESC and MSC expression values for the 12,461 

differentially expressed probe-sets were plotted (replicates were averaged), 

sorted by their expression on the ESC samples. The black line is formed by the 

many dots representing the sorted ESC probesets. For each black dot, there is a 

vertically corresponding blue dot, representing the probe-set’s averaged 

expression on the MSC samples.   

Counting the blue dots above, below and on the black line yielded the following: 

6980 probe-sets are higher on ESC compared to MSC (dots under the line)  

5302 probe-sets are lower on ESC compared to MSC (dots above the line) 

179 probe-sets are equal on both ESC and MSC (dots on the line) 
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Figure 11: Comparing expression levels of ESC and MSC differentially expressed genes. 
12,461 differentially expressed probe-sets that passed the ANOVA test over the six sample 
types, with FDR of 0.05, are plotted along the X-axis, sorted by their averaged expression on 
the ESC samples. Black dots represent probe-set expression on the ESC samples, blue dots 
represent expression on the MSC samples. 

 

In the above plot, there are 1,678 more blue dots under the black line compared 

to blue dots above the line, indicating that out of the 12,461 differentially 

expressed genes, 1,678 (13.4%) are expressed higher on ESC compared to MSC. 

In a similar manner, we have compared MSC averaged expression on the 12,461 

differentially expressed genes to the averaged expression of the Fat-Induction 

and Bone-Induction samples as can be seen on the next figure (Black – MSC; 

Red – Fat-Induction; Blue – Bone-Induction).  
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Figure 12: Comparing expression levels of MSC with Fat-Induction and Bone-Induction 
differentially expressed genes. 12,461 differentially expressed probe-sets that passed the 
ANOVA test over the six sample types, with FDR of 0.05, are plotted along the X-axis, sorted 
by their averaged expression on the MSC samples. Black dots represent probe-set expression on 
the MSC samples, red dots represent expression on the Fat-Induction samples and blue dots 
represent expression on the MSC samples. 

Counting the blue dots in the above figure reveals that 5160 probe-sets are 

higher, 765 are equal and 6536 are lower on MSC compared to Bone Induction. 

Counting the red dots in the above figure reveals that 6248 probe-sets are 

higher, 682 are equal and 5531 are lower on MSC compared to Fat Induction. 

In total, out of 12,461 differentially expressed probe-sets, Fat-Induction samples 

have 717 (5.7%) more over-expressed probe-sets than under-expressed probe-

sets compared with MSC samples. On the other hand, Bone-Induction samples 

have 1376 (11%) more under-expressed probe-sets than over-expressed probe-

sets compared with MSC samples. 
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The following summary table shows the net difference between over-expressed 

and under-expressed probe-sets, calculated for more sample pairs. The entries 

with yellow background are those already brought above in detail. 

 

 MSC FatControl FatInduction BoneControl BoneInduction

ESC 1678 1286 1472 1331 916 

 27 MSC 717 -448 -1376 

  1128 -270 -1342 FatControl 

 270 863  -1411 BoneControl 

 

 

 

 

Table 5: Summary of expression difference between pairs of sample types.  Each 
entry represent the number of over-expressed probe-sets subtracted by under-expressed 
probe-sets in the sample type specified in the column header, compared to the sample type 
specified in the row header. 

To summarize this part, the various visualizations and calculations enabled us to 

determine the following: 

• ESCs express more over-expressed probe-sets compared with all 

mesenchymal sample types.  

• MSCs express more over-expressed probe-sets compared with Fat 

samples, but more under-expressed probe-sets compared with Bone 

samples.  
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Identification of genes changed upon induction  

Differentiation of MSC to Fat 

Zooming into the differentiation process by which mesenchymal stem cells 

develop into differentiated fat cells, we are interested in identifying genes that 

significantly change upon induction to fat. Since the MSC samples were taken 

from one donor, and both Fat-Control and Fat-Induction samples were taken 

from a second donor, comparing MSC samples directly with Fat-Induction 

samples may detect genes that differ due to differentiation induction, but will 

probably also yield genes that differ between the two sample types due to donor 

variance. Considering this, we have decided to look for genes that significantly 

change between Fat-Control and Fat-Induction (taken from the same donor), but 

that also exhibit no change, or a corresponding change between MSC and Fat-

Control. To pinpoint such genes we have first used t-test to find genes whose 

expression mean significantly vary between Fat-Control to Fat-Induction samples, 

and then used profile filtering to remove genes based on their fold change 

between MSC to Fat-Control. 

To this end, we have used the MSC, Fat-Control and Fat-Induction samples from 

the permissively preprocessed dataset of the first analysis above (preprocessing 

includes removal of ‘all-absent’ probe-sets, threshold of 1 and log2 

transformation). T-test was independently applied on each one of the 16,932 

probe-sets, testing for equality of means between Fat-Control (3 samples) and 

Fat-Induction (3 samples). FDR of 0.05 was then applied on the t-test p-values, 

yielding a list of 651 probe-sets, whose mean significantly differs between the 

Fat-Control samples and Fat-Induction samples.  

We then applied the expression profiling method using a resolution of N=10 on 

the 651 differentially expressed probe-sets. Expression profiles were calculated 

by mapping the replicate-averaged expression of each probe-set to one of 10 

bins.  Probe-set expression was then represented by a three component vector 

(MSC, Fat-Control, Fat-Induction) using 10 levels of expression for each 
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component. Bin intervals were defined by dividing dataset expression range (2nd 

percentile - 98th percentile) into 10 intervals. In this case, difference between 

two sequent expression bins is equivalent to a fold change of ~2 (2^1.07) as 

(11.7 [98th percentile value] – 1.0 [2nd percentile value] / 10 [bins] = 1.07.  260 

different profiles were identified among the 651 differentially expressed genes. 
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Figure 13. Top 15 populated expression profiles for the MSC, Fat-Control and Fat-
Induction samples. Each color ribbon represents a cluster of genes sharing the same 
expression profile (ribbon’s width represent the cluster size). The Y axis spans through the 
10 expression bins (profiling resolution is a user-defined parameter). For example, the 
light-gray ribbon on top (ribbon #259), represent the largest gene cluster. The 18 genes 
included in this cluster exhibit constant expression as they are mapped to the profile [10 
10 10]. 
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Expression matrix
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Figure 14. Expression profiling of the MSC, Fat-Control and Fat-Induction samples. (A) 
Reordered expression matrix based on sorted profiles. (B) Sorted expression profiles. (C) 
Distribution of gene expression values for the three sample types. Orange vertical lines 
represent the 2nd and 98th percentiles; this expression range is sliced to 10 bins defining the 
mapping of expression value to profiles of resolution of 10. 

In order to identify differentially expressed genes whose expression is up-

regulated upon induction to fat, we have filtered in genes whose profile 

difference series is (>0 >=0), which means keeping only profiles that are higher 

on Fat-Induction compared to Fat-Control, and that are equal or higher on Fat-

Control compared to Mesenchymal stem cells (we have allowed MSC-FatControl 

difference to be equal or higher than 0 in order to keep enough genes for the 

subsequence analysis). 88 such profiles (representing 210 probesets) passed the 

above criteria and they are displayed in figure 15. 
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Figure 15. The 88 filtered profiles that are increasing from MSC to Fat-Induction. 
These profiles encapsulates 210 genes that are up-regulated upon induction to fat. Since the 
profiling operation was applied on non-normalized data, several profiles may have the same 
relative expression pattern. Line widths represent the number of probe-sets in the profile. 

 

 

 

 

Figure 16. Expression matrices of the 210 probesets whose expression profile is increasing from MSC 
to Fat-Induction. (A) Un-standardized expression matrix, probe-sets are ordered according to the 88 
profiles. (B). Standardized expression matrix, probe-sets are ordered by SPC clustering. 
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Gene ontology enrichment was calculated for the set of 210 probe-sets; 

complete results (enriched GO terms and full gene list) are published online at 

http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_up/1_results.html. 

After standardization, the 210 probe-sets were clustered using the SPC 

algorithm. Produced clusters were also tested for gene ontology enrichment. GO 

enrichment test results and complete gene list are published online at 

http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_up/1_c_summary.html. 

Prominent significant GO terms and included genes: 

• Biological process – fatty acid biosynthesis 

Gene Symbol Gene Title 

SCD stearoyl-CoA desaturase (delta-9-desaturase) 

PTGS1 prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and 
cyclooxygenase) 

THEDC1 thioesterase domain containing 1 

ACACB acetyl-Coenzyme A carboxylase beta 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_up/20060504T014501_GO_PS_6633.html

 

• Biological process – skeletal development 

Gene Symbol Gene Title 

IGF2 insulin-like growth factor 2 (somatomedin A) 

FRZB frizzled-related protein 

PRELP proline/arginine-rich end leucine-rich repeat protein 

PTHR1 parathyroid hormone receptor 1 

DLX5 distal-less homeo box 5 

Table 6. Gene ontology enrichment test results. Top 5 significant gene ontology 
terms the 210 probesets over-expressed upon induction to fat. 
 

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_up/1_results.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_up/1_c_summary.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_up/20060504T014501_GO_PS_6633.html
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ALPL alkaline phosphatase, liver/bone/kidney 

NPR3 natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide 
receptor C) 

http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_up/20060504T015048_GO_PS_1501.html

• Molecular function – lipid transporter activity 

Gene Symbol Gene Title 

APOD apolipoprotein D 

APOE apolipoprotein E 

SAA1  serum amyloid A1  

APOL1 apolipoprotein L, 1 

SAA1 serum amyloid A1 
 http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_up/20060504T015202_GO_PS_5319.html

• Cellular component – extra-cellular matrix 

Gene Symbol Gene Title 

SPARCL1 SPARC-like 1 (mast9, hevin) 

NID1 nidogen 1 

MGP matrix Gla protein 

PRELP proline/arginine-rich end leucine-rich repeat protein 

COL11A1 collagen, type XI, alpha 1 

MMP19 matrix metallopeptidase 19 

LAMA2 laminin, alpha 2 (merosin, congenital muscular dystrophy) 

OMD osteomodulin 

CILP cartilage intermediate layer protein, nucleotide pyrophosphohydrolase 

TIMP4 TIMP metallopeptidase inhibitor 4 

DPT dermatopontin 

SPON1 spondin 1, extracellular matrix protein 

DPT dermatopontin 

MFAP5 microfibrillar associated protein 5 

ADAMTS2 ADAM metallopeptidase with thrombospondin type 1 motif, 2 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_up/20060504T015434_GO_PS_5578.html

 

 

 

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_up/20060504T015048_GO_PS_1501.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_up/20060504T015202_GO_PS_5319.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_up/20060504T015434_GO_PS_5578.html


 
 

66

Turning now to identifying genes that are down-regulated upon induction to 

fat, we have filtered in profiles whose expression Fat-Control is equal or lower 

compared to MSC, and lower on Fat-Induction compared to Fat-Control. These 

criteria yielded 37 profiles, representing 97 probe-sets, which we have used for 

gene ontology enrichment test.  
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Figure 17. The 37 filtered profiles that are decreading from MSC to Fat-Induction. 
These profiles encapsulates 97 genes that are down-regulated upon induction to fat.  

 

 

 

 

 

 

 

 

 

Figure 18. Expression matrices of the 97 probesets whose expression profile is decreasing from MSC to 
Fat-Induction. (A) Un-standardized expression matrix, probe-sets are ordered according to the 37 profiles. 
(B). Standardized expression matrix, probe-sets are ordered by SPC clustering. 
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Gene ontology enrichment was calculated for the set of 97 probesets; complete 

results (enriched GO terms and full gene list) are published online at 

http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_down/2_results.html. 

After standardization, the 97 probe-sets were clustered using the SPC algorithm. 

Produced clusters were also tested for gene ontology enrichment. GO enrichment 

test results and complete gene list are published online at 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_down/2_c_summary.html. 

Prominent significant GO terms and included genes: 

• Biological process – cell-cell signaling 

Gene Symbol Gene Title 

GJB1 gap junction protein, beta 1, 32kDa (connexin 32, Charcot-Marie-Tooth neuropathy, 
X-linked) 

IL6 interleukin 6 (interferon, beta 2) 

ADORA1 adenosine A1 receptor 

TNFAIP6 tumor necrosis factor, alpha-induced protein 6 

FADS1 fatty acid desaturase 1 

MDK midkine (neurite growth-promoting factor 2) 

CXCL12 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 

CCL2 chemokine (C-C motif) ligand 2 
 http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_down/20060504T022500_GO_PS_7267.html

• Biological process – regulation of cell growth 

Gene Symbol Gene Title 

QSCN6 quiescin Q6 

NET1 neuroepithelial cell transforming gene 1 

Table 7. Gene ontology enrichment test results. Top significant gene ontology 
terms for the 97 probesets under-expressed upon induction to fat. 

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_down/2_results.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_down/2_c_summary.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_down/20060504T022500_GO_PS_7267.html
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BRD8 bromodomain containing 8 

IGFBP3 insulin-like growth factor binding protein 3 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_down/20060504T023004_GO_PS_1558.html

• Molecular function – growth factor activity 

Gene Symbol Gene Title 

IL6 interleukin 6 (interferon, beta 2) 

NRG1 neuregulin 1 

MDK midkine (neurite growth-promoting factor 2) 

CXCL12 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 

HGF hepatocyte growth factor (hepapoietin A; scatter factor) 

PDGFC platelet derived growth factor C 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/fat_down/20060504T023413_GO_PS_8083.html

 

 

 

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_down/20060504T023004_GO_PS_1558.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/fat_down/20060504T023413_GO_PS_8083.html
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Differentiation of MSC to Bone 

Similarly to the analysis performed on the fat samples, we have looked for genes 

whose expression changes upon induction to bone by applying t-test (FDR of 

0.05) on the 16,932 dataset probe-sets, testing mean equality between the 

Bone-Control samples and the Bone-Induction samples; 734 probe-sets passed 

this test. We have then profiled the 734 differentially expressed probe-sets using 

the MSC, Bone-Control and Bone-Induction samples into 203 different profiles 

using a resolution of 10. Figure 19 displays the 15 largest profiles; note that 

several profiles have the same expression level on the MSC and Bone-Induction 

samples, but differ in their expression on Bone-Control (profiles #129, #158, 

#104) – this is exactly the pattern which we are trying to compensate for 

(considering donor-variance) by applying the mentioned filter on the profiles. 
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Figure 19. Top 15 populated expression profiles for the MSC, Bone-Control and Bone-
Induction samples. Each color ribbon represents a cluster of genes sharing the same expression 
profile (ribbon’s width represent the cluster size). The Y axis spans through the 10 expression bins 
(profiling resolution is a user-defined parameter).  
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Starting with genes whose expression rises upon induction to bone, 49 profiles 

(representing 195 probe-sets) exhibited higher expression on Bone-Induction 

compared with Bone-Control, and exhibited higher or equal expression on Bone-

Control compared with MSC. 
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Figure 20. The 49 filtered profiles that are increasing from MSC to Bone-Induction. 
These profiles encapsulates 195 genes that are up-regulated upon induction to fat. Since the 
profiling operation was applied on non-normalized data, several profiles may have the same 
relative expression pattern. Line widths represent the number of probe-sets in the profile. 
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Figure 21. Expression matrices of the 195 probesets whose expression profile is increasing from MSC 
to Bone-Induction. (A) Un-standardized expression matrix, probe-sets are ordered according to the 49 
profiles. (B). Standardized expression matrix, probe-sets are ordered by SPC clustering. 
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Table 8. Gene ontology enrichment test results. Top significant gene ontology 
terms for the 195 probesets over-expressed upon induction to bone. 

GO PS Total GO PS on ID pValue in Percentage GO ID GO Term chip cluster 

1 6.21e-004 4 22 18% 8652 amino acid biosynthesis 

2 9.94e-004 2 3 67% 43405 regulation of MAPK activity 

3 1.96e-003 2 4 50% 45947 negative regulation of translational 
initiation 

4 3.23e-003 2 5 40% 6534 cysteine metabolism 

5 7.25e-003 3 22 14% 6417 regulation of protein biosynthesis 

6 8.58e-003 12 297 4% 6915 apoptosis 

7 1.27e-002 6 105 6% 8284 positive regulation of cell proliferation 

 

Gene ontology enrichment was calculated for the set of 195 probesets; Complete 

results (enriched GO terms and full gene list) are published online at 

http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_up/3_results.html. 

After standardization, the 195 probe-sets were clustered using the SPC 

algorithm. Produced clusters were also tested for gene ontology enrichment. GO 

enrichment test results and complete gene list are published online at 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_up/3_c_summary.html. 

 

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_up/3_results.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_up/3_c_summary.html
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Prominent significant GO terms and included genes: 

• Biological process – amino acid biosynthesis 

Gene Symbol Gene Title 

BCAT2 branched chain aminotransferase 2, mitochondrial 

ASNS asparagine synthetase 

CBS cystathionine-beta-synthase 

PSAT1 phosphoserine aminotransferase 1 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_up/20060504T033433_GO_PS_8652.html

• Biological process – apoptosis (6th on the biological process significant terms with a p-value of 8e-003) 

Gene 
Symbol Gene Title 

SQSTM1 sequestosome 1 

LTBR lymphotoxin beta receptor (TNFR superfamily, member 3) 

GULP1 GULP, engulfment adaptor PTB domain containing 1 

GADD45B growth arrest and DNA-damage-inducible, beta 

TNFRSF10B tumor necrosis factor receptor superfamily, member 10b 

GADD45B growth arrest and DNA-damage-inducible, beta 

CFLAR CASP8 and FADD-like apoptosis regulator 

FOXO3A forkhead box O3A 

CFLAR CASP8 and FADD-like apoptosis regulator 

BCL2L1 BCL2-like 1 

TRIB3 tribbles homolog 3 (Drosophila) 

HIPK2 homeodomain interacting protein kinase 2 

CIDEC cell death-inducing DFFA-like effector c 

ELMO2 engulfment and cell motility 2 (ced-12 homolog, C. elegans) 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_up/20060504T033932_GO_PS_6915.html

Marked in yellow are ANTI-APOPTOSIS genes. 

• Biological process – cell differentiation 

Gene Symbol Gene Title 

SQSTM1 sequestosome 1 

IFRD1 interferon-related developmental regulator 1 

EFNB2 ephrin-B2 

FRZB frizzled-related protein 

ANGPT1 angiopoietin 1 

GADD45B growth arrest and DNA-damage-inducible, beta 

GPM6B glycoprotein M6B 

CSF1 colony stimulating factor 1 (macrophage) 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_up/20060510T115554_GO_PS_30154.html

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_up/20060504T033433_GO_PS_8652.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_up/20060504T033932_GO_PS_6915.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_up/20060510T115554_GO_PS_30154.html
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Turning now to identifying genes that are down-regulated upon induction to 

bone, we have filtered in profiles whose expression Bone-Control is equal or 

lower compared to MSC, and lower on Bone-Induction compared to Bone-

Control. These criteria yielded 36 profiles, representing 107 probe-sets, which we 

have used for gene ontology enrichment test.  
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Figure 22. The 36 filtered profiles that are decreading from MSC to Bone-Induction. 
These profiles encapsulates 107 genes that are down-regulated upon induction to fat.  

 

 

 

 

Figure 23. Expression matrices of the 107 probesets whose expression profile is decreasing from MSC 
to Bone-Induction. (A) Un-standardized expression matrix, probe-sets are ordered according to the 36 
profiles. (B). Standardized expression matrix, probe-sets are ordered by SPC clustering. 
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Gene ontology enrichment was calculated for the set of 107 probesets; Complete 

results (enriched GO terms and full gene list) are published online at 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_down/4_results.html. 

After standardization, the 107 probe-sets were clustered using the SPC 

algorithm. Produced clusters were also tested for gene ontology enrichment. GO 

enrichment test results and complete gene list are published online at 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_down/4_c_summary.html. 

 

Prominent significant GO terms and included genes: 

• Biological process – protein metabolism 

Gene Symbol Gene Title 

PLOD1 procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 

LEPREL2 leprecan-like 2 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_down/20060504T035837_GO_PS_19538.html

• Biological process – cell cycle arrest 

Gene 
Symbol Gene Title 

KHDRBS1 KH domain containing, RNA binding, signal transduction associated 1 /// KH 
domain containing, RNA binding, signal transduction associated 1 

Table 9. Gene ontology enrichment test results. Top significant gene ontology 
terms for the 107 probesets under-expressed upon induction to bone. 

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_down/4_results.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_down/4_c_summary.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_down/20060504T035837_GO_PS_19538.html
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CDKN2C cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) 

MACF1 microtubule-actin crosslinking factor 1 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_down/20060504T035559_GO_PS_7050.html

• Cellular component – collagen 

Gene Symbol Gene Title 

COL4A2 collagen, type IV, alpha 2 

COL4A1 collagen, type IV, alpha 1 

COL5A1 collagen, type V, alpha 1 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_down/20060504T040355_GO_PS_5581.html

• Cellular component - extracellular matrix (sensu Metazoa) 

Gene Symbol Gene Title 

LAMA4 laminin, alpha 4 

CSPG2 chondroitin sulfate proteoglycan 2 (versican) 

CHI3L1 chitinase 3-like 1 (cartilage glycoprotein-39) 

COL4A2 collagen, type IV, alpha 2 

COL4A1 collagen, type IV, alpha 1 

COL5A1 collagen, type V, alpha 1 

CSPG2 chondroitin sulfate proteoglycan 2 (versican) 
http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI1/bone_down/20060504T040603_GO_PS_5578.html

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_down/20060504T035559_GO_PS_7050.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_down/20060504T040355_GO_PS_5581.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI1/bone_down/20060504T040603_GO_PS_5578.html
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Clustering analysis  

Clustering Genes over Embryonic and Mesenchymal Samples 

We have used the CTWC (Coupled Two-Way Clustering) [13] algorithm to cluster 

the 7,000 most variable probe-sets over all six sample types. Clustering was used 

to identify main data signals by putting together genes with similar expression 

patterns. Dataset preprocessing included setting a threshold of 20, log2 

transformation and row standardization. The clustering operation was applied on 

the standardized dataset using default CTWC parameters, and yielded 43 stable 

clusters.  Looking at CTWC output (Figure 24), it is apparent that when 

clustering the genes, the clustering algorithm first partitioned the genes into two 

large groups based on their expression on the three samples of the embryonic 

stem cells, and then further partitioned the data within these two large clusters, 

according to the expression patterns of the mesenchymal samples. 

We have then tested each cluster for gene ontology enrichment in three classes 

of GO terms: Biological process, Molecular function and Cellular component. The 

calculated p-values express enrichment significance based on the hyper-

geometric function. Enrichment tests were conducted on the gene level (rather 

than on the probe-set level). A GO term was called significant for a given cluster 

if it appears on at least two cluster genes that belong to the cluster and if its 

associated p-value was smaller than 0.01. 

  

Full results including complete gene lists and GO enrichment analysis are 

available online at  

http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI2_ABCDEF7000/20060506T210124_CTWC_summary.html

 

A similar analysis was conducted on the five mesenchymal sample types without 

the ESC samples. Complete analysis results are available online at 

http://bioinfo2.weizmann.ac.il/~netanely/Thesis/SI3_ABCDE7000/20060507T225315_CTWC_summary.html

http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI2_ABCDEF7000/20060506T210124_CTWC_summary.html
http://bioinfo2.weizmann.ac.il/%7Enetanely/Thesis/SI3_ABCDE7000/20060507T225315_CTWC_summary.html
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Figure 24. CTWC clustering output. The expression matrix was reordered; rows were 
reordered according to gene clustering and columns were reordered according to sample 
clustering. The dendrogram on the left represents gene clustering. The dendrogram on top 
represent sample clustering.  

 

 

Selected clusters of interest are displayed below; each table row represents one 

cluster. The first column represent the cluster ID, the second column represent 

the cluster size. Approximated cluster profile based on dividing the normalized 

averaged cluster expression value to 10 levels is displayed on the third column. 

The profile is used as a concise way to display cluster expression pattern (It is 

only used for display; the clusters were determined by CTWC). The last three 

columns represent enrichment p-values for the most significant GO terms of the 

three GO classes: Biological process, Molecular function and Cellular component. 
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• Clusters over-expressed in ESCs are enriched with ‘Biological process’ GO 

terms related to mitosis, cell-cycle, DNA replication and mRNA processing. In 

the ‘Molecular function’ class, they are enriched mainly in nucleic acid binding 

terms, and in the ‘Cellular component’ class they are enriched in the nucleus. 

Gene expression matrix for cluster 24 (384), CTWC clustering
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Gene expression matrix for cluster 25 (413), CTWC clustering
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Gene expression matrix for cluster 26 (895), CTWC clustering
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• Similarly, clusters exhibiting over-expression in both ESC and MSC samples, 

were found to be enriched with mitosis, cell-cycle and spindle-organization. 

Gene expression matrix for cluster 22 (114), CTWC clustering
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 Gene expression matrix for cluster 21 (79), CTWC clustering
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• Exhibiting an opposite profile, a gene cluster under-expressed in ESC was 

found to be enriched with cell-matrix adhesion. The cluster includes probe-

sets whose expression is elevated along the differentiation pathway. 

Gene expression matrix for cluster 36 (556), CTWC clustering
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The following are among the cell-matrix adhesion genes included in the cluster: 

Gene Gene Title Pathway Symbol 

Integrin-mediated_cell_adhesion ITGB5 integrin, beta 5 

--- NID1 nidogen 1 

--- PKD1 polycystic kidney disease 1 (autosomal dominant) 

--- SGCE sarcoglycan, epsilon 

--- TNXB tenascin XB 

--- ECM2 extracellular matrix protein 2, female organ and adipocyte specific 

--- C9orf127 chromosome 9 open reading frame 127 

Integrin-mediated_cell_adhesion ITGA7 integrin, alpha 7 

--- SNED1 sushi, nidogen and EGF-like domains 1 

Integrin-mediated_cell_adhesion ITGA8 integrin, alpha 8 

--- ADAM15 ADAM metallopeptidase domain 15 (metargidin) 
 

• Probe-sets exclusively over-expressed in MSC were found to be enriched with 

immune related GO terms such as immune-response, inflammatory response 

and chemotaxis. Chemokine and cytokine activity are among the enriched GO 

terms in the ‘Molecular function’ class. 

Gene expression matrix for cluster 6 (79), CTWC clustering
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• Probe-sets exclusively over-expressed in differentiated bone samples (Bone-

Induction) were found to be enriched with activation of NF-kappaB-inducing 

kinase, mesoderm development and apoptosis.  

Gene expression matrix for cluster 8 (80), CTWC clustering
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Apoptosis related genes found in this cluster: 

Gene Gene Title Pathway Symbol 

protein phosphatase 1, regulatory 
--- PPP1R15A (inhibitor) subunit 15A 

mitogen-activated protein kinase 
--- MAP3K5 kinase kinase 5 
Apoptosis // GenMAPP /// Apoptosis_GenMAPP // GenMAPP /// BCL2L1 BCL2-like 1 Apoptosis_KEGG // GenMAPP 

tumor necrosis factor receptor 
Apoptosis // GenMAPP TNFRSF10B superfamily, member 10b 
Phenylalanine, tyrosine and tryptophan biosynthesis // KEGG /// YARS tyrosyl-tRNA synthetase Aminoacyl-tRNA synthetases // KEGG 

Homeodomain interacting protein 
--- HIPK2 kinase 2 

 

• The following gene cluster includes probe-sets that are highly expressed only 

in the two differentiated samples type (Bone-Induction and Fat-Induction).  

The genes were found to be enriched with actin filament-based movement. 

Gene expression matrix for cluster 29 (124), CTWC clustering
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Summary and DDiissccuussssiioonn  

Differentiation is a very important biological process by which general progenitor 

cells give rise to specialized mature cells by acquiring specific functions. Though 

most cells in an adult multi-cellular organism contain the entire genome, different 

mature cells express different sub-sets of the cell genes in varying levels of 

expression.  As cells differentiate, their transcriptional program changes, different 

pathways of differentiation include convergence to specific mature transcriptional 

programs. Little is know about the genetic mechanisms that govern the ability of 

both embryonic and adult stem cells to divide indefinitely in culture and yet 

retain their ability to give rise to many different types of mature cell through 

differentiation [45].  

In this work, we have studied gene expression profiles underlying the 

differentiation process of embryonic and mesenchymal stem cells into 

differentiated bone and fat cells. Mesenchymal stem cells were derived from 

donors undergoing orthopedic surgery and were induced in-vitro to differentiate 

into mature bone and fat cells. The expression of 14,500 genes was measured 

using DNA microarrays on 6 sample types, representing different stages along 

the differentiation pathway. Our dataset included the following sample types: 

Embryonic stem cells, mesenchymal stem cells, Bone-Control, Bone-Induction, 

Fat-Control and Fat-Induction. The data was analyzed using various 

computational methods including statistical tests (t-test, rank-sum, FDR, 

ANOVA), clustering algorithms (hierarchical clustering and SPC) and expression 

profiling. An additional pivotal component of our analysis used the gene ontology 

(GO) annotation system to test for over-representation of GO terms in gene lists 

produced by the mentioned statistical and clustering methods. 

The most prominent signal identified in the data by various methods, relates to 

the distinction of the embryonic stem cell samples compared with all other 

mesenchymal stem cell and differentiated samples. ESC samples were found to 

both over-express and under-express hundreds of probe-sets compared with the 
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mesenchymal samples. This observation was detected by several analysis 

methods including global dataset expression histograms, clustering, profiling and 

comparative analysis of differentially expressed genes. In the latter, out of 

12,461 differentially expressed genes identified by ANOVA over the 6 sample 

types, there were 1,678 more over-expressed than under-expressed probe-sets 

when comparing embryonic stem cells to mesenchymal stem cells. ESCs also 

over-expressed 916 - 1286 more probe-sets compared with the other 

mesenchymal samples. This observation is consistent with previous observations 

made by others [23, 40] and with the “Just In Case” theory (by which stem cells 

promiscuously express genes which later shut down upon differentiation). This 

transcriptional program may be attributed to evidence indicating that  much of 

the chromatin of embryonic and adult stem cells is in an open, accessible state, 

which might allow the promiscuous expression of lineage-specific genes [23]. 

 Interestingly, MSC samples were not found to exhibit marked over-expression of 

genes compared with both differentiated bone and fat samples (MSC express 717 

more over-expressed probe-sets compared to Fat-Induction and 1376 less over-

expressed probe-sets compared to Bone-Induction). In fact, several analysis 

methods revealed that the differentiated bone samples (Bone-Induction) highly 

express many more genes than the mesenchymal stem cells. This observation 

may be ascribed to the genetic variance of the three donors from which different 

mesenchymal samples were derived, and requires further investigation. 

In order to identify genes whose expression changes significantly upon induction 

to bone or fat, we have used t-test to compare the Control and Induction 

samples of bone and fat. We then filtered out genes whose expression profile 

from MSC to Induction is non-monotonic, in order to compensate for the donor 

variability problem. Gene annotation enrichment tests based on Gene ontology 

terms were conducted (separately) on the resulting genes. 

As expected, the 210 genes up-regulated in differentiated fat included fat 

metabolism genes (ACACB, SCD, PTGS1) and lipid transporter activity genes 
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(APOD, APOE, APOL1). Several of the identified up-regulated genes have been 

previously linked to fat-differentiation by others [46]: PPAR-γ (which when 

activated, promotes adipogenesis and inhibits osteogenesis) [46, 47], Collagen 

type XI (COL11A1), alcohol dehydrogenase IB (ADH1B), IGF2, IMPA2 and APOE. 

A significant number of genes from that group are associated with the extra-

cellular matrix.  

However, the 195 genes up-regulated upon differentiation to bone were not 

found to be enriched with GO terms that are directly related to osteogenesis.  

‘Biological Process’ GO terms such as Apoptosis (12 genes, including anti-

apoptotic genes like BCL2L1, CFLAR and FOXO1A) and cell-differentiation (8 

genes, including CSF1, GADD45B, FRZB) were identified as significantly enriched. 

Enrichment with apoptosis genes may be explained by the natural role of 

apoptosis in the building of bone; in-vivo, the bone undergoes continuous 

remodeling in which osteoclasts resorb aged or damaged bone, leaving space for 

osteoblasts to make new bone [48]. An alternative explanation may rely in the 

culturing conditions that were used to grown the differentiated bone samples. 

Culturing of bone induction samples started at low density and the cells were 

cultured for several days until they filled the plate (unlike induction of fat 

samples, which started at full plate). We hypothesize that the fact that the 

induced bone cells reached spatial limit few days before RNA extraction may 

explain the over representation of apoptosis related GO terms in the list of 

differentially expressed genes. Further analysis is required to explain this 

observation.  

The 107 genes down-regulated in differentiated bone compared to MSC and 

Bone-Control were found to be enriched with collagen (types IV and V).  

Clustering analysis conducted on the 7000 most variable dataset probe-sets 

using the SPC algorithm yielded 43 stable clusters. Again, the most prominent 

signal was linked to the embryonic stem cell samples. Clusters containing genes 

that are over expressed in ESCs, exhibited a high statistically significant 
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enrichment with GO terms such as cell-cycle, mitosis, DNA-replication, cell-

division and DNA-repair (SPC clusters 24, 25 and 26). A significant enrichment 

with GO terms like mitosis, cell-cycle was also found in clusters whose genes are 

over-expressed in both ESCs and MSCs (clusters 21 and 22). This observation 

demonstrates that unlike differentiated mature cells, stem cells are still actively 

cycling through the cell cycle and have a proliferative capacity. The enrichment 

of ESCs with GO terms such as ‘DNA-repair’ and ‘response to DNA damage 

stimulus’ are consistent with recent studies emphasizing the importance of DNA 

repair in stem cells. In order to maintain the pool size of the long-lived stem 

cells, stem cells cannot promiscuously use apoptosis (like the more disposable 

mature cells) to control DNA damage, and thus DNA repair mechanisms are of an 

extreme importance in stem cells [49]. 

The genes of cluster 24 (containing 384 probe-sets) are a good example for 

genes whose expression decreases along the differentiation pathway. These 

genes exhibit a very high relative expression on ESCs, high but decreased 

expression on MSCs and low expression on all bone and fat samples. This cluster 

includes 43 ‘cell-cycle’ genes, 24 ‘DNA-repair’ and 20 ‘mRNA processing’ genes 

(groups may overlap). 

129 genes over-expressed only in both differentiated samples (Bone-Inducion 

and Fat-Induction) are included in cluster 29: BMP6 (bone morphogenetic protein 

6), OMD (osteomodulin), ADH1B (alcohol dehydrogenase IB), PPARG 

(peroxisome proliferative activated receptor, gamma), FRZB (frizzled-related 

protein) and others. These genes may be involved in pathway shared by the two 

differentiation pathways, as many of them monotonically increases along the 

differentiation pathway. 

Regarding enrichment of terms from the ‘Cellular Component’  GO category, it is 

worth mentioning that almost all clusters exhibiting over-expression in ESC 

samples are associated with the nucleus, whereas clusters over-expressed in 

bone or fat samples are associated with the extra-cellular matrix.  
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The analysis conducted in this work identified and classified many genes whose 

expression changes along the pathway of mesenchymal differentiation. Gene 

ontology was used to organize and interpret the relevance of identified genes to 

the biological processes underlying differentiation to bone and to fat. The 

analysis has focused on the level of gene groups due to the high complexity and 

size of the data, and additional investigation is needed at the gene level. 

Donor variance and differences in sample culturing challenged our ability to 

detect differentially expressed genes whose expression changes due to the actual 

investigated process of differentiation. Future microarray experiments used to 

investigate similar processes may benefit greatly from reducing the background 

noise, perhaps by deriving investigates samples from mice of the same strain.  





PPaarrtt  33 

LLeeuukkeemmiicc  OOvveerr  EExxpprreessssiioonn  ooff  TTiissssuuee  

SSppeecciiffiicc  GGeenneess  

CCoollllaabboorraattiioonn  wwiitthh  PPrrooff..  LLeeoo  SSaacchhss  aanndd  DDrr..  JJoosseepphh  LLootteemm  

BBiioollooggiiccaall  BBaacckkggrroouunndd  

GGeenneerraall  IInnttrroodduuccttiioonn  ttoo  CCaanncceerr  

Cancer develops through a multi-step process by which normal cells transform 

into malignant cells due to genetic and epigenetic changes. Each such decisive 

step provides the transformed cell with a certain survival and growth advantage 

enabling it to over-grow its surrounding normal cells, eventually spreading 

uncontrollably through the body – severely hampering its normal physiology. 

Hanahan at al. enumerated four traits that 

must be acquired by transformed cells during 

tumorigenesis:  self-sufficiency in growth 

signals, insensitivity to growth-inhibitory 

(antigrowth) signals, evasion of programmed 

cell death (apoptosis) and limitless replicative 

potential. These traits are essential for the 

central characteristic of cancer: uncontrolled 

proliferation. Two additional hallmarks are 

needed to turn the cancer into a killer of the 

organism: sustained angiogenesis, and tissue 

invasion and metastasis [50]. 
Figure 1. Cancer acquired capabilities. 
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Mutations, deletions and chromosomal translocations are genetic mechanisms 

altering normal gene function, occasionally promoting tumorigenesis by giving 

rise to oncogenes (dominant gain-of-function genes promoting the development 

of cancer) and by disrupting the anti-malignant function of  tumor suppressor 

genes (recessive loss-of-function genes). Epigenetic changes like DNA 

methylation and histone modification also play a major role in cancer 

development through transcription silencing of tumor suppressor genes and/or 

activation of oncogenes [51] . 

The genetic and epigenetic alterations that lead to cancer disrupt the 

transcriptional program of transformed cells, thus affecting proliferation, 

differentiation and apoptosis, which are pivotal in determining cell population 

development and net growth. During differentiation, general primitive progenitor 

cells become committed to a specific function. The progenitors’ proliferative 

potential is significantly reduced during differentiation because differentiation 

implies a definite withdrawal from the cell-cycle. When such a cell becomes 

malignant, deranged cellular regulation may cause differentiation block. When 

the cell’s apoptosis mechanism is also impaired and therefore cannot avoid the 

propagation of damaged DNA to progeny cells, the transformed cell may keep 

proliferating in its undifferentiated state [52]. Differentiation arrest is therefore 

an important component in the pathogenesis of many cancers; here we focus on 

Acute Myeloid Leukemia to demonstrate the involvement of differentiation arrest 

in tumorigenesis. 

Arrest of Differentiation and Tumorigenesis – AML as an Example 

The term leukemia refers to cancers of the white blood cells. Leukemia is a very 

heterogeneous disease, composed of many subtypes. In general, leukemias are 

classified into acute (rapidly developing) and chronic (slowly developing) 

forms. Leukemia is also divided by type of white blood cell that is affected: ALL 

(Acute Lymphoid Leukemia) and AML (Acute Myeloid Leukemia). ALL mainly 

affects children and young adults whereas AML mainly affects adults with 
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increasing frequency with age. AML is more difficult to treat in comparison to 

ALL; overall five years survival rates for AML remain below 60% [53] . 

In AML, the malignant myeloid cells, called myeloblasts, fail to mature into 

different types of white blood cells. The myeloblasts proliferate rapidly, 

accumulate in the bone marrow, depriving the healthy blood cells of resources, 

and eventually spread into the bloodstream and other vital organs. The lack of 

the various types of healthy blood cells results in symptoms such as anemia,  

abnormal bleeding and infections; lack of functioning blood cells leads to death 

[54].  

AML is an excellent model for studying the relationship between differentiation 

regulation and cancer progression for several reasons. First – technical: 

malignant leukemic cells in the blood stream are easily accessible and there are 

many available isolation protocols to obtain relatively pure hematopoietic sub-

populations of cells. Second, the blood system in general and hematopoietic 

differentiation in particular, is among the most extensively studied and best 

understood systems. In recent years, myeloid lineage-specific transcription 

factors were identified, and their specific role in differentiation were established. 

These transcription factors regulate differentiation by several mechanisms such 

as activation of lineage specific genes, inhibition of alternative pathways, 

inhibition of proliferation, and induction of apoptosis. Specific cell fate 

commitment in the hematopoietic system is determined by alternative expression 

of specific combinations of such transcription factors [55]. 
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Figure 2: Proliferation versus differentiation in hematopoietic differentiation.  The 

commitment process is characterized by massive cell proliferation in the early phase followed 

by successive restriction to distinct cell lineages and to cell differentiation.  

Functional inactivation of the differentiation inducing transcription factors 

For example, AML subtype M3 (APL - Acute promyelocytic leukemia) is 

mentioned above may lead to differentiation block, in which hematopoietic 

precursors remain in their undifferentiated state, while retaining proliferative 

capacity. Normally, as differentiation progresses and cells mature, their 

proliferative potential is reduced and eventually even lost altogether. The stage 

at which differentiation is arrested depends on the pathway that was disrupted. 

Moreover, many AML subtypes are now associated with specific genetic lesions – 

mutations or chromosomal translocations. These genetic lesions may enable 

genetic classification of AML sub-types that would replace the present phenotype 

based French-American-British (FAB) classification of AML [56].  

associated in most cases with a translocation between chromosomes 15 and 17. 

This translocation may give rise to a fusion protein called PML-RARa, which is the 

result of fusing the promyelocytic leukemia (PML) gene on chromosome 15, and 

the retinoic acid receptor alpha (RARα) gene on chromosome 17. The PML gene 

http://www.medterms.com/script/main/art.asp?ArticleKey=11210


 
 

91

encodes a growth suppressing transcription factor, and the RARα gene regulates 

myeloid differentiation. The chimeric fusion protein arrests the myeloid cell 

maturation at a specific differentiation step - the promyelocytic stage, and this 

leads to the increased proliferation of promyelocytes [57].  

Differentiation Therapy 

Treatment of several cancer types, such as APL (AML Subtype M3) can now 

s like those conducted by L. 

A second example for using differentiation therapy methods is found in 

benefit from an emerging therapeutic field called 'differentiation therapy'. The 

underlying strategy is to reverse (using chemical means) the cell's transition to 

the malignant state by releasing the differentiation block. Most APL patients are 

now successfully treated with all-trans-retinoic acid (ATRA) which activates the 

retinoid receptor RAR, causes degradation of the oncogenic PML-RARα fusion 

protein and re-enables differentiation of the malignant promyelocytes', thus 

decreasing their proliferative potential. With the introduction of ATRA, APL has 

now become the most curable AML subtype [58]. 

Such clinical breakthroughs are based on studie

Sachs et al. [59] where he has investigated whether malignant cells can revert 

back to cells that again show normal growth control. L. Sachs and J. Lotem [60] 

have used myeloid leukemic cells as a model system in order to determine 

whether malignancy can be suppressed by inducing differentiation with normal 

cytokines. They found that several myeloid leukemic cells could be induced both 

in vitro and in vivo, by adding different cytokines such as IL-6, IL-1, GM-CSF, G-

CSF and IL-3, and various other compounds including retinoic acid, to 

differentiate to non-dividing mature granulocytes and/or macrophages.  

hepatocellular carcinoma (liver cancer). It is a common solid tumor, considered 

very hard to treat effectively. MYC (myelocytomatosis viral oncogene homolog) is 

an oncogene that was shown to be over expressed in many types of cancer. 

Shachaf et al. have demonstrated that inactivation of the MYC gene alone 
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suffices to induce regression of invasive liver cancers in mice. Within 4 days of 

MYC inactivation, the liver tumors differentiated into normal liver cells 

accompanied by apoptosis [61] [62].  

Spira et al. [63] describe the general process by which 'differentiation therapy' is 

potential of using 

t adult stem cells may play a key role in cancer.  Adult 

believed to work: "Although there are probably mechanistic differences in how 

the various agents lead to differentiation, the overall process itself is likely to 

function by allowing malignant tumor cells to revert to a more benign form, in 

which their replication rates are lower compared with malignant forms, leading to 

a decreased tumor burden. They might also have a decreased tendency for 

distant metastatic spread, and the process may also restore traditional apoptotic 

pathways, all of which could improve a patient’s prognosis." 

These and other examples demonstrate the promising 

'differentiation therapy' to treat different types of cancer. By identifying and 

bypassing or correcting a specific malfunctioning element within the 

differentiation process, it may allow us to restore the non-malignant phenotype.  

The prospects of using 'differentiation therapy' agents to cure cancer, especially 

when compared to current treatment methods, are great; examining the clinically 

tested example of using ARTA to treat APL leukemia reveals that it is by far more 

efficient than conventional treatments, cheaper, has less side effects and does 

not damage healthy tissues due to its high biological specificity [64]. 

Cancer and Stem Cells  

Recent studies suggest tha

stem cells are multipotent cells responsible for tissue renewal and repair of aged 

or damaged tissue. They are capable of self-renewal, which enables them to 

maintain their cell population size; they are also capable of differentiating into 

specific mature cells when needed, to regenerate the tissue they reside in. Adult 

stem cells divide asymmetrically - one daughter cell is a new stem cell and the 

second is a progenitor cell, which differentiates and proliferates into mature cells. 
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Adult stem cells were identified in many tissues, including skin, gut, brain, liver 

and mesenchyme (the latter stands at the center of the first part of this essay).  

Cancer cells and stem cells share several common properties. In general, both 

fully differentiated somatic cells are relatively short-lived, it is less likely 

are undifferentiated; they exhibit a general phenotype that is not committed to a 

specific function. Both may also exhibit elevated proliferative capacity.  It is 

unsurprising therefore that the initial insight of researchers examining cancer 

tissue samples under a microscope, already in the mid 19th century, was to relate 

cancer cells to embryonic cells due to their histological resemblance [65]. 

Furthermore, it has been recently proven that tumors are heterogeneous, 

composed of both rare ‘tumor initiating cells’ and abundant ‘non-tumor initiating 

cells’. The ‘tumor initiating cells’ were found to have self-renewal and 

proliferation ability, express typical markers of stem cells and are also resistant to 

drugs (which may explain why it is so difficult to eradicate tumors). ‘Tumor 

initiating cells’ were identified in leukemia and in various solid tumors including 

breast cancer. They were therefore named – ‘Cancer stem cells’ [66]. In addition, 

a number of factors that govern the fate of normal adult stem cells also play a 

role in malignant cell transformation, such as Wnt, Oct-4, Bmi-1 and Evi1 [67, 

68] . 

Since 

that they would have the chance to accumulate the number of genetic and 

epigenetic changes needed to set off tumorigenesis. It is more likely that a long-

lived cell, already capable of self-renewal (such as an adult stem cell), will be the 

target of such changes [69]. Therefore, according to the ‘Cancer stem cell’ 

theory, cancer stem cells originate from normal stem cell and/or from progenitor 

cells by mutation and epigenetic changes. Further mutations of these cells lead 

to formation of heterogeneous tumor containing different tumor cells. When such 

a tumor is treated by chemotherapy, most of the cells are killed, but cancer stem 

cells survive because of their higher resistance. These stem cells can initiate 
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malignant tumor growth sometimes after long period of time and can also be the 

source of metastasis spread of tumor cells [66].  

According to an alternative (or complementary) explanation [70], cancer stem 

cells originate from mature somatic cells, which by mutation underwent 

dedifferentiation or reprogramming and regained stem-like properties, mainly 

self-renewal and elevated proliferation rate. 

To summarize, the ‘cancer stem cell’ theory argues that cancer is simply a 

process if uncontrolled proliferation of abnormal adult stem cells that are unable 

to enter the pathway of terminal differentiation. According to this hypothesis, 

differentiation therapy is aimed at inducing cancer cells back into the natural 

pathway of terminal differentiation and eventual senescence. 
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Figure 3. Origin of cancer stem cell and implementation to tumor therapy. 

 

Adult Stem Cell Plasticity and the Prospects of ‘Trans-Differentiation 

Therapy’ 

As described above, adult stem cells were identified in various body tissues and 

they are believed to be a source for specific mature cells needed to replenish the 

tissue within they reside, in response to injury or as part of normal physiology. 

Taking the hematopoietic stem cell as an example, it is a multi-potent adult stem 

cell, capable of giving rise to the many different mature cell types of the 

hematopoietic lineage. However, as has been recently demonstrated [26, 71], 
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under certain conditions, the progeny cells of adult stem cells are not restricted 

only to their own lineage, and can give rise to differentiated cells of a different 

lineage, a process called trans-differentiation. For example, bone marrow derived 

stem cells were shown to have the potential of differentiating to mature cells of 

the heart, liver, kidney, lungs, GI tract, skin, bone, muscle, cartilage, fat, 

endothelium and brain. A subpopulation of cells in the brain can differentiate into 

all of the major cell types in the brain and also into hematopoietic and skeletal 

muscle cells [72]. 

Considering the remarkable resemblance and shared properties of adult stem 

cells and cancer cells and based on the ‘cancer stem cell’ theory, we raise a 

hypothesis by which cancer may be treated by inducing it to trans-differentiate 

into mature cells other than its tissue of origin, and thus positive effects, similar 

to those gained by using ‘differentiation therapy’ may be achieved. Since global 

gene expression disturbance is associated with many cancers, certain trans-

differentiation paths may be easier to pursue in a given malignant cell compared 

with the original path of differentiation that is blocked by possibly many impaired 

cell components. ‘Trans-differentiation therapy’ may therefore offer a way to by-

pass impaired differentiation pathway by introducing alternative differentiation 

paths to mature cells of other lineages.  

But which mature tissue is the most likely trans-differentiation target for a given 

cancer? In order to evaluate the possibility of trans-differentiating a given 

malignant cell to different types of mature tissues, we have decided to examine 

gene expression profiles of cancer cells and look for expression of genes that are 

specific to mature tissues different from the tissue from which the cancer 

originated. Identification of such genes may tell us about the linkage between 

the examined cancer and the normal mature tissue. Cancer cells that express 

genes specific to a different normal tissue may have extensive transcriptional 

accessibility to genes of that tissue, and therefore stand a higher chance of being 

successfully re-differentiated towards this mature tissue. 
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TThhee  QQuueessttiioonnss  PPoosseedd  

AAss  discussed above, genetic and epigenetic changes contribute to the 

development of cancer and lead to abnormalities in regulation of cell viability, 

multiplication and differentiation. Clearly, such changes in DNA and chromatin 

structure are reflected in aberrant gene expression, and indeed, analysis of 

global gene expression detected both up-regulation and down-regulation of 

many genes in different types of cancer, when compared to their respective 

normal tissues of origin [73-78]. We pose here several questions regarding the 

genes whose expression has been significantly modified by the malignant 

transformation. First - are the up-regulated genes in cancer cells limited only to 

those genes that are normally preferentially expressed in the same tissues from 

which the cancer originated? We have previously shown [79] that cells of a 

mouse myeloid leukemia cell line highly express various genes that are normally 

preferentially expressed in different non-hematopoietic tissues including 

neuronal, liver, testis and muscle. We have now investigated whether this 

phenomenon is limited to a particular murine cell lines, or is it common to 

different types of human cancers? We addressed also another question: whether  

the tissue specific characteristics of the genes that are up-regulated in cancer are 

universal, or do they vary between different human cancer cell lines [80] and 

different subtypes of human leukemia from patients [76, 81].  
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MMaatteerriiaallss  aanndd  MMeetthhooddss  

Data sets  

Three DNA microarray data sets were used: In the first data set, mRNA 

expression levels of genes in normal human tissues and in various human cancer 

cell lines [80] were measured using 2 DNA microarrays, the Affymetrix HG-

U133A array and the GNF1H, a custom designed array [80]. The data set 

downloaded from Su et al.  (http://wombat.gnf.org/index.html) contained 33,689 

probe sets (PS). We removed all PS that were mapped to more than one gene 

symbol, leaving 33,440 PS that were used for further analysis. The downloaded 

data set included 72 normal human tissue samples in duplicates and 7 human 

cancer cell lines also in duplicates [80]. The cancer cell lines [80] included the T 

cell lymphoma MOLT4, the B-cell lymphoma 721, the Burkitt’s lymphomas Raji 

and Daudi, the myeloid leukemia HL-60, the chronic myeloid leukemia derived 

cell line K562 and the colorectal carcinoma SW480.  

The two other data sets used included mRNA expression data from leukemic 

blast cells of 132 pediatric patients with different acute lymphoid leukemia (ALL) 

subtypes [81], 5 pediatric patients with T-ALL with a rearranged MLL gene (6) 

and 130 pediatric patients with different acute myeloid leukemia (AML) subtypes 

[76]. The ALL subtypes included T-ALL without or with rearrangement of the MLL 

gene and 6 different B-ALL subtypes, including those with a rearranged MLL 

gene, with chromosomal translocations involving BCR/ABL, E2A/PBX1 or 

TEL/AML1, with a hyperdiploid number of chromosomes (HD50) and others [81]. 

There were 6 different AML subtypes including those with a rearranged MLL 

gene, with chromosomal translocations involving PML/RARα, AML1/ETO or 

CBFβ/MYH11, M7 megakaryocytic leukemia and others [76].  

Gene expression in these data sets was measured with the Affymetrix HG-U133A 

array. For all data sets, the expression value for each gene was determined using 

the MicroArray Suite version 5.0 (MAS 5.0) software [82].  

http://wombat.gnf.org/index.html
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Clustering of Highly Variable Genes in Normal Human Tissues 

Expression values of PS in the duplicates of each normal tissue sample were 

averaged, expression values <20 were adjusted to 20 to eliminate noise from the 

data and all values were then log10 transformed. The 33,440 PS were filtered to 

select those genes that show a highly variable expression level in the 72 human 

tissue samples. We used two criteria to filter the PS and those PS that satisfied 

either criterion, were included: I. High (≥0.4) standard deviation of the log-

transformed expression (LTE), measured over the different human tissues; II. 

LTE range of at least 2 and LTE value of ≥3 standard deviations below or above 

the mean in at least one tissue.  

The 4,346 highly variable PS that passed either of these two criteria, were 

clustered according to their expression in the different human tissues, using the 

coupled two-way clustering (CTWC) algorithm [13]. Stable clusters were 

identified by CTWC after applying the Mean Field Approximation version [83] of 

the Super Paramagnetic Clustering (SPC) algorithm [12]. CTWC was applied 

using the default parameters, except for a minimal cluster size of 10. Prior to the 

first clustering step, the LTE of each gene was centered and normalized over the 

samples used.  

Identification of Highly Expressed Genes 

We used all the available PS to calculate separately the 85th percentile of the un-

normalized expression values for each of the normal tissue samples and cancer 

cell lines. In the case of leukemic cells from patients, we first averaged the 

expression values over all patients with the same leukemia subtype, and took the 

85th percentile of these average values. All the PS that were expressed at values 

higher than this threshold were defined as highly expressed. We have shown 

previously that changing the threshold used to define highly expressed genes to 

the 80th or 90th percentiles, did not affect the conclusions drawn from the 

analysis [79]. 
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Figure 4. CTWC output for clustering highly variable genes and list of sample names. (A) 

Expression matrix ordered by genes (rows) and by samples (columns). (B) Gene clustering 

dendrogram. (C) Sample clustering dendrogram. The 72 sample types (expression matrix columns) 

are listed on the left. 
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RReessuullttss  

Clustering of Highly Variable Genes in Normal Human Tissues 

After filtration, the 4,346 PS that showed highly variable expression in the 72 

different normal tissue samples were clustered by CTWC. This clustering 

operation yielded 91 stable gene clusters that show preferential expression in 

different tissues (see Fig. 4). The term “preferential expression” refers to high 

relative expression levels of the majority of a cluster’s genes in a particular 

subset of the samples, which was determined by inspection of color-coded 

expression matrices such as the left panels of Figs. 5 and 6. The genes included 

in 14 of these clusters showed preferential expression only in hematopoietic 

tissues. Further sub-classification within the hematopoietic tissues indicated that 

some of these clusters contained genes preferentially expressed either in T cells 

(see left panel, Fig 5A), B cells (Fig. 5B), myelomonocytic cells (Fig 5C) or 

erythroid and bone marrow endothelial cells (Fig. 5D), whereas other clusters 

contained genes expressed at similar levels in most hematopoietic cell types (Fig. 

5E). In addition, 10 other clusters contained genes that were preferentially 

expressed in hematopoietic tissues plus 1-2 other tissues. For further analysis we 

shall refer to these 24 clusters (10 hematopoietic tissues only and 14 

hematopoietic plus 1-2 other tissues) as hematopoietic (H) clusters (see the list 

of H clusters in Appendix II, Table II-1).  

In addition to the H clusters, there were 28 clusters that contained genes 

preferentially expressed in various non-hematopoietic (NH) tissues. Some of 

these NH clusters, contained genes preferentially expressed in only one type of 

tissue such as neuronal, testis, placenta (Fig. 6 A-C, respectively, left panels), 

kidney, adrenal, pancreas or thyroid. Other NH clusters contained genes showing 

preferential expression in 2-3 tissues such as neuronal and testis, or in ≥4 

different non-hematopoietic tissues (Fig. 6 D, left panel and table II-2 in 

appendix II).  
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Figure 5. Examples of different H (Hematopoietic) clusters. Genes that show highly variable expression 
level in 72 normal tissue samples were clustered by CTWC as described in Materials and Methods. Some 
clusters showing preferential expression in normal hematopoietic tissues and the relative gene expression 
levels in seven human cancer cell lines are shown in Left and Middle, respectively, according to the color 
code shown on the left. Highly expressed genes in the cancer cell lines (>85%) are shown in Right, marked 
as red boxes. Because of the large size of some clusters, not all the gene names and their PS are marked on 
the left and right sides of the colored expression matrices, respectively. 
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Figure 6. Examples of different NH (Non-Hematopoietic) clusters. Some clusters showing 
preferential expression in various normal non-hematopoietic tissues and the relative gene expression 
levels in seven human cancer cell lines are shown in Left and Middle, respectively, according to the 
color code shown on the left. Highly expressed genes in the cancer cell lines (>85%) are shown in 
Right, marked as red boxes. As in Fig. 5, not all the gene names are marked on the left side of the 
colored expression matrices. The order of the normal tissue samples and cancer cell lines is as in Fig. 5. 
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Testing for Distortion due to Normalization 

The clustering operation that identified the H and NH clusters was based on Log-

transformed expression (LTE) values that were centered and normalized, for 

each PS. This step may distort the relative expression levels of the genes in a 

particular sample. To show that this is not the case, we checked the overlap of 

the H and NH cluster genes with those that are identified as highly expressed 

genes, applying our standard 85th percentile threshold on the raw LTE values. 

The results indicate that 92.5% of the H cluster genes, i.e. 1046 out of 1130, 

were highly expressed in some hematopoietic tissues (Table 1). In contrast, only 

3.5% of the H-cluster genes, 40 genes, were highly expressed in all normal 

tissues. There was also a low frequency of H-cluster genes that were highly 

expressed in various non-hematopoietic tissues, and for example, there were 126 

such highly expressed genes in appendix (Table 1). An illustration of this 

phenomenon in two H clusters is shown in the Fig. 7 A and B.  

Similar to the H clusters, 95.3% of the NH cluster genes, 1533 out of 1609, were 

highly expressed in the corresponding non-hematopoietic tissues, but only 1.8% 

of the NH cluster genes, 29 genes, were highly expressed in all normal tissues 

and only 273 of the NH cluster genes, were highly expressed in hematopoietic 

tissues (Table 1). An illustration of this phenomenon in two NH clusters is shown 

in Fig. 7 C and D. These results indicate that the genes included in the various H 

or NH clusters according to their normalized expression profile in different 

tissues, were also highly expressed mainly in the corresponding hematopoietic 

and non-hematopoietic tissues (based on the 85th percentile threshold applied on 

the non-normalized data).  

  Normal tissues Cancer cell lines 
Clusters n H NH Appendix Molt4 721 Raji Daudi HL-60 K562 SW480 
Hem. 1,130 1,046 – 126 226 (0) 378 (7) 260 (4) 281 (3) 247 (2) 165 (3) 154 (107)
Non-hem. 1,609 273 1,533 295 54 (20) 70 (34) 70 (24) 53 (11) 46 (17) 110 (50) 162 (110)

 Table 1. Number of highly expressed PS in normal tissues and different human cancer cell lines.  n, total 
number of PS in all H or NH clusters. Values in parentheses are the number of PS that were highly expressed 
in cancer cell lines but not in their normal counterparts. 
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Figure 7. Highly expressed genes in some H and NH clusters in normal tissues. (A and B) H 
clusters. (C and D) NH clusters. Genes that are highly expressed in normal hematopoietic tissue 
samples or in any of the other normal tissues are marked as pale blue or red boxes, respectively. 
As in figure 5, not all the gene names are marked on the left side of D. The order of the normal 
tissue samples is as in figure 5. 
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Search for Genes that are highly expressed in Leukemic Cell Lines and 

in Some Normal Tissues, but not in Normal Hematopoietic Tissues 

To compare gene expression in the normal tissues and cancer cell lines, we 

standardized the expression values of each gene over all the normal tissues and 

the 7 cancer cell lines included in the data set [80] (Figs. 5 and 6, left and middle 

panels, respectively). In these Figures, the internal ordering of the genes within 

each H and NH cluster was based on hierarchical clustering applied over the 

cancer cell lines. Thus, within each H or NH cluster, genes with similar expression 

profile over the cancer cell lines are adjacently placed (for ease of inspection). 

On the right panels of Figs. 5 and 6 we mark the genes that were highly 

expressed in the cancer cell lines.  

The results with H-cluster genes indicate that different leukemia/lymphoma cell 

lines varied in the number of highly expressed genes (Table 1). As expected from 

their hematopoietic origin, almost all the genes that were highly expressed in the 

different cell lines were also highly expressed in their normal hematopoietic 

counterparts (Table 1). Those few H-cluster genes that were highly expressed in 

the leukemia/lymphoma cell lines but not in any of the normal hematopoietic 

counterparts are listed in Table II-3 on Appendix II. The results also show that 

only the T cell leukemia Molt4 highly expressed some genes that are 

preferentially expressed in normal thymus (Fig. 5 A). Furthermore, only B cell 

lymphomas 721, Raji and Daudi and the myeloid leukemia HL-60 highly 

expressed some genes that are preferentially expressed in normal B cells (Figs. 

5B). In addition, the K562 cell line that can be induced to differentiate along the 

erythroid lineage [84], showed the highest number of highly expressed genes 

that are preferentially expressed in normal erythroid precursor cells (Fig. 5D). 

These results indicate that the human leukemia cell lines maintain certain 

features that characterize their normal cell lineage. 

The behavior described above is the standard and expected one; high expression 

of genes in cancer cell lines is accompanied by high expression in the normal 
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tissue of origin. We turned to search for a more interesting, non-standard 

expression pattern, that of genes that are highly expressed in some cancer cell 

lines, low in the normal tissue from which these cancers originated, but high in 

some other normal tissue. Here we demonstrate that this non-standard scenario 

is indeed observed, concentrating first on leukemia/lymphoma cell lines. First, we 

noted that the NH-cluster genes exhibit variability in their expression over the 

different leukemia/lymphoma cell lines. For each of these different cell lines we 

identified the highly expressed genes that belong to the NH clusters. The 

leukemia/lymphoma cell lines highly expressed some NH cluster genes that are 

preferentially expressed in normal neuronal, testis, placenta (Fig. 6 A-C 

respectively), liver, kidney, thyroid, lung and some others. The different 

leukemia/lymphoma cell lines varied in the number of the highly expressed NH 

cluster genes (Table 1). For each cell line, we calculated the fraction of its highly 

expressed NH genes that were not highly expressed in any of the normal 

hematopoietic tissue samples. This fraction represents genes that are over 

expressed in the cell lines and it varied from 20% to 48% in different cell lines 

(Table 1 and see the list of genes in Table II-4, appendix II). Note that of the 

NH-cluster genes that were over-expressed in the cell lines, almost 80% were 

over expressed only in a single leukemic cell line (Table II-4). These results 

indicate that different human leukemia/lymphoma cell lines over-express genes 

that are normally preferentially expressed in tissues other than the hematopoietic 

tissue from which the leukemias originated.  
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Identification of Genes that are Over Expressed in Leukemic Cells from 

Human Patients with Different Subtypes of Lymphoid or Myeloid 

Leukemia 

Cancer cells from patients with various types of cancer, including leukemia, over 

express various genes compared to their normal tissue of origin [73, 75-78, 81]. 

In view of our previous results [79] and the results described above with 

leukemia/lymphoma cell lines, we have now determined the extent to which 

leukemic cells from patients with different leukemia subtypes also highly express 

genes that are normally preferentially expressed in non-hematopoietic tissues. 

The gene expression data used in normal human tissues [80], leukemic cells 

from pediatric patients with ALL [81] or AML [76] were from different data sets, 

which prohibited direct comparison of gene expression values in these different 

studies. Therefore, we first calculated the average expression values of every 

gene in the data sets from all patients with the same leukemia subtype, and 

identified the highly expressed genes. We then determined which of the H or NH-

cluster genes were highly expressed in the different leukemia subtypes.  

Of the 1130 PS included in the normal H clusters, 1038 PS were also present in 

the human ALL and AML data sets. Of these 1038 H-cluster PS, the number of 

those that were highly expressed in leukemic cells from the different leukemia 

subtypes varied (over the subtypes) between 244 and 329, and almost all of 

these PS were also highly expressed in normal hematopoietic tissues (Table 2).  

    T-ALL B-ALL A
Clusters n +MLL –MLL +MLL BCR/ABL E2A/PBX1 TEL/AML1 HD50 Others
Hematopoietic 1,038 286 (0) 286 (1) 265 (0) 302 (0) 249 (1) 300 (0) 278 (0) 294 (0)
Nonhematopoietic 1,450 51 (10) 33 (3) 50 (9) 51 (5) 53 (9) 49 (13) 45 (6) 44 (4) 

 

    AML B
Clusters n +MLL PML/RARα AML1/ETO CBFβ/MYH11 M7 Others 
Hematopoietic 1,038 318 (1) 244 (0) 277 (0) 329 (0) 281 (0) 306 (0) 
Nonhematopoietic 1,450 44 (4) 53 (6) 41 (1) 35 (2) 55 (5) 30 (1) 

 .Table 2  Number of highly expressed PS in different subtypes of human ALL (A) and AML (B). n, 
total number of PS in all H or NH clusters. Values in parentheses are the number of PS that are highly 
expressed in cells from different leukemia subtypes but not in normal hematopoietic cells.  
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Turning again to search for genes with non-standard expression patterns, we 

analyzed the NH-cluster genes, and found that the different ALL and AML 

subtypes highly expressed 30-55 genes, which were preferentially expressed in 

various normal non-hematopoietic tissues (Table 2). Of all the NH-cluster genes 

that were highly expressed in the different leukemias, 42 genes were not highly 

expressed in any normal hematopoietic tissue and are thus over expressed in the 

leukemias (Table 2 and see the list of these genes in Table II-5, appendix II). Of 

these 42 over expressed NH-cluster genes, 30 genes were over expressed only in 

a single leukemia subtype, and only 4 genes in ≥4 leukemia subtypes (Table II-

5). These results indicate that like the leukemia/lymphoma cell lines, leukemic 

cells from patients also over express various genes that are normally 

preferentially expressed in various non-hematopoietic tissues including neuronal, 

testis, liver and placenta, and most of these genes were over expressed in just a 

single leukemia subtype.  

Identification of Genes that are over Expressed in SW480 

Adenocarcinoma Cell Line 

The ability of leukemic cells to over express genes that are normally 

preferentially expressed in various non-hematopoietic tissues raised the question 

whether other types of cancer cells also possess this property. The results 

indicate that SW480 cells highly expressed various H-cluster genes (Table 1 and 

Fig. 5 C, D and E), although they had a lower number of such genes compared 

to the leukemia/lymphoma cell lines (Table 1). Furthermore, 69% of the highly 

expressed H-cluster genes in SW480 cells, were not highly expressed in the 

appendix (Table 1), which we used as their normal counterpart, and are thus 

over expressed in SW480. The H cluster genes that are over expressed in SW480 

(Table II-3) include the apoptosis inhibitors SERPINA1 and BIRC5 and some 

genes involved in human cancer-associated translocations such as LMO2, RUNX1 

and TCF3 that could play a role in their cancer phenotype.  
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Analysis of genes that are included in various NH clusters showed that SW480 

highly expressed more such genes than the leukemic cell lines (Table 1). 

However, unlike the leukemia/lymphoma cell lines, SW480 did not highly express 

any of the genes that are preferentially expressed in normal testis (Fig. 6B and 

Table II-4). Of the 162 NH cluster genes that were highly expressed in SW480, 

68% were not highly expressed in normal appendix (Table 1). In addition, only 

21 of these over expressed NH cluster genes were common to SW480 and at 

least one of the leukemia or lymphoma cell lines (Table II-4). The results indicate 

that human adenocarcinoma cells, like leukemia/lymphoma cells, over-express 

many genes that are normally preferentially expressed in tissues other than their 

tissue of origin. As with the H cluster genes, the list of the over expressed NH 

cluster genes in SW480 includes many genes that are known to be over 

expressed in various types of human cancer and could contribute to cancer 

development and progression including HOXA9, HOXB6, SOX9, CCND1, EGFR, 

SERPINE1, KRT8, KRT18, KRT19, TIAM1, FHL2 and L1CAM (Table II-4). 
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Discussion 

Normal hematopoietic stem cells express genes that are preferentially expressed 

in various normal non-hematopoietic tissues [41]. We have previously shown 

that cells of a mouse myeloid leukemia cell line also highly express genes that 

are normally preferentially expressed in non-hematopoietic tissues such as 

neuronal, testis, liver and muscle tissues [79]. It is well established that human 

cancer cells from patients over express various genes compared to their normal 

tissue of origin [73, 75-78, 81]. We have determined now to what extent do 

different types of human cancer cells over express genes that are normally 

preferentially expressed in hematopoietic and non-hematopoietic tissues. We 

clustered genes that showed a highly variable expression level in 72 different 

normal human tissue samples and selected 2 major cluster categories; H clusters 

with genes preferentially expressed only in hematopoietic tissues or in 

hematopoietic tissues plus 1-2 other tissues, and NH clusters with genes 

preferentially expressed in a single or multiple non-hematopoietic tissues. More 

than 92% of the genes included in all H or NH clusters were highly expressed in 

the corresponding normal tissues based on the 85th percentile criterion we have 

defined.  

We determined which of the H or NH cluster genes were highly expressed in 

each of the human cancer cell lines tested and in different human ALL and AML 

subtypes. The results with H cluster genes indicated that different 

leukemia/lymphoma cell lines and leukemic cells from ALL and AML patients 

showed good lineage fidelity. As expected from the large fraction of H cluster 

genes that are highly expressed in normal hematopoietic tissues, almost all the H 

cluster genes that were highly expressed in the leukemia/lymphoma cell lines 

and leukemia patients were also highly expressed in normal hematopoietic cells. 

The colon adenocarcinoma SW480 also highly expressed 154 H cluster genes, 

but 69% of these genes were not highly expressed in normal appendix, which 

we used as a normal counterpart of SW480, and are thus over expressed in 
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SW480 compared to normal appendix. Two of these H cluster genes that are 

over expressed in SW480 cells, SERPINA1/α1 ANTITRYPSIN and 

BIRC5/SURVIVIN are anti-apoptotic genes [85, 86]. Furthermore, SURVIVIN is 

over expressed in many human cancers [86] including colorectal cancer in which 

it is regulated by the TCF/β-catenin pathway [87] and contributes to the 

radiation resistance in SW480 cells [88]. Some of the other H cluster genes that 

are over expressed in SW480 such as LMO2, RUNX1/AML1 and TCF3/E2A are 

involved in human cancer-associated translocations [89-91]. Other H cluster 

genes that are over expressed in SW480, are also over expressed in a variety of 

human cancers and could contribute to development and progression of cancer 

due to their functions in regulating cell viability, proliferation, DNA repair, 

adhesion and invasiveness (Table II-6 on appendix II).  

The results with NH cluster genes indicate that the leukemic cell lines, the ALL 

and AML leukemia subtypes and SW480 highly expressed various genes that are 

preferentially expressed in tissues other than those from which the cancers 

originated including neuronal, liver, kidney, thyroid, lung or placenta. The results 

have also indicated that a large proportion of the NH cluster genes that are 

highly expressed in the different cancer cells were over expressed in the cancer 

cells compared to their tissue of origin. Most of these genes were over expressed 

only in a single cancer cell line or leukemia subtype, indicating that the different 

cancer cells show differences both in the number and the identity of their over 

expressed genes. Many of these genes are up regulated in various types of 

human cancer and could contribute to cancer development and progression (See 

appendix II, Tables II-4 and I-7). In addition, it was reported by others that 

some of these genes including SOX9, CCND1, EGFR, SERPINE1, TIAM1, FHL2 

and L1CAM are indeed highly expressed in SW480 cells [64, 92-97]. 

Furthermore, CCND1 and L1CAM are targets of the TCF/β-catenin pathway [64, 

97], which is aberrantly activated in various cancers including colorectal cancer 

from which SW480 cells were derived.  
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It is suggested that the ability to over express genes that are normally 

preferentially expressed in tissues other than the cancer’s origin, is a general 

property of cancer cells that plays a major role in determining the behavior of the 

cancers, including their metastatic potential. The results from the pediatric ALL 

and AML patients indicate that the ALLs over expressed more NH cluster genes 

than the AMLs, including genes preferentially expressed in neuronal tissues and 

testis. It will be interesting to find out whether this phenomenon is associated 

with the higher frequency of leukemia involvement in the central nervous system 

in ALL versus AML pediatric patients [76, 98]. Furthermore, the fact that a given 

cancer over expresses genes that are characteristic of a different normal tissue 

(other than its tissue of origin), may imply the existence of a differentiation 

therapy path which may be useful for differentiation therapy. The cancer’s 

malignancy may be reduced by inducing it to trans-differentiate into this other 

normal tissue. 

In the present study we scored genes that are over expressed in cancer cells 

using a very stringent threshold requirement, namely, only those genes that are 

above the 85th percentile in the cancer cells but below this threshold in their 

normal counterparts. Therefore, all the over expressed genes we scored in 

cancer cells are also highly expressed genes. It is expected that there are other 

over expressed genes in cancer cells, whose level of expression in both normal 

and cancer cells is either above or below the 85th percentile. Our results also 

indicate that there were differences in the identity of most of the over expressed 

genes between different cancer cell lines, even between leukemic cell lines from 

the same lineage. Therefore, the fact that we used the average expression 

values of genes from all patients with a given leukemia subtype, presumably 

resulted in detection of only a fraction of over expressed genes, those that are 

commonly over expressed in many of the patients. It is expected that additional 

over expressed genes can be identified, which show patient to patient 

differences even with the same leukemia subtype. 
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Appendix I 

The effect of standardization on the ESC and MSC dataset 

The following figure presents the dataset after all-absent removal, thresholding 

to 1 and applying Log2 transformation, for all the ESC and Mesenchymal 

samples. The genes were ordered by the average expression values of the ESC.  

The dramatic effect of the standardization can be seen in Fig I-2.
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Figure I-1: Dataset histogram and expression matrix before standardization 
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Figure I-2: Dataset histogram and expression matrix after standardize 
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The question that the above figures raise is as follows: If the ESC samples are so 

different from the mesenchymal samples (as can be seen on the standardized 

dataset histogram), how come the ESC samples look very similar in their 

distribution to the mesenchymal samples before standardization? For simplicity of 

presentation, we show from now on the histograms of the averaged expression 

values over the different replicates. 

As mentioned in the general methods section, gene standardization is a two-step 

process:  row centering followed by row normalization. 

In centering, the average expression of the gene is substracted from each 

expression value, independently for every gene. In normalization, each 

expression value is divided by the gene’s standard deviation, independently for 

every gene. That is, the standardized expression value E’gs of the expression of 

gene g on sample s is given by  
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EE
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='     where   
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The following figures were created in order to try to understand how come the 

nearly similar distributions  of the expression levels measured for the different 

kinds of cells (see Fig I-1) becomes, after standardization, so strikingly different 

for the ESCs.  The effect of the standardization process is shown, one step at the 

time, in figure I-3, which represents the histograms of the expression values, 

averaged over each set of replicates. 
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Figure I-3: Dataset expression matrix and corresponding distribution. Expression matrices on 
the right present expression levels for 16,461 dataset probe-sets in different preprocessing steps.  
Probesets are sorted by their averaged expression on the ESC samples. Histograms on the left show 
expression distribution (each curve represent replicate-averaged sample type). (A) Raw data after 
removal of ‘all-absent’ probesets, threshold of 1, log2 transformed. (B) Centered data (C) 
Standardized data (centering + normalization). 
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Comparing the expression histograms I-3A and I-3B one can see that this step 

alone distinguishes the ESC samples from the other, mesenchymal samples. The 

ESC distribution in I-3B is shifted slightly to values that are more positive and 

there is a much more prominent change: the distribution has much "fatter" tails 

on both sides of the peak, especially on the positive side. The high-end tail is 

caused by the fact that a large number of genes have higher expression levels in 

the ESCs than in the MSCs. There are also a (somewhat lower) number of genes 

for which the situation is the opposite; these generate the low-end tail.  

Upon normalization, these fat tails are turn into the two peaks, at low and high 

normalized expression values, as see in Fig I-3C. 

In order to gain further insight into the manner in which the expression levels 

and their distributions are modified by standardization, we generated the 

following set of figures, which show  individual gene expression value for ESC, 

MSC, Fat-Control and Fat-Induction before and after standardization. Each dot 

represent a probe-set (averaged over replicates): red points represent probe-set 

expression values before standardization and blue dots represent expression 

values after standardization (transformed to fit in the same scale as the red 

points). Each sub-plot is sorted according to the pre-standardization values. 

Comparing the four sub-plots of figure I-4, it is observed how the expression 

values of each sample type are transformed due to standardization. ESC 

expression values are strongly shifted up or down, MSC sample seem to be 

always in a “good” place in the middle (compared to other samples) and thus 

their post-standardization values are mainly concentrated on the middle. 

Standardization shifts the Fat sample expression values mildly up or down. 
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Figure I-4: the effect of standardization on the expression levels of individual 

genes, sorted according to their expression levels in each cell type (red ) and 

after standardization (blue)  

 

Next, to ascertain that the observed effect is indeed due to expression 

differences between ESCs and the other cells, we grouped the genes on the 

basis of their average un-standardized expression on the ESCs and studied the 

distribution of expression of each such group in the different mesenchymal cell 

types. The following series of figures displays the distributions of un-standardized 

expression levels of ESCs, MSCs, Fat-Control and Fat-Induction, divided to 5 

groups of genes (bins), based on the ESC samples. The first figure shows all 

probe-sets whose ESC expression values  is between 0 and 2.5, the second one 

corresponds to the range 2.5-5, and so forth. 

A B

C D
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We see clearly that the differences between ESCs and other samples are indeed 

found on the un-standardized data as well. Looking at the figure I-5D (ESC bin 

range of 7.5-10) as an example, we see that hundreds of genes are expressed 

significantly lower on MSC and Fat compared to ESC 
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Figure I-5:  Distributions of un-standardized expression values of different cell 

types. Genes were binned according to ESC expression levels. 

The following two figures were created in order to test the hypothesis that the 

effect we saw (of standardization turning the distribution of expression on ESC 

samples into bi-moda), is caused by the fact that we have a relatively small 

number of ESC samples (3) versus the large number of mesenchymal samples 

(14), which are fairly similar to each other. 

In the following graphs (I-6 and I-7), standardization was conducted on different 

subsets of the dataset samples in order to test whether the post-standardization 

distribution is affected by the number of samples in the dataset. 
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This hypothesis is rejected because it was observed that bi-modality is not 

dependent on the number of mesenchymal samples against which the  ESC 

samples are standardized. Furthermore, bi-modality is not special for ESC 

samples, and this distribution is generated also by standardizing MSC samples 

together with Fat-Induction samples or others. 
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Figure I-6. Standardization of different sub-sets of the dataset samples 

– Fat samples. 
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Figure I-7. Standardization of different sub-sets of the dataset samples 

– Bone samples. 

 

Based on these and other graphs (not shown), we have concluded that the 

standardization transformation will take the most outlying expression values of 

each gene and move it further to the extreme. By an accumulative effect, 

samples whose expression levels are found to be most "coherently different"  on 

many probe-sets, will pile up on the histogram edges, thus creating a bi-modal 

distribution. 
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Appendix II 
Table II-1. Clusters of normal human tissues - Hematopoietic (H) 

clusters 

  

No. Cluster 
No. of 
genes Preferentially expressed in Symbol 

1 G8 11 Hemopoietic only (esp. in Thymus) H 
2 G13 16 Hemopoietic only (esp. in B cells) H 
3 G14 22 Hemopoietic only (esp. in B cells, DC, LN, Tonsil) H 
4 G28 28 Hemopoietic (esp. in BM, Mono, Myeloid, FL)  H 
5 G30 42 Hemopoietic only (esp. in BM, WB) H 
6 G60 20 Hemopoietic only (All types ) H 
7 G63 10 Hemopoietic only (All types ) H 
8 G64 15 Hemopoietic only (All types ) H 
9 G70 44 Hemopoietic only (esp. in NK, CD4, CD8, WB) H 

10 G71 32 Hemopoietic only (esp. in T, NK, WB, Thymus) H 
11 G72 44 Hemopoietic only (esp. in DC, Mono, Myeloid, WB) H 
12 G73 279 Hemopoietic only (All types EXCEPT early Erythroid) H 
13 G82 62 Hemopoietic only (esp. in Erythroid, Endoth., FL, BM) H 
14 G91 25 Hemopoietic only (esp. in Erythroid, Endoth., FL, BM) H 
15 G23 15 Hemopoietic & Neuronal tissues H, N 
16 G56 95 Hemopoietic & Neuronal tissues H, N 
17 G66 22 Hemopoietic & Neuronal tissues H, N 
18 G12 15 Hemopoietic & Neuronal & Smooth muscle H, N, SM 
19 G15 12 Hemopoietic & Neuronal & Testis H, N, T 
20 G19 24 Hemopoietic (esp. in Mono, Myeloid, WB, FL) & Liver H, L 

21 G87 127 Hemopoietic & Testis & Cardiac myocytes 
H, T, 
CM 

22 G32 45 
Hemopoietic (esp. in DC, Mono, Myeloid, WB)  & Smooth 
muscle & Cardiac myocytes 

H, SM, 
CM 

23 G83 67 Hemopoietic & Trachea & Lung  
H, TR, 
LNG 

24 G42 58 Hemopoietic (Tonsils) & Tongue & Bronch. Epithel. Cells 
H, TNG, 
BEC 
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Table II-2. Clusters of normal human tissues - Non-hematopoietic (NH) 

clusters 

 

No. Cluster 
No. of 
genes Preferentially expressed in Symbol 

1 G2 52 Pancreas only PANC 
2 G9 17 Kidney only K 
3 G45 100 Testis only T 
4 G10 50 Adrenal gland only ADR 
5 G81 37 Placenta only PL 

6 G5 19 Placenta & Pituitary, a little in lung, fetal lung           
PL, Pit, 
LNG 

7 G21 10 Neuronal tissues only N 
8 G22 21 Neuronal tissues only N 
9 G68 75 Neuronal tissues only N 

10 G86 322 Neuronal tissues only N 
11 G18 20 Neuronal tissues & Testis N, T 
12 G26 15 Neuronal tissues & Testis N, T 

13 G27 23 Thyroid & fetal thyroid 
THYR, 
FHTYR 

14 G89 154 Liver, fetal liver & kidney & fetal lung   
15 G40 46 Lung, fetal lung & Trachea   

16 G39 28 Salivary gland & Trachea & a little in Thalamus          
SAL, TR, 

THA 
17 G20 30 Low in hematopoietic tissues (highest in adipocytes)  LIH 
18 G24 36 Low in hematopoietic tissues  LIH 

19 G25 62 
Low in hematopoietic tissues (highest in sm. muscle, heart, 
thyroid)  LIH 

20 G35 27 Low in hematopoietic tissues (highest in neuronal)   LIH 
21 G43 59 Low in hematopoietic tissues  LIH 
22 G44 15 Low in hematopoietic tissues  LIH 
23 G46 12 Low in hematopoietic tissues  LIH 
24 G47 24 Low in hematopoietic tissues (highest in neuronal)  LIH 
25 G48 43 Low in hematopoietic tissues  LIH 
26 G49 54 Low in hematopoietic tissues  LIH 
27 G50 62 Low in hematopoietic tissues  LIH 
28 G85 196 Low in hematopoietic tissues (highest in muscle)  LIH 

 
BM, bone marrow; DC, dendritic cells; FL, fetal liver; LN, lymph node; NK,  
natural killer cells;  WB, whole blood. 
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Table II-3. List of genes in hematopoietic (H) clusters highly expressed 

in cancer cells but not in their normal counterparts 

 

Cluster Probe set Name SW480 Molt4 721 Raji Daudi 
HL-
60 K562

G12 209935_at ATP2C1 - - - + - - - 

  217841_s_at PME-1 + - - - - - - 

  204141_at TUBB + - - - - - - 

  gnf1h00312_at ANLN + - - - - - - 

  202219_at SLC6A8 + - - - - - - 

  210527_x_at TUBA2 + - - - - - - 

  213476_x_at TUBB4 + - - - - - - 

  201195_s_at SLC7A5 + - - - - - - 

G19 204588_s_at SLC7A7 + - - - - - - 

  211429_s_at SERPINA1 + - - - - - - 

  202833_s_at SERPINA1 + - - - - - - 

  202241_at TRIB1 + - - - - - - 

G23 217979_at TM4SF13 + - - - - - - 

G28 205174_s_at QPCT + - - - - - - 

G30 205445_at PRL - - - - + - - 

  211003_x_at TGM2 + - - - - - - 

  211573_x_at TGM2 + - - - - - - 

G32 218051_s_at FLJ12442 - - + - + + + 

  209921_at SLC7A11 - - + + + + - 

  202619_s_at PLOD2 - - + - - - - 

  202381_at ADAM9 + - - - - - - 

G42 201015_s_at JUP + - - - - - - 

  208502_s_at PITX1 + - - - - - - 

  209260_at SFN + - - - - - - 

  207935_s_at KRT13 + - - - - - - 

  204990_s_at ITGB4 + - - - - - - 

  202504_at TRIM29 + - - - - - - 

  202286_s_at TACSTD2 + - - - - - - 

  201820_at KRT5 + - - - - - - 
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Cluster Probe set Name SW480 Molt4 721 Raji Daudi 
HL-
60 K562

  204268_at S100A2 - - - - - - + 

G56 204040_at RNF144 + - - - - - - 

  213587_s_at C7orf32 + - - - - - - 

  212068_s_at KIAA0515 + - - - - - - 

  218404_at SNX10 + - - - - - - 

  216033_s_at FYN + - - - - - - 

  202206_at ARL7 + - - - - - - 

  202208_s_at ARL7 + - - - - - - 

  202806_at DBN1 + - - - - - - 

  200973_s_at TM4SF8 + - - - - - - 

  209185_s_at IRS2 + - - - - - - 

G60 205321_at EIF2S3 + - - - - - - 

G63 gnf1h04674_at C6orf83 + - - - - - - 

  217868_s_at DREV1 + - - - - - - 

  213102_at ACTR3 + - - - - - - 

  208901_s_at TOP1 + - - - - - - 

G64 202848_s_at GRK6 + - - - - - - 

  202771_at FAM38A + - - - - - - 

  216237_s_at MCM5 + - - - - - - 

  201202_at PCNA + - - - - - - 

G66 gnf1h06906_at DKFZp313A2432 - - + - - - - 

  218123_at C21orf59 + - - - - - - 

  214870_x_at NPIP + - - - - - - 

  203839_s_at ACK1 + - - - - - - 

G70 210140_at CST7 + - - - - - - 

  214617_at PRF1 + - - - - - - 

G71 207979_s_at CD8B1 + - - - - - - 

  211796_s_at 211796_s_at + - - - - - - 

G73 210448_s_at P2RX5 + - - - - - - 

  206200_s_at ANXA11 + - - - - - - 

  205483_s_at G1P2 + - - - - - - 

  217984_at RNASET2 + - - - - - - 

  209360_s_at RUNX1 + - - - - - - 
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Cluster Probe set Name SW480 Molt4 721 Raji Daudi 
HL-
60 K562

  209282_at PRKD2 + - - - - - - 

G73 207540_s_at SYK + - - - - - - 

  204401_at KCNN4 + - - - - - - 

  203508_at TNFRSF1B + - - - - - - 

  gnf1h01004_at SYTL1 + - - - - - - 

  219202_at RHBDL6 + - - - - - - 

  205081_at CRIP2 + - - - - - - 

G82 gnf1h03395_at gnf1h03395_at - - - - - - + 

G87 205345_at BARD1 - - + + - - - 

  203976_s_at CHAF1A - - + - - - - 

  218542_at C10orf3 - - - + - - - 

  211300_s_at TP53 + - + - - - - 

  218847_at IMP-2 + - - - - - - 

  204249_s_at LMO2 + - - - - - - 

  39729_at PRDX2 + - - - - - - 

  gnf1h01357_s_at APOBEC3F + - - - - - - 

  gnf1h00835_at PHACS + - - - - - - 

  211543_s_at GRK6 + - - - - - - 

  209208_at MPDU1 + - - - - - - 

  218726_at DKFZp762E1312 + - - - - - - 

  222037_at AI859865 + - - - - - - 

  222036_s_at AI859865 + - - - - - - 

  201291_s_at TOP2A + - - - - - - 

  201890_at RRM2 + - - - - - - 

  204244_s_at ASK + - - - - - - 

  202580_x_at FOXM1 + - - - - - - 

  212330_at TFDP1 + - - - - - - 

  202338_at TK1 + - - - - - - 

  202095_s_at BIRC5 + - - - - - - 

  202107_s_at MCM2 + - - - - - - 

  201664_at SMC4L1 + - - - - - - 

  201663_s_at SMC4L1 + - - - - - - 

  201014_s_at PAICS + - - - - - - 
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Cluster Probe set Name SW480 Molt4 721 Raji Daudi 
HL-
60 K562

  201088_at KPNA2 + - - - - - - 

  204170_s_at CKS2 + - - - - - - 

G87 204825_at MELK + - - - - - - 

  205436_s_at H2AFX + - - - - - - 

  218009_s_at PRC1 + - - - - - - 

  gnf1h00157_at HSPC150 + - - - - - - 

  gnf1h05869_s_at gnf1h05869_s_at + - - - - - - 

  209153_s_at TCF3 + - - - - - - 

  221932_s_at C14orf87 + - - - - - - 

  210983_s_at MCM7 + - - - - - - 

  208795_s_at MCM7 + - - - - - - 

  208691_at TFRC + - - - - - - 

  207332_s_at TFRC + - - - - - - 

  202870_s_at CDC20 + - - - - - - 

  202779_s_at UBE2S + - - - - - - 

  207165_at HMMR + - - - - - - 

  201292_at TOP2A + - - - - - - 

  202503_s_at KIAA0101 + - - - - - - 

  202589_at TYMS + - - - - - - 

  204767_s_at FEN1 + - - - - - - 

  gnf1h00130_at UHRF1 + - - - - - - 

  gnf1h00245_s_at MRPL37 + - - - - - - 
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Table II-4. List of genes in non-hematopoietic (NH) clusters highly 

expressed in cancer cells but not in their normal counterparts    

 

Cluster   Probe set Name SW
48
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M
ol

t4
 

72
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aj
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di
 

H
L

-6
0 

K
56
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Pancreas                   
G2 216470_x_at 216470_x_at - - - - - - + 
Kidney                   
G9 203559_s_at ABP1 + - + - - - - 
  207434_s_at FXYD2 - + - - - - - 
  205674_x_at FXYD2 - + - - - - - 
  gnf1h02291_at gnf1h02291_at - + - - - - - 
Adrenal                   
G10 205633_s_at ALAS1 + - - - - - - 
  203647_s_at FDX1 + - - - - - - 
  208928_at POR + - - - - - - 
  208161_s_at ABCC3 + - - - - - - 
  216609_at TXN - + - - + + - 
  207813_s_at FDXR - - + - - - - 
  gnf1h06269_at ATP6V1C2 - - - - - + - 
  209560_s_at DLK1 - - - - - - + 
Thyroid                   
G27 205350_at CRABP1 - + - - - - - 
  204259_at MMP7 - - + - - - - 
Neuronal                   
G21 206140_at LHX2 - - + - - - - 
G68 205691_at SYNGR3 - - - + - + + 
  201662_s_at ACSL3 - + + - - - + 
  gnf1h00805_at SCOC - + + - - - - 
  219170_at FSD1 - - - + - - - 
  205210_s_at FGF13 - - - - - - + 
  201462_at SCRN1 + - - - - - - 
  212221_x_at IDS + - - - - - - 
  212223_at IDS + - - - - - - 
G68 213135_at TIAM1 + - - - - - - 
  219549_s_at RTN3 + - - - - - - 
  200623_s_at CALM3 + - - - - - - 
G86 202260_s_at STXBP1 + - - + - + - 
  204073_s_at C11orf9 + - + - - - + 
  201387_s_at UCHL1 - - + + - + - 
  204730_at RIMS3 - - - + + + - 
  219236_at PAQR6 - - - + + - - 
  216963_s_at GAP43 - - - + - + - 
  215116_s_at DNM1 + - - - - - + 
  214023_x_at MGC8685 + - - - - - + 
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Cluster   Probe set Name SW
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  205970_at MT3 - - - + - - - 
  209598_at PNMA2 - + - - - - - 
  203069_at SV2A - + - - - - - 
  gnf1h08659_at UNC13C - - + - - - - 
  209470_s_at GPM6A - - + - - - - 
  209469_at GPM6A - - + - - - - 
  205399_at DCAMKL1 + - - - - - - 
  202517_at CRMP1 + - - - - - - 
  204540_at EEF1A2 + - - - - - - 
  204584_at L1CAM + - - - - - - 
  218417_s_at FLJ20489 + - - - - - - 
  212559_at PRKAR1B + - - - - - - 
  204724_s_at COL9A3 + - - - - - - 
  218952_at PCSK1N + - - - - - - 
  gnf1h07687_at EPHA4 + - - - - - - 
  203961_at NEBL + - - - - - - 
  203955_at KIAA0649 + - - - - - - 
  212233_at MAP1B - - - - - - + 
  213338_at RIS1 - - - - - - + 
  206453_s_at NDRG2 - - - - - - + 
  219196_at SCG3 - - - - - - + 
  205625_s_at CALB1 - - - - - - + 
Testis                   
G45 220110_s_at NXF3 - - + - - - - 
  214296_x_at IMAGE:4215339 - - - + - - - 
  207739_s_at GAGE5 - - - - - - + 
  206640_x_at GAGE5 - - - - - - + 
Placenta                   
G81 219424_at EBI3 - - + + - - - 
  208257_x_at PSG1 + - - - - - - 
  204830_x_at PSG4 + - - - - - - 
  205602_x_at PSG7 + - - - - - - 
Neuronal and testis                   
G18 213479_at NPTX2 + - - - - - - 
  209343_at EFHD1 - - - - - - + 
  gnf1h05957_at gnf1h05957_at - - - - - - + 
Salivary gland and 
trachea                   
G39 206224_at CST1 + - - - - - - 
  208555_x_at CST2 + - - - - - - 
Lung and trachea                   
G40 209270_at LAMB3 + - - - - - - 
  214651_s_at HOXA9 + - - - - - - 
  gnf1h01731_s_at gnf1h01731_s_at + - - - - - - 
  203108_at RAI3 + - - - - - - 
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  205366_s_at HOXB6 + - - - - - - 
  205749_at CYP1A1 - - - - - - + 
Placenta, pituitary and 
lung                   
G5 207770_x_at CSH2 - - - + - - - 
Liver, kidney and fetal 
lung                   
G89 201674_s_at AKAP1 + + + - + + - 
  gnf1h01169_at WDR34 + + + - - - - 
  202740_at ACY1 + - - + - - + 
  204044_at QPRT - - + + - - + 
  216381_x_at AKR7A3 + - - - - + - 
G89 209081_s_at COL18A1 + - - - - - - 
  205774_at F12 + - - - - - - 
  217188_s_at C14orf1 - - + - - - - 
  205208_at FTHFD - - + - - - - 
  206754_s_at CYP2B6 - - + - - - - 
  209975_at CYP2E1 - - - + - - - 
  205650_s_at FGA - - - - + - - 
  219733_s_at SLC27A5 - - - - - + - 
  205943_at TDO2 - - - - - - + 
Low in hematopoietic 
(LIH)                   
G20 200832_s_at SCD + + + + + + + 
  209146_at SC4MOL + + + + + - + 
  gnf1h01546_s_at Hs.523212 + + - - - + + 
  212186_at ACACA - + + - - + + 
  208963_x_at FADS1 - + + - - - + 
  202540_s_at  HMGCR - + + - - - + 
  211162_x_at SCD - - + - - - - 
  211708_s_at SCD - - + - - - - 
  205498_at GHR - - + - - - - 
  200831_s_at SCD + - - - - - - 
  210830_s_at PON2 + - - - - - - 
  217776_at RDH11 + - - - - - - 
  200947_s_at GLUD1 + - - - - - - 
G24 205742_at TNNI3 - - - - - - + 
G25 219188_s_at LRP16 - - - + + - - 
  205177_at TNNI1 - - - + - - - 
  206353_at COX6A2 - - - - + - - 
  213201_s_at TNNT1 - - - - - - + 
G35 207169_x_at DDR1 + - - - - - - 
  215807_s_at PLXNB1 + - - - - - - 
  219305_x_at FBXO2 + - - - - - - 
G35 213050_at COBL + - - - - - - 
  204447_at ProSAPiP1 - - - + - - - 
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  214797_s_at PCTK3 - - - + - - - 
G43 221577_x_at GDF15 + - - - - - + 
  209008_x_at KRT8 + - - - - - - 
  201596_x_at KRT18 + - - - - - - 
  200636_s_at PTPRF + - - - - - - 
  210715_s_at SPINT2 + - - - - - - 
  217744_s_at PERP + - - - - - - 
  36711_at 36711_at + - - - - - - 
  gnf1h01008_at JUB + - - - - - - 
  gnf1h06417_s_at ZD52F10 + - - - - - - 
  gnf1h11118_x_at gnf1h11118_x_at + - - - - - - 
  218963_s_at KRT23 + - - - - - - 
  212444_at RAI3 + - - - - - - 
  208190_s_at LISCH7 + - - - - - - 
  203453_at SCNN1A + - - - - - - 
  203407_at PPL + - - - - - - 
  202826_at SPINT1 + - - - - - - 
  202790_at GABARAP + - - - - - - 
  201650_at KRT19 + - - - - - - 
  201474_s_at ITGA3 + - - - - - - 
  201428_at CLDN4 + - - - - - - 
  203954_x_at CLDN3 + - - - - - - 
  200606_at DSP + - - - - - - 
G44 204345_at COL16A1 - - + - - - - 
  216620_s_at ARHGEF10 - + - - - - - 
  219926_at POPDC3 - - - - - - + 
  201334_s_at ARHGEF12 + - - - - - - 
G47 212094_at PEG10 - - + + - + - 
  203029_s_at PTPRN2 + + - - - - - 
  210794_s_at MEG3 - - - - - - + 
  212062_at ATP9A + - - - - - - 
G48 202238_s_at NNMT - - - - - - + 
  202718_at IGFBP2 + - - - - - - 
  203423_at RBP1 + - - - - - - 
G49 212110_at SLC39A14 + - - + + + + 
  201564_s_at FSCN1 - - + - - - + 
  203786_s_at TPD52L1 - - + - - - + 
  221538_s_at DKFZp564A176 + - - - - - + 
  202067_s_at LDLR - - - - - - + 
  gnf1h00310_at ACAS2 - - - - - - + 
  201889_at FAM3C + - - - - - - 
  208029_s_at LAPTM4B + - - - - - - 
  202976_s_at RHOBTB3 + - - - - - - 
  217849_s_at CDC42BPB + - - - - - - 
  202371_at FLJ21174 + - - - - - - 
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G50 216215_s_at RBM9 - - - + + + + 
  213423_x_at TUSC3 - - - - - - + 
  200884_at CKB - - - - - - + 
  209094_at DDAH1 + - - - - - - 
  213069_at HEG + - - - - - - 
  203962_s_at NEBL + - - - - - - 
  202936_s_at SOX9 + - - - - - - 
  202935_s_at SOX9 + - - - - - - 
  202458_at SPUVE + - - - - - - 
G50 200602_at APP + - - - - - - 
G85 209344_at TPM4 + - + - - - - 
  202733_at P4HA2 + - - - - - + 
  201125_s_at ITGB5 + - - - - - + 
  214020_x_at ITGB5 + - - - - - + 
  209262_s_at NR2F6 - - - + - + - 
  209121_x_at NR2F2 - - + - - - + 
  202620_s_at PLOD2 - - + - - - - 
  222288_at Hs.130526 - + - - - - - 
  204518_s_at PPIC - - - - - - + 
  213800_at HF1 - - - - - - + 
  200755_s_at CALU - - - - - - + 
  208712_at CCND1 + - - - - - - 
  201983_s_at EGFR + - - - - - - 
  219922_s_at LTBP3 + - - - - - - 
  212698_s_at SEPT10 + - - - - - - 
  202627_s_at SERPINE1 + - - - - - - 
  202628_s_at SERPINE1 + - - - - - - 
  203438_at STC2 + - - - - - - 
  204306_s_at CD151 + - - - - - - 
  203180_at ALDH1A3 + - - - - - - 
  202949_s_at FHL2 + - - - - - - 
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Table II-5. List of genes in hematopoietic (H) and nonhematopoietic 

(NH) clusters  highly expressed in human leukemias but not in any 

normal H tissue 
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R
A

 

A
M

L1
/E

TO
 

C
B

Fβ
/M

Y
H

11
 

M
7 

O
th

er
s 

H                               

G30 205445_at PRL - - - - - - - - + - - - - - 

G87 205345_at BARD1 - + - - + - - - - - - - - - 

NH                                 

Kidney                               

G9 203913_s_at HPGD + - - - - - - - - - - - - - 

Adrenal                               

G10 209560_s_at DLK1 - - - - - - - - + - - - - - 

  205083_at AOX1 - - - - + - - - - - - - - - 

Tetsis                               

G45 220230_s_at CYB5R2 - - - - - + + - - - - - - - 

Placenta                               

G81 221710_x_at FLJ10647 - - - - - - - - - + - - - - 

  213094_at GPR126 - - - - - - - - + - - - - - 

Neuronal                               

G68 208820_at PTK2 - - - - - + - - - - - - - - 

  205352_at SERPINI1 - - - - - - - - - - - - + - 

G86 202517_at CRMP1 - - - - + + - - - - - - - - 

  203961_at NEBL + - - - - - - - - - - - - - 

  212358_at CLIPR-59 + - - - - - - - - - - - - - 

  209168_at GPM6B - - + - - - - - - - - - - - 

  220448_at KCNK12 - - + - - - - - - - - - - - 

  203999_at SYT1 - - - - + - - - - - - - - - 

  218613_at EFA6R - - - - - + - - - - - - - - 

  215116_s_at DNM1 - - - - - - - - - + - - - - 

  206135_at ST18 - - - - - - - - - - - + - - 

Neuronal and testis                               

G18 213479_at NPTX2 - - + - - - - - - - - - - - 
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  213791_at PENK - - + - - - - - - - - - - - 

  209781_s_at KHDRBS3 - - - - - + - - + - - - - - 

G26 204165_at WASF1 - - + - + - + - - - - - - - 

  205109_s_at ARHGEF4 - - - - - + - - - - - - - - 
Liver, kidney and 

fetal lung                               

G89 204561_x_at APOC2 - - - - - - - - - - - - + - 
Low 
in 
hema
topoi
etic 
(LIH)                                 

G20 200832_s_at SCD + + - - - - - - - - - - - - 

  202540_s_at HMGCR + - - - - - - - - - - - - - 

  209146_at SC4MOL + - - - - - - - - - - - - - 

G24 210298_x_at FHL1 - - - + - + + - - - - - + - 

G44 212148_at PBX1 - - - - + - - - - - - - + - 

G47 212062_at ATP9A + - - - - - - - - - - - - - 

  210794_s_at MEG3 - - - - - - - - - + - - - - 

G48 212154_at SDC2 - - + - - + - - - - - - - - 

  212158_at SDC2 - - - - - + - - - - - - - - 

G49 201564_s_at FSCN1 - - - - - - - - - + - - - - 

G50 207030_s_at CSRP2 - - + + - + - - - - - - - - 

  203131_at PDGFRA - - - - - - - + - - - - - - 

  203962_s_at NEBL + - - - - - - - - - - - - - 

G85 209344_at TPM4 + + + + + + + + + + + + + + 

  212013_at D2S448 - + - + + + + + - + - - - - 

  212488_at Hs.433695 - - - + + + + + - - - - - - 

  222288_at Hs.130526 + - - - - - - - - - - - - - 

  218468_s_at GREM1 - - + - - - - - - - - - - - 

  202733_at P4HA2 - - - - + - - - - - - - - - 
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Table II-6. Genes in H clusters that are overexpressed in SW480 and have a 

role in human cancer 

 

Gene Function  
Up-

regulated 
in human 

cancer 

Transcription 
 factor 

 or oncogene Cytoskelleton 

Adhesion, 
 invasiveness, 
 angiogenesis Proliferation 

DNA repair, 
 replication Transport Antiapoptosis 

QPCT FYN TUBA2 ADAM9 SFN TOP1 SLC7A5 SERPINA1 
SERPINA1 TP53 TUBB ITGB4 IRS2 FEN1 SLC7A7 TYMS 

ADAM9 LMO2 TUBB4 TM4SF8 MCM2 TOP2A   BIRC5 
JUP TCF3 ACTR3 HMMR MCM4 RRM2     

TACSTD2 RUNX1     MCM5 ASK     
S100A2       MCM7 TK1     
RUNX1       PCNA H2AFX     
FEN1       TFDP1       
TYMS       SMC4L1       
HMMR       CKS2       
TUBB       PRC1       

SLC7A5       CDC20       
TCF3       UHRF1       
BIRC5               
ITGB4               
CDC20               
RRM2               
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Table II-7. List of genes in NH clusters that are overexpressed in cancer cell 

lines and have a role in human cancer 

 

Gene function 

Up-regulated in 
human cancer 

Transcription 
factor or 
oncogene 

Cytoske
lleton 

Adhesion, 
invasiveness,a

ngiogenesis Proliferation Transport 

Lipid or 
drug 

metabolism 

Anti-
apoptosi

s 

SCD IGFBP2 LHX2 DSP MMP7 LRP16 SCNN1A SCD 
PLXNB

1 
ACACA RAI3 HOXA9 TPM4 PLXNB1 CCND1  ACACA PEG10 
CRABP1 FSCN1 HOXB6  EPHA4 PLXNB1  NNMT APP 

DDR1 
LAPTM

4B LAPTM4B  GDF15 RAI3   EGFR 

PLXNB1 SOX9 SOX9  LAMB3 PEG10   
SERPI
NE1 

GDF15 SPUVE FHL2  ITGA3 LAPTM4B   MT3 
HOXA9 APP EEF1A2  ITGB5 EGFR    
HOXB6 P4HA2   IGFBP2     
KRT8 TIAM1   FSCN1     
KRT18 TPM4   TIAM1     

KRT19 
SERPIN

E1   SERPINE1     
GAGE5 STC2   CD151     
ITGB5 CD151   L1CAM     

SCNN1A FHL2   EPHA4     
PTPRF MT3   COL18A1     

DSP EEF1A2        
PEG10 L1CAM        
NNMT EPHA4        

  
COL18A

1               
 

 


