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Identifying active site residues strictly from protein three-dimensional
structure is a difficult task, especially for proteins that have few or no
homologues. We transformed protein structures into residue interaction
graphs (RIGs), where amino acid residues are graph nodes and their
interactions with each other are the graph edges. We found that active site,
ligand-binding and evolutionary conserved residues, typically have high
closeness values. Residues with high closeness values interact directly or
by a few intermediates with all other residues of the protein. Combining
closeness and surface accessibility identified active site residues in 70% of
178 representative structures. Detailed structural analysis of specific
enzymes also located other types of functional residues. These include
the substrate binding sites of acetylcholinesterases and subtilisin, and the
regions whose structural changes activate MAP kinase and glycogen
phosphorylase. Our approach uses single protein structures, and does not
rely on sequence conservation, comparison to other similar structures or
any prior knowledge. Residue closeness is distinct from various sequence
and structure measures and can thus complement them in identifying key
protein residues. Closeness integrates the effect of the entire protein on
single residues. Such natural structural design may be evolutionary
maintained to preserve interaction redundancy and contribute to optimal
setting of functional sites.
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Introduction

Complex systems can be analyzed as networks
of interactions between the system components.
Analyzing the network can then characterize the
whole system and its individual components.1,2

Protein structures are typically perceived as local
structure elements that form diverse topologies and
folds.3,4 However, protein structures can also be
represented as networks (graphs) where amino acid
residues are the nodes and their interactions are the
edges.5 This approach was used to study various
protein aspects, including protein structure flexi-
bility,6 folding of protein domains,7 recurring
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structural patterns,8 key residues in folding,9

residue fluctuation,10 and side-chain clusters.11

Identifying functional residues (e.g., active site
residues) in proteins is a complex issue, even when
atomic detailed structures are available.12 This is
further complicated when no recognizable homo-
logues with characterized functional residues are
known. Only a very small fraction of all known
proteins has been biochemically well studied.
Therefore, for most proteins with solved 3D
structures we need de novo methods to predict
functional residues. Evolutionary conservation
together with structure information is successful
in predicting some ligand binding and active sites
in various proteins.13–16 However, some proteins
with known structures do not have determined,
and maybe even existing, homologues. Using only
structural data, functional residues were identified
by computing structure energetics and ionization
properties.17,18 In a different approach, such resi-
dues could be characterized by their structural
d.
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properties or recurring structural motifs.8,19 Com-
bining different structural and evolutionary residue
properties improves the identification of active site
residues.20 Each method has its own advantages
and limitations, but even integrating different
approaches could not identify all sought-after
sites. New ways to characterize and predict key
protein residues are still needed.

The interactions of protein residues within and
between functional sites are crucial for protein
activity. Analysis of protein structures found them
to be small-world networks.9,10,21 Such networks
are characterized by both clusters of local inter-
actions and “long range” interactions between
different clusters.22 Frequently these networks
include a small number of central nodes that are
hubs through which many nodes can indirectly
connect.23 We sought to examine whether central
nodes of protein residue interaction networks
correspond to functional residues. The closeness
of a residue to other residues on the network was
found to characterize many functional protein sites.
We preformed a large-scale prediction of active site
residues, and examined the relation of residue
closeness to other residue functions. Active site
residue prediction relied on single structure analy-
sis without using homologous sequences or struc-
tures. Residue closeness is distinct from other
structurally derived residue properties. However,
high closeness is associated with sequence con-
servation and is characteristic of key positions in
general, where mutations can abolish protein
activity. It can thus be used, with other measures,
to analyze protein structures. This includes struc-
tures with unique sequences or folds. We discuss
here possible explanations and consequences for
the relation between residue functionality and high
network closeness.
Figure 1. Enzyme residues closeness and degree.
Values are shown for all 59,935 residues from the 178
enzyme chains.On top, highly exposed residues (RSAO50)
are in orange, core residues (RSAZ0) are in green, active
site residues are in red, and all other residues are in blue.
In the distributions below, exposed residues (RSAO0) are
in orange dotted lines, core residues are in green broken
lines, and active site residues are in red. Standardized
closeness and degree values are calculated as noted in
Methods section.
Results

Transforming protein structures into
mathematical graphs

Protein structures were transformed into math-
ematical graphs (networks) by identifying all
interactions between the amino acids in each
structure. We first found all interatomic contacts
using the CSU program24 and then integrated these
contacts by amino acids. In the resulting residue
interactions graphs (RIGs) amino acid residues are
the nodes and their interactions are the edges. We
set out to characterize properties of individual
amino acid residues (nodes) based on their relation
with other residues of the protein (network). For
this end we examined the centrality of network
nodes. Network centrality measures of individual
nodes are based on their distance from other nodes,
or on their position along paths between other
nodes.25 The distance between two nodes is the
number of edges along the shortest path between
the nodes. Centrality measures can also be classified
by their dependence on the whole or on the local
structure of the network. Degree-centrality is the
number of edges each node has (i.e., its number of
immediate neighbors), and is thus a local measure.
Closeness-centrality is derived from the mean
distance of a node to all other nodes, and is thus a
global measure. We first compared these two
distinct centrality measures of protein RIGs.

Degree and closeness centrality measures were
examined for all amino acids in a representative
group of 178 protein chains of enzymes with known
structure and uniformly defined active sites.19

There is a positive correlation between the two
measures for the entire set of amino acid residues
(rZ0.59). Amino acid residues with low degree and
closeness values are mainly highly exposed (rela-
tive solvent accessibility [RSA]R50%), while unex-
posed amino acids (core, RSAZ0) have mainly high



Figure 2. Closeness and accessi-
bility of enzyme active sites. In red
are the 567 active site residues and
in grey all other residues from the
178 enzyme chains.
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values for both centrality measures. Most active site
residues have high degree and closeness values
(Figure 1). Closeness values of active site residues
are significantly higher than those of the other
residues, including those in the protein core. Degree
values of active sites are less distinct than closeness
values from the corresponding values of core and
surface residues (Figure 1). Degree measure is also
similar to other measures that are calculated from
the local environment of structure residues (e.g.,
solvent accessibility, depth). In contrast, closeness is
an attribute of single residues that depends on all of
the protein residues.

The independence of the closeness measure was
examined by comparing it to other residue struc-
tural properties. Both closeness and RSA values
characterize active sites, but they are only partially
related (correlation of rZK0.32, Figure 2). In
addition, there is no detectible relation between
residue closeness values and either properties of
protein structure clefts they are found in (size and
rank), or their B-factors (mean thermal motion of all
the residue atoms) (Supplementary information).
Finally, ROC curve analyses26 of enzyme active site
predictions using RSA and using RSA and closeness
together, show a very significant improvement
when adding closeness to RSA (Supplementary
information). These findings show that closeness is
a distinct and informative property of protein
residues. Our results indicated that active sites can
be characterized and predicted by their closeness
centrality values, with or without other structural
properties.
† http://www.weizmann.ac.il/SARIG
Prediction of active site residues by the
closeness parameter

RIG closeness and RSA values were used to
predict the active sites in the group of 178
previously characterized enzyme chain structures.
In this initial analysis we simply used a closeness
lower-limit value and an RSA lower and upper-
limit values. Many combinations (O2000) of
threshold values were evaluated by a jackknife
procedure. This objectively identified a set of
optimal parameters to use for active site prediction
(standardized closeness values R1.1 and RSA
values of 4.5–40%). These parameters gave over
the entire data set an average of 46.5% sensitivity
(fraction of identified active site residues) and 9.4%
specificity (fraction of correct prediction). The
median overall performance rate (MCC, Matthews
correlation coefficient, a measure that integrates
sensitivity and specificity) of the prediction was
0.20. These values are comparable to the best
published active-site predictions from structural
data alone.20 Full correct prediction (100% sensi-
tivity) was found for about quarter of the proteins
(42/178) and partial correct prediction was found
for 70% of the proteins (Figure 3(A)). These are
highly significant results giving a Z-score of 185.2,
highly unlikely to occur by chance, PwZ0. Better
prediction was found for large proteins, longer than
120 amino acid residues, (49.0% sensitivity and
9.7% specificity means) than for small proteins,
%120 amino acid residues, (13.2% sensitivity, 4.7%
specificity). No predictions at all (zero sensitivity
and specificity) were found for nine of the 12 small
proteins in the examined data. A WWW server
implementing this method is available†.

Relation between residue closeness values and
functionality

Our results showed that some residues have high
closeness values although they are not classified as
active site residues according to the definition used
by Bartlett et al.19 Nevertheless, some of these
residues might be considered as active sites using
other criteria, or might have other functional
importance (e.g., binding of substrates, of cofactors,
or of metals). We chose to examine the relation
between closeness values and sequence conserva-
tion for representative protein families. Sequence
conservation is a good indicator for important sites
on proteins. Closeness was found to positively
correlate with sequence conservation, with values
ranging from 0.24 to 0.62 (Supplementary
information).
Predicting enzyme active site residues by inte-

grating closeness and sequence conservation sig-
nificantly improved prediction by only using

http://www.weizmann.ac.il/SARIG


Figure 3. Active site residues
prediction using closeness, RSA
and sequence conservation.
(A) Active site prediction success
for all analyzed 178 chains using
integrated closeness and RSA.
Large filled circle indicates 54
chains that had 0% sensitivity
and specificity. (B) ROC curves
for all residues from the analyzed
chains, using sequence conserva-
tion active site prediction (broken
line) and using integrated
sequence conservation and close-
ness (continuous line). Sequence
conservation values are from the
CONSURF server60 output for
each chain. Closeness standard-
ized values and CONSURF
sequence conservation values
were integrated for each residue
by adding the closeness value to
the conservation value multiplied
by K2.
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sequence conservation. For highly specific predic-
tions (5% false positives) using only sequence
conservation only gave 33% sensitivity. Adding
closeness to sequence conservation increased the
sensitivity to 51% for the same specificity value
(Figure 3(B)).

Large-scale experimental data on the relation
between protein activity and amino acid substi-
tutions are available for a few proteins. Typically
most of the protein residues were mutated one at a
time to various other amino acids, and the effect on
protein activity measured.27–32 Such exhaustive
mutagenesis studies examined both conserved
and variable residues. The positions where
mutations effected protein activity were identified
directly in T4-lysozyme and barnase,29,32 and
indirectly in TEM1-b-lactamase (TEM1).27

Altogether, the influence of each position on protein
activity was roughly estimated due to several
reasons. First, the activity threshold for enzyme
inactivation is different in the three examples (0.1, 3,
27% for barnase, T4-Lysozyme, and TEM1-b lacta-
mase, respectively). Second, not all possible amino
acid substitutions were examined in these studies.
We thus considered positions where mutations
could abolish activity as key positions.

Key positions in all three structures had higher
RIG closeness values than positions where
mutations had no apparent effect on protein activity
(Figure 4). To quantitatively estimate the use of
closeness and compare it with the use of RSA to
identify key positions we performed a logistic
regression analysis. We combined the data for the
three structures, but only examined the surface
exposed residues, avoiding the simple task of
identifying key residues in protein cores. The log-
odds estimate was 3.7 for using closeness, and 0.9
for using RSA. Thus, for exposed residues closeness
has a strong predictive power while RSA, a
typically used measure,27–30 is a weak predictor
(log-odds estimate close to one).

We correctly predicted both evolutionary



Figure 4. Closeness distribution
in key and mutation-tolerant resi-
dues. Closeness values of T4-lyso-
zyme, barnase, and TEM1-beta-
lactamase (PDB accessions 1lzm,
1a2p, 1axb, respectively). Values of
mutation-tolerant residues are
shown in empty bars and hatched
bars show the values of key resi-
dues, residues where mutations
could abolish protein activity.
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conserved- and variant key positions in TEM1.
Seventy percent of the key positions in this enzyme
are variant (30/43).27 More than a third of these key
residues have high closeness values (11/30). This
fraction of variant key residues that have high
closeness is significantly higher than expected (pZ
5!10K3) from the total number of residues with
high closeness in the protein (17%, 46/263). Similar
significance (pZ6!10K3) is found even if we only
consider the TEM1 solvent exposed residues. We
also identified T4-lysozyme variable key residues
by their closeness values (not shown). This could
not be tested in barnase since all its key residues are
conserved (not shown). Closeness values can thus
complement sequence conservation in identifying
key positions.

RIG closeness of functionally important non-
catalytic residues

To complement the large scale and general
analyses on the nature of residues with high
closeness values we conducted more thorough
Figure 5.Closeness analysis of subtilisin DYprotease. Closen
(PDB accession 1BH6). Closeness increases from blue to red. T
inhibitor, shown in sticks. The right view is related to the top b
Na atom in cation binding site B. Note the infrequency of res
with the subtilisin active and cation binding sites.
examination of specific protein structures. We
chose well-studied examples to study substrate
binding sites, allosteric sites and the effect of
regulatory post-translational modifications.

Substrate, cofactor and ion binding sites

In subtilisin protease,33 high closeness values
identified both substrate binding and one of the two
cation binding-sites, in addition to all catalytic site
residues. While the substrate and catalytic sites are
close to one another, the identified cation binding-
site is on the opposite side of the protein structure
(Figure 5). The cation binding site stabilizes
subtilisin structure.34 We also identified the sub-
strate and ion binding sites, together with active
site, in the ERK2 MAP kinase.35 ERK2 ATP and
Mg2C binding sites could be found by their high
closeness values (Figure 6(A)). Acetylcholinesterase
(AChE) catalytic site is situated within a deep
narrow gorge.36–39 All residues within the gorge
including the catalytic triad, oxyanion hole and the
anionic site had high closeness values. AChE
ess residue values are shown on the surface of the protein
he left view shows the protease active site with a synthetic
y about 908 counterclockwise turn on the Yaxis. It shows a
idues with high closeness values and their exact overlap



Figure 6. Closeness values of
ERK2 MAP kinase. (A) Surface
representation of unphosphoryl-
ated ERK2 MAP kinase (3ERK)
bound to an inhibitor in the ATP
binding site (shown in sticks).
Residues are colored by closeness
values, with red and blue colors
corresponding to the highest and
lowest closeness values, respec-
tively. The active site and ATP-
Mg2C binding region have high
closeness values. (B) Closeness
value changes between phos-
phorylated (P-ERK2) and unphos-
phorylated ERK2 (ERK2) forms
shown on the structure of P-ERK2
(2ERK). Residues whose closeness
significantly changed (more than
one standard deviation) in the
P-ERK2 compared with ERK2 are
shown as sticks. Significantly
increased closeness is shown in
red and significant decrease is
shown in cyan. Helix-C is repre-
sented by the large grey cylinder,
and the helix that forms upon
phosphorylation in the L16 region
is represented by the small grey
cylinder. Phosphate groups are
shown in magenta. The structure
is oriented as in (A).
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peripheral anionic site residues, located on the rim
of the catalytic site gorge, and acyl-binding pocket
also had high closeness values (Supplementary
information).

Allosteric sites

Glycogen phosphorylase (GP) was the first
allosteric enzyme to be isolated and analyzed in
detail.40 AMP binding or phosphorylation mediate
the transition between GP active and inactive struc-
tural states. Long-range allosteric changes occur
between the GP catalytic site and either AMP-
binding or phosphorylation site (45 Å and 35 Å
apart, respectively). The transition into the activated
state is initiated by sliding of two helices, found in
the interface of the GP homodimer. This modifies a
b-sheet in each of the subunits, that in turn transmits
the structural change to the catalytic site.41

A RIG analysis of activated dimers shows that the
residues of the AMP-binding allosteric site have
high closeness values (Mean closeness 1.2G0.16).
Residues of a different, recently discovered, allo-
steric site42 have even higher closeness values
(mean standardized closeness 1.7G0.23). Moreover,
20 out of 26 residues mediating the conformational
changes43 have high closeness values as well (mean
standardized closeness of all 26 residues 1.39G



Figure 7. Closeness and allosteric
transition glycogen phosphorylase
(GP). Chain A of activated (R-state)
GP functional dimer43 (PDB acces-
sion 7GPB) is shown with residues
colored by closeness values. Resi-
dues that transmit the allosteric
signal occurring upon AMP bind-
ing are shown as spheres (residues
133, 162–165, 262–279, 281). Pyri-
doxal phosphate cofactor (PLP),
situated within the catalytic site, is
shown in magenta. AMP bound to
its regulatory site is shown in green.
Closeness values were calculated
by transforming GP dimers into a
single network.
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0.45). This is highly significant relative to the
number of high closeness residues in the whole
protein (159/824, pZ2!10K9). Moreover, all resi-
dues of the AMP binding site form a continuous
stretch of high closeness amino acid residues that
reach the residues that structurally change upon
AMP binding (Figure 7).

MAP kinase activation and RIG closeness
changes

MAP kinase isoforms ERK2 and ERK1 are well
studied ubiquitous, growth-factor-activated, tyro-
sine-phosphorylated, enzymes.44–46 ERK2 reaches
maximal activity upon phosphorylation of two
residues (T183 and Y185).46–48 We compared resi-
due closeness value changes between the inactive
ERK2 unphosphorylated35 and active phosphoryl-
ated (ERK2-P2)49 forms. Phosphorylation causes
local and global structural changes in many ERK2
regions, including rotation of a whole domain.49

However, large increase in closeness (O1 closeness
standard deviations) is found in a few residues
forming the activation-loop (F181, L182, T183), and
residue D335. The activation-loop contains the two
phosphorylation sites. Upon phosphorylation the
loop refolds and activates the protein. The loop
contacts the L16 region, which includes D335. The
conformational changes in L16 are coordinated with
position shifts helix C into the active site49 (Figure
6). The largest increase in closeness (1.76 standard
deviations) is in the phosphorylated residue T183.
This residue is the hub of two new hydrogen and
ionic interaction networks formed within ERK2-P2.
It is responsible for bringing the active site residues
into alignment, the ATP binding Helix C closer to
the active site, and improving the interaction
between the conserved catalytic residues K52
and E69.49 The largest decrease in closeness values
(K1.1 standard deviations) is identified in F329. It is
in a part of L16 that forms a helix after phosphoryl-
ation, and interacts with the activation loop.
Discussion

Transforming protein structures into networks
of residue interactions allowed us to examine the
relationship between each amino acid residue and
the protein structure as a whole. Relationships were
evaluated by the centrality of each residue within
the interaction network. In this study we used the
closeness parameter as a measure of network
centrality, where highly central residues have high
closeness values. Such residues interact with most
other residues directly or by a few intermediates.
Residues with high centrality values are then
assumed to efficiently integrate and transmit
information from and to the rest of the protein.
Such information may appear in a chemical or
physical form, affecting the attraction or repulsion
of amino acids. Our results demonstrate that many
active site residues have high centrality values
(Figure 2). The high centrality of active site residues
suggests they can effectively (directly) disseminate
and receive signals from the rest of the protein.
Active site residues are highly central relative to

solvent exposed residues, where active sites are
typically found, and also even relative to the core of
the protein, where one would expect residues to be
highly central (Figure 1). Active site residues can be
identified by various other approaches. Some
approaches rely on sequence conservation deduced
from multiple sequence alignments,50 some on
structural features such as electrostatic17,18 or
structural clefts51 and some on a combination of



1142 Protein Structures Residue-interaction Networks
such features.13,19,20,52 Here we report that the
combination of centrality and solvent accessibility
already enabled us to identify active site residues in
70% of the proteins within a data set of 178
representative enzymes generated by Bartlett et
al.19 (Figure 3(A)). This is a large scale analysis,
comprising approximately 60,000 residues and 500
active site residues. Our prediction results are thus
highly significant.

Our method defines individual active site resi-
dues, not just patches including them. In addition,
other residues, not directly linked to catalysis
(e.g., binding cofactors or substrates), can also be
identified using our approach (Figures 5 and 6 and
Supplementary information). We suggest that our
new approach for active site identification not only
complements other known methods but also leads
to a deeper understanding of the relationship
between the whole structure of proteins and
their specific functional sites. This relationship is
probably a direct consequence of the necessary
functional robustness of proteins.

Robustness to environmental and mutational
perturbations is fundamental to protein function.
Proteins hence evolve toward a common design
that supports such features. We found this design
reflected in the centrality of amino acid residues
within residue interaction networks. One result of
such network design is that many residues contri-
bute to the optimal arrangement of the active site
(e.g., orientation, charge). This can yield protein
activity resilient to environmental perturbations
(e.g., changes in pH, temperature, ionic strength,
and mutations) by preserving the essential state of
the active site. In each protein, many network edges
(interactions) or nodes (residues) can be indi-
vidually removed while the remaining nodes will
continue to interact by alternate paths. Such a
model is supported by data from exhaustive
mutagenesis studies, where numerous single-site
substitutions are tested within each position of
the protein. These studies show that most
mutations do not impair protein activity.27,29,30–32

We found that mutations in highly central residues
often impair activity (Figure 4). These results are
remarkable since we could only use crude estimates
for the effect of the mutation on the activity of each
protein.

Typically, only a few amino acid residues within
the protein are directly involved in catalysis.19

Nonetheless, protein activity can be modulated by
non-catalytic residues, including residues very
distant from the active site. This is observed in
allosteric enzymes where effectors often bind to
residues distant from active sites. Our analysis of
glycogen phosphorylase, a well-studied allosteric
enzyme, shows that both allosteric regulatory
sites and the residues involved in the allosteric-
derived structural changes are central within the
residue network of this enzyme. This supports
our suggestion that the interactions between allo-
steric and active sites lead to the high centrality of
both.
Amino acid sequence conservation is often
attributed to important sites such as those directly
related to protein function.13,50,52 We followed our
findings on the relation between network centrality
and functional residues by evaluating the relation
between network centrality and sequence conserva-
tion. Our results show that centrality and sequence
conservation are positively correlated in several
diverse protein families (Supplementary informa-
tion). Sequence conservation identifies residues that
are under the same selection pressure in the whole
family. However, some residues that are particu-
larly adjusted for the function or structure in
specific proteins within the family will not be con-
served. This is shown in TEM1-b-lactamase where
an exhaustive mutagenesis study showed that some
positions are both completely intolerant to muta-
tionsandnonconservedwithin theirprotein family.27

Usingnetwork centralitywe identified such residues,
together with conserved residues. Thus, for pro-
teins with known structure, our approach may
complement sequence information in the prediction
of non conserved functional residues.

Active sites were correctly predicted for the
majority of the enzymes in our large-scale analysis
(70% of the structures, that had a median of 67%
sensitivity and 13% selectivity). No correct predic-
tions at all, however, were found by our method for
the remaining enzymes. Examining this group
showed that it included nine of the 12 smallest
enzymes (%120 residues). Residue interaction net-
works of such proteins may not be amenable to our
analysis approach due to their small size. Alter-
natively, their active site design may be different
from that of larger enzymes. These sites might be
identified by analyzing their networks in a different
fashion. We are yet uncertain what might be
common for the remaining (large) enzymes with
no correct predictions. One distinguishing feature is
the distribution of catalytic function types.19 This
distribution is significantly different between the
predicted and unpredicted active site residues in
large enzymes (pZ2!10K2). Two types of catalytic
functions (primer and acid–base, as defined by
Bartlett et al.19) contributed most of the difference,
indicating that our approach and current thresholds
are more successful in predicting certain types of
active site residues.

Improvement in active site prediction was
achieved by combining all chains of some multi-
meric enzymes into a single interaction network.
However, this was not noted for all such enzymes
that were examined, and the overall prediction
success did not noticeably improve, relative to
single chain network analysis (not shown). We
believe that prediction success depends on the
location of the active site residues. Using all chains
gave highly successful predictions for active sites
with residues in more than one subunit, but not
when all the active site residues were within a
single subunit. It is therefore advantageous to
include all available biochemical knowledge
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upon deciding on the analysis parameters and
interpreting its results.

In summary, our results show that key protein
positions have high centrality values in residue
interactions networks. Catalytic, substrate and
co-factor binding, and mutation intolerant residues
were found highly central. Other types of function-
ally and structurally important residues may yet
be found to have specific interaction networks
features. Our approach is unique in not focusing
on residue physicochemical properties or on their
evolutionary conservation. Rather, it relies on the
interactions of each residue and the rest of the
protein. This type of analysis can complement other
existing methods for studying proteins (Figure 3(B)
and Supplementary information). Our active site
residue predictions, using only closeness and RSA
values (47% sensitivity, 9% specificity), are compar-
able to the structural based findings of a recent
work that analyzed the same enzyme set, integrat-
ing RSA, depth, secondary structure, cleft features,
and amino acid type (41% sensitivity, 10% speci-
ficity).20 Using interaction networks may be par-
ticularly useful for protein structures having no
known homologous sequences (ORFans).53,54 We
also showed that non-conserved key positions can
be identified by network analysis. This is important
since while sequence conservation often indicates
crucial protein positions, such positions can also be
variable.55 Protein network analyses can thus form
the basis for identifying important species-specific
and allele specific residues. Not depending on prior
training or comparison to known protein sequences
and structures, our approach is a de novo prediction
method. As such, it may also uncover functional
sites dissimilar to known sites.

Protein structures provide detailed three-dimen-
sional information of the proteins. However, it is not
obvious how and which of these data identifies the
function of each protein and its specific functional
sites. A reductionist approach, transforming protein
structures into abstract networks, provides a dis-
tinct depiction of proteins. We found that a basic
centrality measure of networks nodes can predict
functionally important protein residues. Our
approach enhances other methods of protein func-
tion analysis and illustrates key aspects in natural
design and evolution of proteins.
Methods
† http://www.rcsb.org/pdb/
‡ http://consurf.tau.ac.il
§ http://cast.engr.uic.edu/cast/
Transforming protein structures into residue
interaction graphs

For each protein chain all interatomic contacts were
found using the CSU program.24 These atomic contacts
were integrated for each amino acid residue. Residue
interactions form the edges, and their connected residues
form the nodes of the protein RIG. Interactions included
the backbone peptide bonds as well as non-covalent
bonds, such as hydrogen and hydrophobic interactions.
Protein structures analysis

Protein structures were obtained from the PDB
database†.56 The structure set used for the large scale
examination of our approach is that described by Thornton
and co-workers.19 It does not contain similar (homologous)
pairs and covers all six top-level enzyme classification (EC)
numbers.57 Residue relative accessibility was calculated by
the NACCESS program.58 Protein structures are shown
with the PyMol program (http://www.pymol.org).

Multiple sequence alignment

Structure and sequence alignments of protein
sequences of similar structures were obtained from the
HOMSTRAD database59 or calculated by us. Conserva-
tion of multiple sequence alignment positions was
calculated by the CONSURF server.‡60 The server
calculated the conservation for 91% of the 178 analyzed
chains, not identifying enough homologs for the follow-
ing 16 structures: 1c3j, 2thi, 1gog, 2plc, 3csm, 4kbp, 1chk,
1d8h, 1pya, 1coy, 1fui, 1pgs, 1ps1, 1vnc, 2cpo, and 1uox.

Network analysis

Analysis of protein structure residue interactions net-
works was carried out using programs specifically
written in Perl v5.6.1 and Java v1.4. Graph represen-
tations and shortest paths of the residue network were
calculated using the JDSL java module (Copyright q

1999, 2000 Brown University, Providence, RI and
Algomagic Technologies, Inc., Belmont, MA). Network
centrality measures were developed by Freeman, Beau-
champ, and Sabidussi.61–63 The formula for closeness
centrality calculation62,63 is shown in equation (1).
Basically “closeness centrality” of node x(C(x)) is

calculated as follows:

CðxÞZ ðnK1Þ=
X

y2U;ysx

dðx; yÞ (1)

Where d(x,y) is the geodesic distance (shortest-path)
between node x and any node y. U is the set of all nodes
and n is the number of nodes in the network. The closeness
value is therefore the inverse of the average distance
between x and other nodes ð �dÞ (equation (2)).

CðxÞZ 1= �d (2)

Closeness values are then standardized by calculating their
standard deviation from the mean value in each protein
structure.

Measuring cleft volume and rank

Protein structure cleft volumes were calculated by the
CASTp server§64 using 42 representative proteins from
different enzyme class, subclass, and sub-subclasses (first
three EC number fields).

Statistic procedures

Logistic regression analysis was done using the SAS
software version 8.02 (SAS institute Inc., Cary NC, USA),
using default parameters.

http://www.pymol.org
http://www.rcsb.org/pdb/
http://consurf.tau.ac.il
http://cast.engr.uic.edu/cast/
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Probabilities for finding residues with high closeness
values (O1) were estimated using hypergeometric
distribution. Significance of active site prediction was
assessed by the method used by Aloy et al.13 considering
all 59,935 residues from the 178 analyzed chains. The
Z-score was thus computed with nZ59935, POZ0.082,
and PRZ0.0094 as

zZ ðPO KPRÞ=ðPRð1KPRÞ=nÞ
0:5

Identifying optimal parameters for active site
prediction

A Jackknife procedure was used to identify optimal
prediction parameters. For each 178 analyzed chains
the parameters were chosen from the success rate
(MCC) of the other 177 chains. The median MCC of
each thresholds combination was calculated for all 177
chains. The combination with the highest median
was used to predict the active sites for the current
analyzed chain. Two thousand one hundred and
ninty seven threshold combinations were examined as
follows: standardized closeness lower thresholds
between 0.9 and 2.1 in intervals of 0.1, RSA lower
thresholds between 2.5 and 8.5 in intervals of 0.5,
RSA upper thresholds between 33 and 45 in intervals of
one.

Standardizing the degree of connectivity

To standardize the degree of connectivity for each
amino acid type we collected data of amino acid
connectivity from over 2000 structures (w500,000
amino acid residues). These representative
structures were retrieved from the PDB-REPRDB
database,65 and had the following properties: less
than 30% sequence identity between the proteins,
resolution !3 Å, B-factor !0.3, no chain breaks, no
mutants and no membrane proteins. The degree of
residue connectivity was extracted from each
protein using a self-written program combined with
the CSU program.24 Connectivity degree was then
standardized as number of standard deviations from
the mean.
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