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Potts Ferromagnets on Coexpressed Gene Networks: Identifying Maximally Stable Partitions
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Clustering gene expression data by exploiting phase transitions in granular ferromagnets requires
transforming the data to a granular substrate. We present a method using the recently introduced homo-
geneity order parameter � [H. Agrawal, Phys. Rev. Lett. 89, 268702 (2002)] for optimizing the parame-
ter controlling the ‘‘granularity’’ and thus the stability of partitions. The model substrates obtained for
gene expression data have a highly granular structure. We explore properties of phase transition in high
q ferromagnetic Potts models on these substrates and show that the maximum of the width of superpara-
magnetic domain, corresponding to maximally stable partitions, coincides with the minimum of �.
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expression levels. Its rows are centered and normalized to
have a mean of zero and standard deviation of unity.

followed, at a higher temperature Tsp, by a transition
from the superparamagnetic to the paramagnetic phase.
Recent developments in gene chip technology [1,2]
have revolutionized biomedical sciences. These chips are
being used extensively for studying molecular aspects of
diseases, especially of various cancers [3,4]. They are
used for simultaneous measurement of the expression
levels of large numbers of genes. The quantities measured
in an expression profiling experiment are light intensity
ratios (or differences) that reflect the expression levels
of genes in the tissue sample that is used. A typical
experiment using 20–100 tissue samples generates a few
hundred thousand to a million data points corresponding
to the expression levels of 10 000 or more genes in each
sample.

Extraction of meaningful information from gene ex-
pression data is a complex task because of the large
volume of the data and the expected complexity of its
structure and organization. To address this problem
in an unbiased way several specialized methods,
broadly known as ‘‘clustering techniques,’’ have been
developed during the past few years [5–7]. All these
techniques, though differing in details, in essence try to
identify genes (or samples) that behave similarly across
the samples (or genes) and classify them as belonging to
one group or cluster. Among the clustering techniques
that employ the concepts of physics, the one that succeeds
in correctly clustering most of the types of data [8] is the
‘‘superparamagnetic’’ clustering method [6]. This method
exploits the properties of phase transitions in disordered
Potts ferromagnets.

Ferromagnetic Potts systems have been studied exten-
sively in the past [9]. The mapping of raw gene expression
data to a Potts ferromagnet requires extensive chip de-
pendent processing and filtering for selecting genes hav-
ing high information content. Details of these procedures
can be found with sources of the data [3,4]. The prepro-
cessing gives an expression matrix with N rows and D
columns. Each row represents a gene and each column a
sample. The entries of this matrix are log2-transformed
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For constructing the Potts ferromagnet each of the N
genes is viewed as a point in D-dimensional metric space
with its coordinates given by its expression levels in the D
samples. A Potts spin si is assigned to each point i and
neighbors of each of the points are identified (as described
later). si takes q different integer values ranging from 1
to q. The spins at neighboring points i and j interact via a
short range ferromagnetic coupling Jhi;ji,

Jhi;ji �
1

K̂K
exp

�
�
1

2

�
dhi;ji
�dd

�
2
�
; (1)

where the angular brackets denote neighbor pairs, dhi;ji is
the Euclidean distance between points i and j, �dd is the
mean distance between interacting neighbors, and K̂K is
the average number of interacting neighbors of a point [6].
The interaction between spins that are not neighbors is set
to zero. The Hamiltonian of the system is given by

H �S� � �
X
hi;ji

Jhi;ji�si;sj ; (2)

where the summation is over interacting neighbors, S �
fs1; . . . ; sNg is the state of the system, and the delta func-
tion �si;sj � 1 if si � sj and zero otherwise.

Disordered ferromagnetic Potts systems have been
studied using Monte Carlo simulations [10] and their
mean-field behavior is well understood, especially in
the context of the clustering problem [6]. Such a system
may have three different phases, viz., ferromagnetic,
paramagnetic, and superparamagnetic, depending on
the temperature and interactions. The system is ferro-
magnetic at low temperatures T and paramagnetic at
high. On increasing the temperature from zero, the sys-
tem passes from a ferromagnetic to a paramagnetic state
either directly in a single transition or via an intermedi-
ate superparamagnetic phase through two transitions. In
both cases the transitions are first order. In the second
case a transition from a ferromagnetic to a superpara-
magnetic phase occurs at a temperature Tfs which is
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This path is of considerable interest in the study of dis-
ordered systems, especially in the context of data clus-
tering as clusters of aligned spins automatically divide
the data into its natural classes and a clear hierarchi-
cal structure among the classes emerges on varying the
temperature.

The path taken by the phase transition depends on the
nature of the interactions and the definition of interacting
neighbors. Unlike regular lattices, disordered systems do
not have an intrinsic definition of neighbors. Some ‘‘rea-
sonable’’ definition must be imposed externally. The
superparamagnetic clustering method uses the K mutual
neighbor criterion with some heuristic modifications [6].
In the K mutual neighbor criterion, for an a priori se-
lected integer K, two points i and j are defined to be
neighbors if and only if j is among the closest K in the
distance-ordered list of nearest neighbors of i, and vice
versa. If the resulting edge set does not place all points
into one connected component, the edges of a minimum
spanning tree, a tree spanning all points and having
minimum total edge length, are added to it. A single
connected component is required to ensure that the
ground state is ferromagnetic.

The procedure described above yields N � 1 different
sets of definitions of neighbors, each corresponding to one
possible value of K, K 2 �1; N � 1�. Each one of these
sets can be viewed as a graph G�K� with edge couplings
given by Eq. (1). In the Potts models on each of these
graphs the path taken by the phase transition is different
with differing transition temperatures and compositions
of correlated ‘‘ferromagnetic grains.’’ We define ĜG�K� as
the graph obtained by only K mutual neighbor criterion.

For very small K, say K � 1 or 2, each point has a very
small number of mutual neighbors and the system forms a
single connected component only through bonds gener-
ated by the minimal spanning tree. These constitute a
significant fraction of the bonds in the system and non-
trivially alter its thermal behavior. Thus, in this case the
path taken by the system on increasing the tempera-
ture and the range of temperatures �T � Tsp � Tfs in
which superparamagnetic phase occurs are effects of
superimposing the minimal spanning tree. As K is in-
creased this effect rapidly decreases and becomes vanish-
ingly small at K near zmst

max, the largest degree in the
minimum spanning tree. For large K each vertex has
many neighbors and for K � N � 1 all the vertices are
mutually connected. In these cases the system behaves as
an ordered lattice with weak bond strength disorder and
goes in a single transition from a fully ordered (single
cluster) to a fully disordered state (N uncorrelated spins).
Thus, for large K there is either no superparamagnetic
phase or a very small one.

At some intermediate values of K a phase transition
through a sizable superparamagnetic phase, i.e., one with
a large �T, may occur. If the system has high granularity
(i.e., is highly inhomogeneous) a superparamagnetic
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phase (�T > 0) is expected to occur for a wide range
�K0; K00� of values of K. It is desirable to identify that
subrange �K1; K2� � �K0; K00� for which �T is the largest.
In this subrange the granularity of the data, if any, is
maximally enhanced. Alternatively, in this subrange the
clusters are expected to be well separated with graphs
consisting of loosely connected ‘‘elements.’’

Quantitative characterization of inhomogeneity in
these systems, that allows comparison for different K, is
a nontrivial task. This is because these systems are in-
homogeneous at two levels, viz., (i) bond strength inho-
mogeneity and (ii) inhomogeneity of the number of
neighbors of each spin. Note, however, that on average
the strength of bonds added on going from G�K� to
G�K � 1� does not differ significantly from that of bonds
added on going from G�K � 1� to G�K�. As a result, the
difference in the inhomogeneity of systems correspond-
ing to neighboring values of K is largely due to topologi-
cal variation. Thus, for comparing the inhomogeneity of
the systems the effect of bond strength inhomogeneity
can be ignored and all couplings Jhi;ji can be set to the
same strength. This equates the total inhomogeneity to
the inhomogeneity of the number of bonds. It is equiva-
lent to the averaging over bond strength disorder.

A quantitative measure of topological inhomogeneity
has recently been introduced by Agrawal [11] using a
‘‘homogeneity order parameter’’ � determined as fol-
lows. In a graph H�K�, measure the probability F�z� that
a vertex has at least z neighbors. If z varies in the range
�zmin; zmax�, F�z� decreases monotonically from unity for
z � zmin to zero for z > zmax. Let c � 1� z be the size of
the ‘‘droplet’’ formed by the vertex and its neighbors and
~FF�c� be the corresponding distribution, ~FF�c� � F�z�. The
parameter � is defined [11] as the area enclosed below the
~FF�c� curve between zero and cmax normalized by cmax. It
is readily calculated using the trapezoidal rule and equals

��K� �
1� �zz � �1� P�zmax��=2

1� zmax
; (3)

where �zz is the mean connectivity and P�zmax� is the
probability of finding a vertex with zmax neighbors.

Since we are interested in comparing the inhomoge-
neity exhibited by N � 1 graphs G�K� or ĜG�K�, we define
the relative version of the homogeneity order parameter as

�?�K� � ���K� ��min�=�1��min�; (4)

where �min � min���1�; . . . ;��N � 1��. For a homoge-
neous graph (one having zmin � zmax) we have �? � 1.
The more spread out is the distribution of the number of
neighbors, the smaller is the value of �?.

Figure 1 shows the variation of the relative homoge-
neity �?�K� of the interaction neighborhood ĜG�K� for
different values of K, obtained using an expression matrix
having 1270 genes and 36 samples taken from colon
cancer data [3]. Similar behavior was observed in other
expression data sets also [11]. Here we use ĜG�K� because
158102-2
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FIG. 1. Variation of �?�K� with K for graphs ĜG�K� con-
structed from colon cancer data (see the text for details).
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the effect of the minimum spanning tree, in clustering,
becomes negligible at K � K0 near zmst

max, equating the
total inhomogeneity of G�K� and ĜG�K� for K > K0. The
topological inhomogeneity of the minimum spanning
tree, however, significantly influences that of G�K� and,
in clustering, ��K� of G�K� does not represent its total
inhomogeneity forK considerably larger thanK0. Figure1
clearly shows a flat minimum of �?�K� in the range K1 �
13 � K � 20 � K2 corresponding to maximally inho-
mogeneous interaction neighborhoods. In this range of
K the graphs ĜG�K� were earlier observed to have small-
world and scale-free structure [11]. The same topological
characteristics were observed for both G�K� and ĜG�K� in
the present case also. Furthermore, the presence of a flat
minimum extending over a range of values of K, as
opposed to a sharp one at a specific value of K, is an
extremely significant and important feature in the context
of clustering: it implies that the data have natural parti-
tions that are stable against small perturbations. The
figure shows that �?�K� is not a very smooth function
of K. This is an effect of finite size (small N). As a result,
the range of K housing the minimum of �?�K� must be
estimated by taking the fluctuations into account. Usually
this range occurs for �?�K� & 0:01.

The following are the supporting simulation results.We
used the expression matrix obtained from colon cancer
data described earlier [3]. Using this matrix we con-
structed disordered Potts ferromagnets for K 2 �1; 100�
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with interactions given by Eq. (1) between neighboring
spins. We used q � 20 spin states because for large q the
results were shown to be largely independent of q [6]. We
carried out extensive Monte Carlo simulations of these
systems using the Swendsen-Wang algorithm [12]. For
each K we sampled thermal variation of energy per spin
e, magnetization m, and their fluctuations, with

m �
�Nmax=N�q� 1

q� 1
; (5)

where Nmax � max�N1; . . . ; Nq�, and Na is the number of
spins with value a.

For each K, Tfs was taken as the temperature at which
susceptibility shows a prominent peak. Similarly, the
temperature at which susceptibility decays sharply to
almost zero is the ideal value of Tsp. This point, however,
cannot be identified from the data for most values of K
because around this point susceptibility does not have a
sharp variation. However, we noted that fluctuations in
energy have a prominent peak at this temperature and
used it to identify Tsp (with supporting decay observed in
susceptibility). Since the system is finite (i.e., the number
of genes is fixed), an analysis leading to better estimates
of transition temperatures is not possible. The thermal
variation of fluctuations in magnetization and energy for
several different values of K is shown in Fig. 2. The figure
clearly shows the smearing of transition points due to
large fluctuations in both quantities. A significant obser-
vation from this figure, however, is that smearing of the
(ideal) sharp decay of susceptibility marking Tsp is com-
pensated by a prominent peak of the specific heat at the
corresponding location. The reverse is the case for Tfs.

The variation of transition temperatures Tfs and Tsp

with K is shown in the K-T phase diagram in Fig. . The
figure clearly shows that Tfs increases very rapidly on
increasing K for small values of K and then seems to
saturate for large K. On the other hand, Tsp initially
increases rapidly on increasing K, achieves a peak, stays
at it for some K, and then starts decreasing as K is
increased further. For large values of K, Tsp also seems
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FIG. 2. Variation of susceptibility
�T � hm2i � hmi2 (top row) and spe-
cific heat CvT

2 � he2i � hei2 (bottom
row) with temperature T for different
values of K in the range �Ka;Kb� corre-
sponding to a maximum of �T in Potts
ferromagnets constructed from colon
cancer data (see details in text). The K
range has been decomposed in three to
show different patterns of behavior.
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FIG. 3. (a) The K-T phase diagram for q � 20 state Potts
ferromagnets constructed from colon cancer data (see details in
text). (b) Variation of the width �T of the superparamagnetic
domain with K. Solid lines are natural smoothing splines.
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to plateau off, at the same value at which Tfs saturates.
The saturation is a consequence of the form of interaction
and also of the fact that the mean-field solution is exact
for large K.

Variation of the width of the superparamagnetic phase
in the K-T phase diagram is shown in Fig. 3(a). Although
the data are very noisy, the overall trend is quite clear
from the figure. For small K the width decreases sharply
and attains a minimum on increasing K. This is a con-
sequence of superimposing the minimum spanning tree
which contributes a significant number of bonds to the
system in this range of K. The effect of the minimum
spanning tree becomes negligible after K * 8, which is
the location of the minimum of �T. As K is increased
further, �T increases rapidly and attains a peak which
seems to be flat and persists for a small range of values of
K. On increasing K further, �T decays and for large K
appears to go to zero. For K � N � 1, �T is expected to
be nearly zero because total interaction of each point is
nearly the mean-field value.

Figure 3(a) shows that the maximum of �T occurs in
the range Ka � 12 � K � 24 � Kb. This range maps,
with slightly wider ends, on the range K1 � 13 � K �
20 � K2 corresponding to the minimum of �?�K�.
�Ka;Kb� is the superset of �K1; K2� because while
�K1; K2� incorporates full averaging over bond strength
disorder, �Ka;Kb� does not. This is because disorder aver-
aging is not relevant for clustering.

The results presented above lead to a few important
conclusions concerning disordered Potts ferromagnets as
well as clustering of gene expression data. First, they show
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that in a given set of disordered ferromagnetic Potts
systems, the superparamagnetic phase occurs for the
widest range of temperatures in those that have maximum
inhomogeneity (or granularity). The corresponding
graphs are also the optimal ones for clustering. Second,
the effect of the minimum spanning tree on clustering
vanishes at K � K0 near zmst

max. As superparamagnetic
clustering is done at K > K0, its solutions are different
from those obtained using methods based primarily on
the minimum spanning tree. Third, the range of tempera-
ture in which the superparamagnetic phase is observed
depends primarily on the overall topological inhomoge-
neity of the interaction neighborhood provided that the
interactions are short ranged. The next conclusion is a
consequence, specifically, of the presence of a flat mini-
mum in a range of K in the relative order parameter. It
implies that the clustering solutions obtained by super-
paramagnetic clustering are robust against noise inherent
in the data.
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