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Chapter 1

Introduction

One of the fundamental modes of understanding and interpreting data, for
which no a priori knowledge of the underlying distribution is available, is
that of organization into sensible groupings. Clustering analysis, the study
of group structure with no prior knowledge, is therefore a major technique
in exploratory data analysis.

Throughout the years many clustering algorithms have been proposed.
Algorithms are based on graph theory, statistical pattern recognition, self-
organization methods and more. In recent years several algorithms which
are rooted in statistical mechanics have been introduced.

Application of di�erent clustering algorithms to a certain data set often
leads to di�erent results. In part, this is the result of di�erent assumptions
the algorithms make about the structure of the data. The sensitivity of
di�erent algorithms to noise, which inherently exists in the data, is also a
major contribution to the di�erence between their results.

The question of structure in the data is clearly a matter of resolution.
Viewing the data from a distance, it may seem to be a single bunch of
points. A 
ea taking a walk inside the same data set, on the other hand,
may consider each point to form its own cluster. Usually, the interesting
structure (if any) lies in mid-range resolutions.

Many clustering algorithms provide as their output some clustering struc-
ture, sometimes in the form of a hierarchy. Other algorithms possess the
ability to deny the existence of any structure in the data. The user of most
clustering algorithms, in any case, is not provided with a measure for the
reliability of the proposed solution.
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Partition into clusters should re
ect the underlying structure of the data.
In less fortunate cases, however, it may be only the result of the algorithm's
tendency to cluster anything. In some cases, some structure exists in the
data by chance : a slight modi�cation of the data would wipe this structure
out. In such a case, the identi�ed structure may be due only to noise.

If the results of cluster analysis are to be taken seriously, one must be able
to distinguish between these cases. For example, if our clustering analysis
of DNA microarray data identi�es a cluster of genes that contribute to the
evolution of cancer, we may very well wish to be assured that this cluster
indeed exists in the data before publishing this �nding.

The concept of cluster validation refers to methods and indicators which
attempt to evaluate the results of a cluster analysis. This evaluation should
be quantitative and objective, if it is to have any meaning. The most common
methods involve the de�nition of some validity index for each cluster, which
is supposed to represent its reliability [1, 2, 3, 4]. Appendix A provides a brief
look into the subject of validity indices, and suggests an index particularly
suitable for SPC .

The de�nition of such an index often encapsulates some assumptions
made about the data, and about what clusters should look like. The most
commonly made assumption about clusters is that of compactness.

In this work we take a di�erent approach, which is based on resampling
techniques [5, 6]. We suggest a resampling scheme and a �gure of merit, which
should re
ect the stability of clusters and clustering solutions to resampling.
In a sense, this is an introduction of noise into the problem, without the need
to postulate a noise model. Clusters which survive the presence of such a
noise are believed to a genuine feature of the data.

Resampling methods have been introduces in the past for cluster validity
in the context of fuzzy clustering [3]. In that case, resampling is used to
determine the number of expected clusters, which is an external parameter
of the algorithm. The leave-one-out scheme [7], and the similar Jacknife
method [6], were also used in the context of clustering [8]. Another resam-
pling scheme, known as the Bootstrap method, was introduced to clustering
validation by Jain et al. [9]. However, in all those cases the application of
resampling has been problem-speci�c. In contrast, our use of resampling is
independent of both the problem and the clustering algorithm.

A large data set often consists of many clusters. Some of these clusters
may be just the result of 
uctuations in the data, while other clusters, of
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roughly the same size, may be highly correlated signi�cant clusters. We
propose to use resampling methods to distinguish between these kinds of
clusters.

The scenario just presented is often the case when we try to cluster gene
expression pro�les, obtained using a novel technique of DNA microarrays (or
DNA chips). We tested our methods on DNA microarray experimental data.

This work is organized as follows. In chapter 2 we give an introduction
to the subject of clustering, and describe clustering algorithms utilized in
our work. Chapter 3 describes the concept of cluster validity, and provides a
simple example to demonstrate the need for such a process. In chapters 4 and
5 we describe our resampling scheme, and demonstrate its use in determining
the optimal resolution to be used, as well as the optimal value of an external
parameter of the clustering algorithm. Finally, in chapter 6 we test our
validation methods on DNA microarray data sets.



Chapter 2

Clustering and SPC

Clustering analysis is the study of group structure with no prior knowledge.
It thus falls into the category of unsupervised learning. It has applications in
vast area of �elds, including image classi�cation [10], classi�cation of proteins
[11], and DNA microarrays data analysis.

The clustering problem is to �nd a partition of a data set into groups,
such that each group indicates the presence of a distinct category in the data.
The problem is formally stated as follows.

Determine the partition ofN given data-points fxigNi=1 into groups,
called clusters, such that the data-points of a cluster are more sim-
ilar, in some sense, to each other than to data-points in di�erent
clusters.

Data are provided to the clustering algorithms either as points in a D-
dimensional metric space; or by a N �N similarity (or dissimilarity) matrix,
where the ij element gives the similarity (dissimilarity) between the data
points i and j.

The two main approaches to partitional clustering are called parametric
and non-parametric. In the former some knowledge of the clusters' structure
is assumed, and in most cases the ability to represent the data-points in a
D-dimensional metric space is essential.

Sometimes assumptions about the structure of the data are incorporated
in a global criterion. The goal of such algorithms is to �nd a clustering
assignment which optimizes this criterion. These methods are concerned

7
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with two major questions: the de�nition of the criterion to optimize, and the
method to optimize it.

In many cases of interest, however, there is no a priori knowledge about
the data structure. Non-parametric methods are suitable to deal with such
cases, as the criteria they employ are local. Agglomerative methods [1],
described in section 2.2, are good examples for this kind of techniques. These
algorithms, however, su�er from a variety of problems, among which the
sensitivity to noise in the data and the lack of criteria to identify signi�cant
partitions are the most notable.

Many algorithms tend to create clusters even when no natural clusters
exist in the data. The problem of clustering-tendency is to decide whether
the clustering solution is \natural" in the data, or has been imposed by the
clustering algorithm. This problem emerges both in parametric methods,
where the number of clusters is assumed, and in agglomerative methods.

Recently, Blatt et al. [12, 13, 14] have introduced a new approach to clus-
tering, based on the physical properties of a magnetic system. The method,
described in section 2.3, is called SPC . This is a non-parametric method,
which makes no assumption about the data, and provides a hierarchical or-
ganization of it. The number of \macroscopic" clusters at any level of the
hierarchy is an output of the algorithm. In this thesis we used the SPC
algorithm as our major clustering method.

2.1 Hierarchical clustering methods

A hierarchical classi�cation is a nested sequence of partitions [1]. Any level
of the sequence can be regarded as a re�nement of it predecessor. In other
words, di�erent levels of the sequence represent classi�cations at di�erent
resolutions.

It is easiest to represent the results of such clustering methods by using a
dendrogram (see, for example, �gure 4.6). A dendrogram is a tree structure,
consisting of layers of nodes. Each node represents a cluster, and the edges
connect clusters which are nested into one another. Distances along the
vertical axis are determined either by a resolution parameter (if available),
or by the steps of the algorithm (e.g. the number of merged clusters in
agglomerative methods - see below). A horizontal cut of the dendrogram
creates a clustering at a certain resolution level.
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Most methods which produce such a hierarchical structure provide no
guidance about the resolution levels which are natural for the problem at
hand. One can have as many clustering solutions as layers in the dendrogram.
As one of its major features, the SPC algorithm provides an inherent method
to overcome this di�culty, as we describe in section 2.3.

2.2 Agglomerative clustering methods

Agglomerative algorithms are methods to perform hierarchical clustering [1].
These algorithms start with fully disjoint clusters, placing each of the N
points into a di�erent cluster. The hierarchy is formed by successively merg-
ing clusters. Agglomerative clustering methods are widely used due to their
conceptual and implementational simplicity.

The various agglomerative clustering methods can be described using the
following scheme, known as Johnson's algorithm for hierarchical clustering
[15];

Step 1. Assign each point to a di�erent cluster !i = fxig and use the sim-
ilarity between the points as the initial similarity matrix between the
clusters S(!i; !j) = Sij.

Step 2. Find the most similar pair of distinct clusters, say !� and !�.

Step 3. Merge clusters !� and !�, and call it !
.

Step 4. Update the similarity matrix by deleting the rows and columns
corresponding to clusters !� and !�, and calculate the similarities (see
below) between the new cluster !
 and the other clusters.

Step 5. Stop if only one cluster, that contains all the points, is left; otherwise
go to Step 2.

Since the agglomerative algorithms merge two clusters at each iteration,
the resulting dendrogram is a binary tree. The number of iterations is always
n� 1.

Various agglomerative clustering methods di�er by the way they calculate
the new similarities between the joined cluster and the other clusters in Step
4. For example, the widely-used Average Linkage (AVL) algorithm de�nes
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this similarity as the average of the pairwise similarity between all pairs of
points in the two clusters,

S(!�; !�) =
1

n�n�

X
xi2!�
xj2!�

Sij ; (2.1)

where n� is the number of data-points in cluster !�. The AVL algorithm be-
longs to a sub-family of agglomerative clustering algorithms called Sequential
Agglomerative Hierarchical Non-overlapping clustering methods (SAHN). In
these methods, the similarity between clusters can be computed using the
similarities of the previous iteration of the algorithm. For example, the AVL
similarity measure (Equation 2.1) can be calculated by

S(!� [ !�; !
) =
n�

n� + n�
S(!�; !
) +

n�
n� + n�

S(!�; !
) : (2.2)

Calculating the new similarities using the previous ones make the SAHN
algorithms relatively e�cient.

Another member of the SAHN family is Ward's method, also called the
minimum variance method. This method de�nes the the similarity between
a merged-cluster and other clusters in such a way, that the most similar
clusters, � and �, are the ones that minimize the square-error

�E2
�� =

n�n�
n� + n�

(~m� � ~m�)
2 ; (2.3)

wherem� is the 'centroid' of cluster !�. This is done by de�ning the similarity
between the clusters as

S(!�[!�; !
) =
n� + n


n� + n� + n

S(!�; !
)+

n� + n

n� + n� + n


S(!�; !
)� n

n� + n� + n


S(!�; !�) :

(2.4)
Our experience, as well as several comparative studies [1], have shown that

Ward's method outperforms other hierarchical clustering methods. Therefore
in this work we apply Ward's method wherever an example for agglomerative
clustering methods is needed.

2.3 Super-Paramagnetic clustering

The SPC algorithm uses a granular ferromagnet as an analog device to cluster
the data set. To each data point we assign a q-state Potts spin, namely a
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variable s which takes the values 1; : : : q. A ferromagnetic interaction Jij > 0
is introduced between each pair hi; ji of neighboring points. The strength of
the interaction decreases rapidly with increasing distance. Following Blatt
et al. [12, 13] we choose to work with a Gaussian form of the interaction,

Jij =
1

K̂
exp

 
� d2ij
2a2

!
; (2.5)

where K̂ is the average number of neighbors of each data-point, a is the
average distance between neighboring points, and dij is the distance between
the points xi and xj. The manner in which neighboring points are chosen is
discussed in chapter 5.

A classi�cation of the points is an assignment of values S = fsig. For
each assignment, a cost function H [fsig] is de�ned:

H [fsig] =
X
hi;ji

Jij
�
1� �si;sj

�
: (2.6)

This is just the Hamiltonian of a ferromagnetic Potts model.
At temperature T = 0, and low temperatures about it, such a disordered

ferromagnet is in its ground state, where all spins are aligned. This is the
ferromagnetic phase. At a very high temperature, the magnet is completely
disordered, with each spin pointing in a random direction. This is the para-
magnetic phase.

The manner in which the magnet goes from the ferromagnetic to the
paramagnetic phases, as temperature is increased, depends on its structure.
If the distribution of the spins is such that they form distinct clusters, then
at some intermediate temperature the correlation between di�erent clusters
will be very weak, while within the clusters correlations are strong. At this
temperature the system is in the super-paramagnetic phase.

The SPC algorithm constructs a hierarchical clustering by locating the
temperature range of each of the super-paramagnetic phases, and identifying
di�erent clustering solutions at temperatures well within the di�erent phases.
These phases are identi�ed using the susceptibility graph �(T ). The suscep-
tibility, in general, measures the 
uctuations in the size of the clusters at any
given temperature. In order to formally de�ne the susceptibility, one �rst
has to de�ne total magnetization m(S). The total magnetization is a linear
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function of the number of data points with the most populated spin-value;

m(S) = qNmax(S)�N

(q � 1)N
(2.7)

where Nmax(S) = max fN1(S); N2(S); : : : ; Nq(S)g, Ni(S) is the number of
points with spin-value i, and N is the total number of spins. The suscepti-
bility is related to the variance of the magnetization at a given temperature:

�(T ) =
n

T

�D
m2
E
� hmi2

�
: (2.8)

In principle, it is easy to identify the phase transition using the suscepti-
bility since it has a peak whenever clusters break. This enables locating
temperatures at which meaningful partitions are obtained.

At each relevant temperature, i.e. a temperature well within one super-
paramagnetic phase, we calculate the correlation between all neighboring
pairs Gij =

D
�si;sj

E
. This is done using a Swendsen-Wang Monte-Carlo sim-

ulation [16]. When Gij exceeds a threshold �, the two points xi and xj are
linked. The cluster solution for this temperature is identi�ed by locating
the connected components induced by these links. Two points are assigned
to the same cluster if they are connected by a \path" of neighboring pairs,
whose correlations exceeds the threshold. The results are insensitive to the
precise value of �, as long as � is well within 1 and 1=q.

Since Gij is a decreasing function of the temperature, each link that
does not exist at some temperature T1 cannot exist at a higher temperature
T2 > T1. This ensures that the clusters created at di�erent values of T form
a hierarchy; every cluster found at T = T2 is fully contained within some
cluster created at T = T1.

The SPC algorithm is summarized as follows [14]:

Step 1. Assign to each data point xi a q-state Potts spin variable si.

Step 2. Calculate nearest-neighbor interactions Jij according to eq. (2.5).

Step 3. Use the SW Monte-Carlo procedure, with the Hamiltonian of eq.
(2.6) to calculate the susceptibility � at a sequence of temperatures.

Step 4. Using the susceptibility, identify the super-paramagnetic regimes.
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Step 5. Select a temperature in each super-paramagnetic regime, and cal-
culate the correlation Gij for each pair of points.

Step 6. Identify clusters as the connected components of a graph, whose
vertices are the data-points, and whose edges hi; ji are such that Gij >
�.

The main feature of the SPC algorithm is its collective clustering. Whether
two points belong to the same cluster or not is determine by a collective ef-
fect, not only by the distance between the points. The correlation function
Gij captures the density of points in the surroundings of i and j. This way,
SPC is robust to noise, and re
ects a natural notion of clusters.

Moreover, the SPC algorithm does not impose any assumption regarding
the structure of the data. The hierarchical organization is observed by using
a resolution control parameter, the temperature. If no clustering structure
exists in the data, then none should be obtained by the algorithm: the magnet
just goes directly from the ferromagnetic to the paramagnetic phase.

As described here, the SPC algorithm uses two external parameters: the
value of the threshold �, and the mean number of neighbors of each point
(which we denote by K).

In most cases the clustering solution is robust to the choice of �. However,
there are cases in which the topology of the resulting dendrogram, i.e. the
order in which clusters break, is a�ected by this choice. Furthermore, there
are cases in which thresholding the correlation function yields un-natural
results, which caused Wiseman et al. [14] to introduce a directed-growth
heuristic. In another work [17] we review these problems, and suggest a
manner in which they can be avoided.

The e�ect of the number of neighbors, on the other hand, is much more
signi�cant. Blatt et al. [12] suggested selecting neighboring pairs according
to the K-mutual neighbors criterion. According to this criterion, the points
i and j should be considered neighbors i� i is one of the K nearest points to
j, and vice versa. This leaves a single parameter, K, to be determined.

This method was originally proposed in order to save computation time
of the SPC algorithm by reducing the number of connections in the graph. It
was then claimed that the performance of SPC is not sensitive to the value of
K. As we discuss in chapter 5, there are cases in which a more careful choice
of K should be made. In this work we use validation methods to identify
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a good choice of this parameter, while in another work [17] we show how
making this choice can be avoided completely.



Chapter 3

Cluster Validity

Cluster analysis is the process of searching for natural groups in a data
set. As stated, this problem is far from being well-de�ned, since the so
called \naturality" of a particular partition is pretty much in the eyes of the
beholder. For example, one may expect clusters to be compact and dense
structures in space; in many cases, however, the true components of some
spatial distribution may be neither compact nor dense.

Most clustering algorithms invoke some heuristic procedure to identify
clusters of data points. In practice, in nearly all cases there are some un-
derlying (many times hidden) assumptions regarding what natural clusters
should look like. If the data under investigation indeed satisfy these assump-
tions, the corresponding algorithm may do a good job identifying these \nat-
ural" clusters. For example, many parametric (such as EM [18]) as well as
non-parametric (such as deterministic annealing [19]) methods assume that
clusters should be compact. Others (such as Valley-seeking [7], and some
graph-theory based algorithms [1]) identify clusters by looking for separating
valleys in the data density distribution.

The concept of cluster validation refers to methods and indicators
which attempt to evaluate the results of a cluster analysis.

This evaluation should be quantitative and objective, if it is to have any
meaning. The aim of cluster validation is therefore to evaluate objectively
the quality of an answer to a subjective question.

Cluster validation has two major uses. First, one wishes to evaluate the
statistical signi�cance of the results obtained by the clustering analysis. Such

15
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a �gure of merit may be used in order to determine how signi�cant is the
claim, that two points reside in the same cluster. Many times one �nds
that applying several clustering algorithms to the same data yields di�erent
results. This should be no surprise: as already mentioned, di�erent clustering
methods interpret di�erently the notion of \natural" clustering, and therefore
look for di�erent partitions, and may also have di�erent sensitivity to noise
(inherently present in the data). One then wishes to use that method, whose
result is most reliable statistically.

A second use of cluster validation is to optimize the choice of external
parameters on which the algorithmmay depend, such as the expected number
of clusters (e.g. EM) or the number of \neighbors" of any point (e.g. Valley-
Seeking, SPC ). Cluster validation is then used to determine the optimal
parameter to be used, i.e. the value which yields the most valid clustering
solution.

An important example is the case of the parameter that controls resolu-
tion. Many clustering methods produce a dendrogram, which can be viewed
as several di�erent solutions, at di�erent levels of resolution, ranging from a
single cluster that contains all points to N clusters with a single data-point
in each. In many cases, however, one is interested only in a single \best"
or \most natural" clustering, and there is no �gure of merit that helps to
determine the corresponding resolution, at which one should \cut" the den-
drogram. Even if such a �gure of merit does exist, its reliability may be
questionable. In this case, the question of the validity of each resolution
level should be answered externally.

Given a validity measure, one may use it to compare several possible
solutions; or just use it to evaluate a given solution. In the later case, some
statistical distribution of this �gure of merit has to be determined, in order
to evaluate the statistical signi�cance of the clustering solution in question.
This distribution is usually obtained using Monte-Carlo methods [1].
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3.1 Cluster Validity - a simple example.

Before presenting our approach to cluster validation, let us brie
y present a
simple example, that demonstrates the problems we are trying to solve.

Consider the probability distribution given in �gure 3.1: the probability
is uniform inside the dark area, and vanishes outside. The dumbbell-shaped
distribution can be described as two circular regions connected by a bridge.
Clearly, the number of clusters suggested by this probability function is a
subjective matter. Di�erent samples of 600 points are drawn from this prob-
ability distribution.

−1 0 1 2 3 4 5 6 7 8 9 10

−4

−3

−2

−1

0

1

2

3

4

Figure 3.1: The probability probability density of our example is uniform in
the dark area, and vanishes in the white area.

A typical sample is shown in �gure 3.2. We would like to perform clus-
tering analysis, in order to estimate the number of components of the dis-
tribution function. Remember that clustering analysis is an unsupervised
approach, so we must assume that nothing is known about this function.

We approach this problem with three di�erent clustering algorithms.
First, we apply the Deterministic Annealing (DA) algorithm [19]. This al-
gorithm is given a maximal number of expected clusters, C. If only a fewer
number of cluster is identi�ed, some of the resulting clusters are expected to
be degenerate.

The cost DA assigns to any partition is based on the distance of each
point from the centroid of the cluster to which it is assigned. In other words,
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Figure 3.2: A typical sample. 600 points were drawn from the probability
density of �gure 3.1.

DA assumes that the clusters can be reasonably described in terms of their
centroids. This approach is suitable if one seeks a solution that will be used
for data compression.

If one views the probability function of �gure 3.1 as a single cluster,
then clearly this cluster is far from comprising a tight distribution about a
centroid. Indeed, as we start DA of with the maximal number of clusters set
to C = 2, the algorithm breaks the data into two sub-clusters, as shown in
�gure 3.3(a). Running the algorithm with C = 3 results in three clusters,
shown in �gure 3.3(b).

The second algorithm we apply to this data set is Ward's algorithm. This
being a hierarchical clustering method, it's results are best presented by a
dendrogram (�gure 3.4). Like all agglomerative algorithms, Ward's method
has to break the data into clusters. Indeed, the �rst partition breaks the data
roughly in the middle of the bridge. However, the level of the dendrogram,
if any, at which the resulting partition is reliable, is not known.

Finally, we let SPC have its way with the data. The sizes of the largest
clusters, as function of temperature, as well as the susceptibility curve, are
given in �gure 3.5. Only a single transition is observed, at T = 0:095. The
analogous Potts magnet moves directly from the ordered (ferromagnetic)
phase (a single cluster) to the completely disordered (paramagnetic) phase
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Figure 3.3: Clustering solution according to the Deterministic Annealing
Algorithm, with (a) C = 2 and (b) C = 3 clusters.
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Figure 3.4: Clustering solutions according to Ward's algorithm.
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(many small \clusters"). SPC identi�es correctly the absence of cluster struc-
ture in the data.
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Figure 3.5: Cluster size (a) and susceptibility curve (b), according to SPC .
No super-paramagnetic phase is observed.

A somewhat less typical sample, drawn from the same probability func-
tion, is given in �gure 3.6. One can observe that due to 
uctuations, a wide
gap has appeared at the middle of the bridge. Indeed, in this case SPC
identi�es a super-paramagnetic phase with two clusters (�gure 3.7).

Our aim is to identify the \correct" number of components in the un-
derlying probability function. We saw that DA, Ward and SPC provided us
with di�erent results for the same data (�gure 3.2). The reason for this is
that the assumptions made implicitly by DA are not suitable for the data,
while Ward (like any agglomerative algorithm) always breaks the data into
clusters (even when none realy exists). The unsupervised learner, however,
remains puzzled, and would like to have a way to choose which of the di�erent
answers is most suitable for the data.

Furthermore, DA gave di�erent answers for di�erent values of the external
parameter C. We also observed that a somewhat untypical sample, taken
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Figure 3.6: A less typical sample. 600 points were drawn from the probability
density of �gure 3.1. A gap in the data can be observed in the middle of the
bridge.
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Figure 3.7: Cluster size (a) and susceptibility curve (b) for the second sample,
according to SPC . A super-paramagnetic phase is observed. In this phase,
two cluster are identi�ed, consisting of points on di�erent sides of the gap.
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from the same distribution, can lead to erroneous results. In most cases, of
course, it is not trivial to observe that the sample is, in some sense, untypical.
Moreover, it may be that this sample, typical or not, is all one has to work
with. The user faces several possible clustering solutions and would like to
know which of them is less likely to be an artifact caused by some unlikely

uctuation. Cluster validation should supply the answers to this kind of
questions.



Chapter 4

Resampling approach to

Cluster Validity

Imagine that a data set is drawn from a probability distribution, which is a
mixture of several density functions. One may state that the aim of clustering
is to identify the di�erent components of the distribution, in the sense that
every cluster should correspond to one of the components.

The ability to succeed in this task depends on several conditions. First,
there must be some separation in the data space between the high den-
sity regions of the di�erent components. In case of substantial overlap, no
distinction between the density functions is possible without making strong
assumptions about the structure of the data. Second, there should be enough
representatives of each component in order to recover the underlying struc-
ture.

A third condition, which is rather di�cult to test, is that the data set
represents correctly the underlying distribution. For example, imagine that
in the example of the previous section, an improbable sample is drawn, with
not even a single data point in the bridge. Clearly in this case no clustering
analysis will recover the single-cluster structure correctly.

Let us say that a scientist is investigating mice, and comes to suspect that
there are several types of them. For whatever reason, this scientist believes
she can distinguish between the types by measuring only the weight of the
mice. She therefore weighs all the mice in her lab, looks for clusters in this
one-dimensional data, and �nds two clusters. This result can be interpreted
in two ways. The �rst is that there are indeed two types of mice. We can

23
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say, that in this case the two-cluster solution is \natural" to this problem.
However, it may also be that there is only one type. The reason for the
apparent two-cluster solution in this case is that there were not that many
mice in the lab, and it so happened that for some range of weights there was
no representative mouse. We call this a sampling artifact. Cluster validity is
interpreted in this section as the need to distinguish between natural clusters
and sampling artifacts.

In order to cope with the noise which arises from sampling the data set,
one may wish to work with several di�erent samples, and compare the results
of clustering analysis of each one of them. In practice, one cannot a�ord, or
may not have available, a large sample set. To overcome this problem, we
may use resampling methods to obtain di�erent samples from the original
set.

We expect that breaks in the data, which are due to the genuine struc-
ture of the underlying probability distribution, will be present in most of the
resamples. On the other hand, breaks or gaps that are due to the sampling
noise should appear only in a small fraction of the resamples. This would en-
able us to identify correct clustering solutions, and leave out those partitions
which are due to sample artifacts.

4.1 Quantitative analysis: A one-dimensional

example

To give a quantitative expression to the qualitative statements made above,
we analyze a simple one-dimensional case, and show that indeed natural
clustering separation is relatively stable under resampling.

Let us look at a one dimensional data set which is constituted of points
selected from a uniform distribution, characterized by the mean distance be-
tween neighboring points, 1=�. If our clustering results re
ect the underlying
distribution from which the data were selected, then clearly a 'correct' answer
should identify only one cluster in this data set.

Consider a simple nearest-neighbor clustering algorithm, which assigns
two neighboring points to the same cluster if and only if the distance between
the two is smaller than a threshold a, where a is a parameter of the algorithm.
Clearly, a controls the resolution of the clustering: for very small a, no two
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points belong to the same cluster, and the number of clusters is just the
number of points; for very large a, larger than any nearest neighbors distance,
all pairs of neighbors are assigned to the same cluster, and hence all points
reside in one cluster.

We would like to validate the clustering solution for the full data set, with
a given value of a, using resampling. The resampling scheme we use is to
decide independently for each data point whether it is kept in the resample
(with probability f), or is discarded (with probability 1� f). We call f the
dilution factor. Length scales of the original problem get rescaled by the
resampling procedure by a factor of 1=f , so that the mean distance between
neighboring points in the resamples is roughly 1=�f . Clustering is therefore
performed on the resample with a rescaled threshold parameter a0 = a=f .

The nearest neighbor distances between the points of our sample are
distributed according to the Poisson distribution,

P (s) = �e��sds: (4.1)

Let us choose the parameter a, and assume that the nearest-neighbor al-
gorithm falsely identi�es a break into sub-clusters, i.e. there exists some
nearest-neighbor distance b which is larger than a. We would like to esti-
mate the probability that this break into sub-clusters will also appear in a
resample.

We therefore identify, after the resample, two neighboring points closest
to the gap, which reside on di�erent sub-clusters in the original solution. We
ask what is the probability that the distance between the two after resampling
exceeds a0 = a=f , in which case the division into two sub-clusters appears
at the same place. In order to answer this questions, we should �nd out
what is the probability that the distance between the two is constructed of
m distances of the original sample, and then �nd out what is the probability
for such a combined distance to be larger than the new threshold.

In order for the distance under consideration to be constructed of m
original distances (on top of the one which created the gap), m points of
the sample must not survive the resampling, while the (m+ 1) point should
survive. The probability for such an event is f(1� f)m.

The combined distance in this case is distributed like the sum of m Pos-
sionian random variables, that is with probability distribution

Pm(S) =
(�S)m�1

(m� 1)!
e��S: (4.2)
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From this we conclude that the probability for the total distance between
the two alleged sub-clusters to be greater than a=f , is just the probability
for the sum of the m-distances to be greater than a=f � b, that is

Bm � 1

(m� 1)!
�(m;�=f � �)); (4.3)

where we have introduced the dimensionless variables � = �a and � = �b.
�(n; z) is Euler's incomplete Gamma function,

�(n; z) =
Z 1

z
e�ttn�1dt; (4.4)

except that in our convention, �(n; z < 0) = �(n; 0) = (n � 1)!, so Bm = 1
for � � f�.
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Figure 4.1: This �gure shows a one dimensional data set (bottom) and two
resamples with dilution factor f = 1=2 (middle and top). We consider two
values of the resolution parameter: a = 1 and a = 2. The gap in the original
sample is b = 3, so two clusters are identi�ed with both resolutions. In
the resamples we use a rescaled resolution parameter, a0 = 2a. For a = 1,
i.e. a < b=2, the gap survives any resample, so Pgap(a < bf) = 1. For
a = 2, however, the gap may survive (middle) or may not (top), and hence
Pgap(a > bf) < 1.

Altogether, we �nd that the probability for a gap to appear in the same
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place in the resample is given by

Pgap =
1X

m=1

f 2(1� f)m�1

(m� 1)!
�(m;�=f � �); (4.5)

where we took the upper limit of the summation to be in�nite assuming that
sample size is large, and noticing that the summation terms decay very fast.
This probability function and the arguments given above are explained in
�gure 4.1 and its caption.

The probability Pgap is plotted in �gure 4.2 against the dimensionless
variable � = �a, for of � = 5. In this �gure we have taken the dilution
factor f to be either 2/3 or 1/2. For small values of � (where � < f�, the
probability for the gap to reappear in the resample is unity. As a gets larger,
this probability declines.
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Figure 4.2: The probability that a gap of size b = 5=� in the bulk of a cluster
will survive resampling, as a function of the dimensionless parameter � = �a.
Dilution factors f = 2=3 and f = 1=2 were used.

Figure 4.3 shows Pgap again, but here we take � = �. The fast decay of
this probability demonstrates the fact, that gaps which are much larger than
the mean distance are very unlikely to survive resampling at the relevant
resolution.

Similarly, we may look at two points, whose distance from each other is
smaller than a, so � < �. These two points reside in the same cluster at this
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Figure 4.3: The probability of a gap of size b = a in the bulk of a cluster to
survive resampling, as a function of the dimensionless parameter �a. Dilution
factors f = 2=3 and f = 1=2 were used.

level of resolution. The probability that this is the case after resampling is
the probability that the new distance is constructed fromm original distances
(given by (4.2)), times the probability that the sum of distances is smaller
than a=f � b:

Pint =
1X

m=1

f 2(1� f)m�1

(m� 1)!

(m;�=f � �): (4.6)

Here 
(n; z) is the other incomplete Gamma function,


(n; z) =
Z z

0
e�ttn�1dt; (4.7)

and we take 
(n; z < 0) = 
(n; 0). This function is getting close to unity
very fast for � > �, as we learn from �gure 4.4, where Pint is drawn for the
case of � = 5. This behavior marks the stability of the correct solution.

4.2 Using resampling to determine relevant

resolutions

Let us now allow another uniformly distributed cluster in this problem, sep-
arated from the other cluster by some distance �. Assume that �� � 1,
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Figure 4.4: The probability Pint for a gap of size � = 5, which for � > 5, does
not break the cluster in the original resample, not to do so in the resample.
Here we used the dilution factors f = 2=3 and f = 1=2.

such that the two clusters are easily separated. Clearly, if � > a=f , this gap
will survive the resampling. Making a large enough to be comparable with
�, so that the gap between the clusters may be unstable, implies that our
dimensionless variable �a is very large. From Pgap of eq. 4.5 we learn that
in such a case no other crack in the data (inside either cluster) can be even
remotely stable.

More generally, we may identify �ve di�erent regimes of the threshold
parameter a :

1. For very small a, practically any point forms its own cluster. This
solution is stable to resampling.

2. For a comparable with 1=�, we �nd some cracks inside each cluster. As
we've seen, this solution is very unstable to resampling.

3. As a gets much larger, but still substantially smaller than �, the clus-
tering solution identi�ed by the nearest-neighbor algorithm is the true
solution. This solution is once again stable to resampling.

4. The stability of the solution declines again as a becomes comparable
with �.
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5. Finally, as a becomes very large, all data points reside in the same
cluster. This solution is again very stable.

There are therefore three regimes of the resolution parameter, where clus-
tering solutions are robust against resampling. First, there are the low and
high ends, which should be considered trivial. Than, there may be other
stable regimes, whose existence marks other relevant scales in the problems.

4.3 Figure of merit for stability under resam-

pling

We turn now to de�ne a score M that re
ects the stability of a clustering
solution under resampling.

First, let us de�ne the clustering assignment matrix T ,

Tij =
(
1 points i and j belong to the same cluster
0 otherwise

(4.8)

Our �gure of merit is based on comparing two such matrices, T and T (n),
where the �rst corresponds to the clustering of the original sample, and the
second to clustering the nth resample.

We are now ready to de�ne our �gure of merit,

M =� �
Tij ;T

(m)
ij

� (4.9)

where the averaging implied by the � � � notation is over all neighboring
pairs which survived the resample, and then over the resamples. Clearly,
0 �M � 1, with M = 1 for perfect score.

If our clustering algorithm depends on some external parameters, then so
does the assignment matrix. It is than clear that M depends on the same
set of parameters. One must take care to de�ne the parameters in such a
way, that it would be reasonable to apply the algorithm with the same set of
parameters both when clustering the original sample and any of its resamples.
For example, in the nearest-neighbor algorithm described earlier, specifying
the threshold in terms of the mean nearest-neighbor distance would enable
using the same value for the original sample as well as for the resample.
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We can state the role ofM formally: given a clustering algorithm A(�),
which depends on a set of external parameters �, the reliability of the clus-
tering result can be assessed by M(�).

4.4 Quantitative insight - cont.

We go back now to the one dimensional model and the nearest-neighbor
clustering algorithm, and examine the behavior of the function M in this
case.

Let us choose two pairs of neighboring points. The �rst pair resides inside
one of the two components of the distribution. Let us denote its points i and
j, and the distance between them b. We can write the contribution of this
pair to M in the following way:

P (Tij = 1)P (T 0
ij = 1jTij = 1) + P (Tij = 0)P (T 0

ij = 0jTij = 0)
= P (b < a)Pint + P (b > a)Pgap;

(4.10)

where T is the assignment matrix for the clustering solution of the original
sample, and T 0 the assignment matrix of a resample. In order to determine
the typical behavior of this quantity, we average it over all possible values of
b. For values of b which are smaller than a, no break appears in the original
sample, and therefore we consider the probability that none would appear
in the resample. For values of b which are larger than a, a break into sub-
clusters does appear in the sample, and therefore in that case we consider
the probability that the same would happen in the resample. Finally, we
combine these two regimes of b, and have

A(�) =
Z �

0
e��Pint d� +

Z 1

�
e��Pgap d� (4.11)

where we have used again the dimensionless variables � = �a and � = �b.
The two points which make up the second pair, k and l, are on two dif-

ferent sides of the gap � between the two distribution components. Here we
have Tkl = �(a��), where �(x) is the unit step function. The contribution
of this pair to M is therefore given by

B�(�) =

(
Pint � � �
Pgap � < �

; (4.12)
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where we introduced another dimensionless variable, � = ��. We note that
this contribution is non-analytic, due to the non-analyticity of the distribu-
tion function, caused by the abrupt switch from Pint to Pgap.

In order to estimate M, we should average over the contribution of all
pairs. Of course, there are many more pairs inside the two components then
ones which cross the gap between them. Nevertheless, we weigh here the two
types equally, since this is more typical to higher dimensional cases. In the
numerical experiments that follows, we do this by counting all pairs (not just
neighboring ones). Our �nal expression for M is therefore

M(�) =
1

2
[A(�) +B�(�)] : (4.13)

Of course,M(�) depends implicitly on the dilution ratio, f . This function is
plotted, for both f = 1=2 and f = 2=3, in �gure 4.5, where we have assumed
the inter-cluster distance � = 5=�. A clear peak can be observed in both
curves at � ' 2:5 and � ' 3:3, respectively. These peaks correspond to the
most stable solution. Looking at the pro�le ofM as a function of �, one can
clearly observe the �ve regimes discussed in section 4.2.

4.5 Numerical Experiments in One Dimen-

sion

We show now that the score M indeed behaves in the way we anticipated
in section 4.2, using several numerical experiments, with di�erent sets of one
dimensional data.

First, we used the nearest-neighbor algorithm on data similar to that
described in our calculation, namely two uniformly distributed clusters, with
separation ten times as large as the mean nearest neighbor distance, �� = 10.
Our full sample is of size N = 200, and each resample is of size 130 (i.e.
f � 2=3). We created 100 resamples, and applied the geometric clustering
procedure for each one of them.

We express again the threshold parameter by the dimensionless variable �,
such that the threshold is given by �=�, where again ��1 is the mean nearest-
neighbor distance. Using this notation, we apply the algorithmwith the same
value of the parameter � both for the full sample and for its resamples.
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Figure 4.5: Mean behavior of M as a function of the geometric threshold,
according to equation (4.13), for two clusters. The function is evaluated
for the inter-cluster distances (a) � = 5� and (b) � = 10�, with dilution
parameters f = 1=2 and f = 2=3.
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Our �gure of merit is calculated for di�erent values of �, as shown in
�gure 4.6. The peak between � � 4 and � � 7, corresponding to the correct
clustering solution, is clearly identi�ed.

We next turn to the case of three clusters. Here we can distinguish
between two cases: the �rst, when the distance between the left cluster and
the middle one is considerably smaller than the distance between the right
cluster and the middle one; �1 = 10��1; �2 = 20��1. In this case, a
hierarchical clustering solution which �rst breaks the whole data into two
clusters and then, as � increases, breaks one of the clusters into two sub-
clusters, can be considered as correct. Our �gure of merit for this case is
shown in �gure 4.7(a), and indeed - the two solutions (of two and three
clusters), observed at � = 7 and � ' 12 respectively, can be identi�ed as the
correct ones.

The second case is the one where the separations between adjacent clus-
ters are more or less the same. In this case, there is only one correct solution,
which identi�es three clusters. The curve obtained for M(�) (�g. 4.7(b))
agrees with this statement.

When trying to apply the same approach to noisier data, we found that
the noise may be comparable with the size of the peak, and may wipe it out
completely. In order to deal with this e�ect, we limit the calculation of M
to points which belong to clusters larger then

p
N , where N is the size of the

sample, i.e. 'macroscopic' clusters.
The same approach was taken for data built of 3 Gaussian clusters, equally

separated, with � = 20��1. The results are show in �gure 4.8. Values of �
near the prominent peak correspond to the correct solution (of three clusters).

4.6 The temperature is a resolution parame-

ter

In the next sections we apply the resampling scheme described above to data
of higher dimension, using the SPC algorithm. We would like to see the
connection between the resolution parameter � of the geometric model, and
the parameters of SPC . To this end we consider a one dimensional random
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Figure 4.6: Resampling results for a one-dimensional data set. 200 points
were chosen uniformly from two clusters, separated by �� = 10. Histogram
of the data is given in (a). We performed 100 resamples of 130 points, (i.e.
f � 2=3) to calculate M. In (b) we plot M as a function of the resolution
parameter �. The peak between � � 4 and � � 7 corresponds to the correct
two cluster solution, as can be seen from the dendrogram shown in (c).
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Figure 4.7: M as a function of the geometric threshold, for two data sets,
constructed from three clusters, with non-equal (a) and equal (b) separation.
Histograms of the two data sets are given on the right. The two cluster
solution, seen at an intermediate resolution, should be considered correct
only in the �rst case.
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Figure 4.8: M(�) for three equally spaced clusters. The shortest distance
between points of di�erent clusters is � � 20��1. The points of each cluster
are chosen with normal distribution about di�erent means. 20 resamples
were performed with dilution factor f = 2=3. Only points in \macroscopic"
clusters were considered.
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Ising model, with coupling constants de�ned, as in SPC , by

Jij =

p
�

2
exp(��

2d2ij
2

); (4.14)

where dij is the distance between neighbor points on a line, sampled from
some distribution.

The clustering assignment is such that two nearest neighbor points are as-
signed to the same cluster if the correlation Gij is larger then some threshold
�.

We then notice that

Ti;i+n =
n�1Y
j=0

�(Gi+j;i+j+1 � �)

=
n�1Y
j=0

�(tanh
�

2
e�

�2d2
i+j;i+j+1

2 � �)

=
n�1Y
j=0

�(�� �di+j;i+j+1) (4.15)

where � �
q
�2 log 2

�
tanh�1 �.

This is a one-to-one correspondence between the geometrical resolution
parameter � and the inverse temperature �. A higher temperature (smaller
�) means a higher resolution (larger �).

We also expect the resolution of the physical model to depend on the range
of the interactions, so we expect to �nd similarity between the dependence of
M on the number K of neighbors, to the dependence on �. This dependence
is not manifested in these one dimensional models, where the concept of
nearest-neighbors is more strict.

4.7 Resampling and the SPC algorithm

In previous sections we have shown how resampling can be used to determine
relevant resolution at which a problem should be clustered, and have made
the connection between the temperature variable of the SPC algorithm and
the resolution parameter.
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SPC provides a hierarchical clustering solution. In section 2.1 we men-
tioned that one of the problems of hierarchical algorithms is that they often
do not provide a method to identify which levels of the hierarchy are rele-
vant to the problem. The SPC algorithm does enable locating the meaningful
levels of the tree by the susceptibility curve. The question, which of these
levels indeed re
ects the underlying structure of the data, is still open. This
question is approached here by the method of resampling.

Again, we demonstrate this behavior with a toy problem which can be
visualized. This is a two-dimensional data set, shown in �gure 4.9. The
angular coordinate is uniformly distributed, � � U[0; 2�]. The radial coordi-
nate is normal distributed, r � N[R; �] around three di�erent radii R. The
outer \ring" (R = 4:0, � = 0:2) consists of 800 points, and the inner \rings"
(R = 2:0; 1:0, � = 0:1) consists of 400 and 200 points, respectively. The
partition which best represents this distribution function is, of course, the
one which identi�es the three \rings" as three di�erent clusters.
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Figure 4.9: The three-ring problem. 1400 points are sampled from three
distributions described in the text.

The results of applying the SPC algorithm to this data set is given in
�gure 4.10. We identify here three levels of resolution, apart from the two



4.7. Resampling and the SPC algorithm 39

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

100

200

300

400

500

600

700

800

900

Temperature

C
lu

st
er

 s
iz

e

Outer ring

Middle ring

Inner ring

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Temperature

χ

(b)

Figure 4.10: SPC results for the full data set. �gure (a) shows sizes of
the largest clusters as a function of the temperature. Figure (b) shows the
susceptibility curve.

trivial ones: (i) Two large clusters, one of them corresponding to the outer
ring (T ' 0:01); (ii) Three clusters, corresponding to the three rings (T =
0:03� 0:08); and (iii) small clusters, of tens of points in each.

We performed 20 di�erent resamples from this toy data set, with a dilution
factor of f = 2=3, and �nd it easy to identify the same levels of resolution
in the resulting dendrograms. A typical result is shown in �gure 4.11. It
should be noted, that the �rst level (that of two clusters) did not occur in
all resamples.

It is now straightforward to calculate the value of M at each level. We
present the results as a function of temperature in �gure 4.12. The behavior
of M here is pretty much what we would expect, with two trivial maxima,
and one at T = 0:05 which corresponds to the \correct" solution, of three
clusters.
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Figure 4.11: SPC results for a typical resample. �gure (a) shows sizes of
the largest clusters as a function of the temperature. Figure (b) shows the
susceptibility curve.
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Figure 4.12: M as a function of the temperature for the three-ring problem.



Chapter 5

Resampling and SPC graph

connectivity

The input for the SPC algorithm is a list of dissimilarity measures of neigh-
boring points. The preprocessing scheme should therefore decide which pairs
of points should be considered neighbors, and what is the dissimilarity be-
tween those points. This dissimilarity measure can be obtained in many
di�erent ways: it may be a distance in a metric space, a correlation function,
etc. . The choice should be the most natural one for the problem.

The choice of which points are considered neighbors is less natural. Gen-
erally, the concept of neighboring points has nothing to do with the problem
at hand; it is just a requirement of the algorithm. Moreover, a user of the
SPC method, who is not interested in the details of the algorithm, is not
aware of the meaning of this choice.

We may think of determining which points are neighbors as constructing a
graph, in which each vertex is a data point, and each edge connects two points
which are neighbors. A useful way of constructing this graph is by using the
K-mutual neighbors criterion. According to this criterion, two points are
considered neighbors if the �rst point is one of the K closest points to the
second point, and vice versa. K is a parameter, which should be supplied
externally. The features of this method are brie
y described in section 5.2.

The value of K determines the connectivity of the graph, and as turns
out, changing the connectivity may yield di�erent clustering results. In other
words, the choice among various values of K may be equivalent to the choice
between several possible clustering solutions. This subject is discussed in

41
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the next section. In another work [17] we describe a scheme to eliminate the
external construction of the graph all together.

Here we take a di�erent approach and compare the validity of the di�er-
ent results obtained by using di�erent values of K. Again, we de�ne good
clustering to be the one that represents better the underlying distribution
of the data. Resampling methods, described in the previous section, are ap-
plied, with the hope that again. values of K that maximize stability under
resampling, yield clustering that �ts the data best.

This chapter demonstrates the use of clustering validity to establish a
good working value for an external parameter of a clustering algorithm.
Similar approach has been taken in [3] in order to determine the number
of clusters in a problem, which is the external parameter c for the c-shell
fuzzy clustering algorithm.

5.1 SPC results are a�ected by the connectiv-

ity of the graph

The strength of the SPC algorithm lies in its ability to use cooperative be-
havior in order to determine the real correlation between two neighboring
points.

An alternative description for the algorithm can be:

Step 1. For each edge hi; ji connecting neighbor points, calculate the cor-
relation function Gij(T ) for a range of temperatures.

Step 2. Order the edges according to the temperature T� for whichGij(T�) =
� (one usually takes � = 1

2
).

Step 3. Start with a graph where each pair of neighboring points is con-
nected by an edge. To create a dendrogram, remove the edges one at
a time, according to the order of Step 2.

This description shows the resemblance between the SPC algorithm and
the agglomerative methods, the main di�erence being the use of spin-spin
correlations rather than distances. The advantage of using correlations rather
than distances is demonstrated in �gure 5.1.
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Figure 5.1: The advantage of using correlations rather than distances. We
consider the data set shown in (a). Roughly 370 points reside in each cluster.
Clearly, the two cluster solution should not be a�ected by the presence of
the �lament formed by the 15 points colored in red. Indeed, �gure (b) shows
such a partition found by SPC (with K=15). However, if the order in which
edges are broken is determined by distances (as it is done in the single-linkage
algorithm), then the �lament survives long after the clusters start to melt.
The partition into two clusters is not observed due to the red �lament, which
consists of less than 2 percent of the data.
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However, if the input graph is very sparse, the correlation between two
points is determined mainly by the distance between them. In this case,
SPC results should be not far from those of the single-linkage agglomerative
algorithm, and thus sensitive to noise.

On the other hand, a graph which is too highly connected may blind
SPC to the cluster structure. To understand this phenomenon, consider the
data of �gure 5.1(a), either with or without the red points. In a case of
very high connectivity, there are many connections both inside each clusters
and between the two. At low temperatures the points inside the clusters
are highly correlated and, therefore, all connection between them can be
considered as a multiple connection between two super-spins. These bonds
join forces, and therefore the situation is just as if the distance between the
clusters had been much shorter. As the temperature rises, the two clusters
start to break, and the bonds connecting them start to act independently.
Therefore, the correlation of bonds within the clusters and bonds between
them decrease together. There is no temperature at which the two natural
clusters are separated while still intact.

We summarize by stating that a graph which is under-connected damages
SPC 's power to observe collective structure; a graph which is over-connected
smears the underlying structure. The level of connectivity must therefore be
chosen with some attention. However, once in the correct range, no �ne
tuning of the edge structure is necessary.

5.2 The K-mutual-neighbor criterion

The task of the K-mutual-neighbors (KMN) method is to select neighbor
pairs, or to determine which edges of the similarity/dissimilarity graph to
keep. The method can be described in the form of an algorithm:

Step 1. For each point i, order all of its neighbors j by their similarities to
i and set kij to the ordinal number of neighbor j. Note that in general
kij 6= kji.

Step 2. Keep only connections for which kij � K and kji � K, meaning
that point i and point j are at most the K-th neighbors of each other.
All other connections are set to zero.
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The number of connections that are removed by this method depends on
the integer parameter K. A larger K value yields a denser graph, or a higher
connectivity.

The main feature of the KMN method is that it separates (i.e. removes
connections between) regions that have di�erent densities. In order to explain
this behavior, we can picture the method, for the case of data residing in a
metric space, in the following way. Consider a sphere around each data point
that includes its K nearest neighbors. The connection between two points is
kept only if both are within the spheres of each other.

In a uniform density, it is likely that if point i is inside the sphere of
point j then also point j is inside the sphere of point i. Therefore, in the
uniform density case, as a �rst approximation, points that are closer than the
average distance to the K-th neighbor will be connected. On the other hand,
if there is a gradient in the density, on the scale of the average K-th neighbor
distance, then spheres around points in the dilute region will include points
from the dense region, whereas points in the dense region will have small
spheres around them which will not include the points in the dilute region;
hence two such points will not be connected. Therefore, the overall e�ect of
the KMN algorithm is to remove the connections between regions of di�erent
densities.

5.3 Using resampling to determine interac-

tions range.

The data we examine is constructed from three 2-dimensional ellipse shaped
uniform distributions, which are shifted along the x-axis. The smallest dis-
tance between the two left distributions is 10 times the mean nearest-neighbor
distance, and the distance between the two right ones is 3 times the mean
distance. 764 points were sampled from this distribution (Figure 5.2).

Performing SPC analysis of this data, using di�erent K values, gives rise
to three di�erent clustering solutions. For very low (smaller than 3) and very
high (larger than 50) values of K, no macroscopic cluster is identi�ed (except
the one which includes all the data).

Using K values between 5 and 20, SPC identi�es three major clusters,
corresponding to the three components of the distribution. At higher tem-
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Figure 5.2: 764 points, sampled from a three-component two-dimensional
distribution
.
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peratures these clusters break up into several sub clusters.
At higher K values (above 20) SPC is unable to distinguish between the

�rst two clusters. This is exactly the case when the large number of edges
lowers the resolution to a point where the gap between two clusters is un-
noticeable. Typical dendrograms are shown in �gure 5.3.

We would like to identify the optimal value of K, based on the robustness
of the di�erent solutions. This is done by a variant of our resampling scheme.
Let us �rst describe the new scheme, and then comment about why it is
needed.

Consider once more a data set of N points. First, we choose a subset A
of N1 points out of the original data. We then divide the remaining N �N1

points to two equal sets, B1 and B2. Finally, we construct two data subsets,
C1 and C2 such that Ci = A [ Bi, i = 1; 2.

The SPC algorithm is applied to each one of the two data sets C1 and C2

separately, yielding a clustering solution for each set. The clustering solution
is chosen to be the last level of the dendrogram where all clusters are macro-
scopic. To compare the two solutions, we look at the data points common
to both sets (i.e. the subset A), and mark a success for each neighbor pair
among them whose members either belongs to the same cluster in both solu-
tions, or belong to di�erent clusters in both solutions. The whole procedure
results in a score, which is the number of successes divided by the number of
pairs.

The whole process is done with some value of K. Fixing this value, we
repeat the whole process m times (m ' 20 turns to work rather well). The
�gure of merit for this K value, M0(K) is just the average of the m scores
obtained from the m runs. This score is not very far from our previous
scoreM, except that here we measure the correlation between the clustering
assignments obtained for two resamples, rather than between the cluster
assignment of a resample and that of the full sample.

This procedure is carried out for all values of K under investigation. A
stable solution is characterized by a score close to one.

The subsets used in this method are, of course, smaller than the original
set. There is no reason to believe that the optimal K value for sets of di�er-
ent sizes should be the same, and indeed it is not. However, it is reasonable
to assume that there is a correspondence between the two. This correspon-
dence should rely heavily on the structure of the data, and thus cannot be
determined universally.
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Figure 5.3: Clustering solutions for (a) K = 5, (b) K = 10 and (c) K = 40.
Branches are identi�ed with the three ellipses. The dendrogram of (b) is the
only one to include a level at which the three ellipses are separated.
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For this reason it is di�cult to calibrate the parameter under investigation
a priory as was done before, when discussing the resolution parameter (e.g.
using a0 = a=f in section 4.1). The resampling scheme presented here does
not need this calibration, and allows it to be performed after the results of
resampling have been obtained.

Figure 5.4 shows the di�erent values of M0(k) for our two-dimensional
three cluster example. Here we used 20 pairs of resamples, each consists of
510 points with a common subset of size N1 = 254. The maximum of this
curve at K ' 10 recovers that clustering solution which indeed identi�es the
three clusters.
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Figure 5.4: The stability score M0(K) for the two-dimensional three-cluster
example. This curve has a peak atK ' 10, which signals a reliable clustering
solution.

In chapter 6 we follow the same method to determine the optimal working
value for K for clustering analysis of DNA-chip data.



Chapter 6

Validation method applied to

DNA microarray data

6.1 Introduction

The relation between genetic variability and phenotype is a central theme in
modern genetics. To understand genetic variation and its consequences on bi-
ological function, an enormous e�ort is made to compare among sequences in
various conditions. Conventional nucleic acid sequencing technologies make
use of analytical separation techniques to resolve sequence at the single nu-
cleotide level. In this kind of methods, however, the e�ort required increases
linearly with the amount of sequence. In contrast, biological systems read,
store, and modify genetic information by molecular recognition. Each DNA
strand carries with it the capacity to recognize a uniquely complementary
sequence through base pairing. The process of recognition, or hybridization,
is therefore highly parallel, as every nucleotide in a large sequence can in
principle be queried at the same time. Thus, hybridization can be used to
e�ciently analyze large amounts of nucleotide sequence.

This idea is the basis for novel microarray-based techniques for high-
throughput monitoring of gene expression. The ability of nucleic acids to
hybridize with other nucleic acids with a complementary nucleotide sequence
lies at the heart of this technology. For example, a piece of DNA with the
sequence ATGGCT will readily bind to a DNA with the sequence TACCGA.
However, even one nucleotide which is not complementary would reduce sig-

50
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ni�cantly the a�nity of the binding.
There are two leading methods in the DNA microarray community. One

method involves using microarrays of cDNA clones as gene-speci�c hybridiza-
tion targets to quantitatively measure expression of the corresponding genes.
About 10,000 cDNAs can be robotically spotted onto a microscope slide.
A two-color 
uorescence labeling and detection scheme facilitated sensitive
di�erential expression analysis of di�erent tissues [20]. This enables the eval-
uating the response to external perturbation (such as heat shock [21]), the
comparison of di�erent phases of a time-sequence (e.g. cell division cycle
[22], response to radiation), or comparison between di�erent subjects.

A second method uses oligonucleotides probes, designed to match spe-
ci�c sequences. In this way the most informative subset of probes is used
[23]. Manufacturing of the array is based on photolithographic masking tech-
niques, used in the semiconductors industry. Using this technique, high den-
sity arrays with a precise geometric pattern of hundreds of thousands of short
pieces of DNA with de�ned sequences is built up on a small glass chip. A
single chip can analyze in parallel up to 10,000 di�erent sequences. Measure-
ments can either be comparative (using a two-color scheme) or absolute.

DNA microarrays provide a simple and natural tool for exploring the
genome, in a systematic and comprehensive way. Several features make it
exceptionally well suited for exploratory research [24]: it is universal, fast,
fully automated, and relatively cheap. But its main feature is the large scale
at which it enables instantaneous look at the activity in a cell.

The main challenge today is no longer in the expression arrays them-
selves, but in developing experimental designs to exploit the full power of
a global perspective. The greatest challenge is analytical [25]. While early
expression pro�ling experiments involved comparing just two samples, ex-
periments today involve tens of di�erent tissues. One expect to gain deeper
biological insight from examining datasets with scores of samples { for ex-
ample, multiple time points from multiple cell lines treated independently,
or tissues coming from di�erent patients of several types of disease. The re-
sult is an enormous amount of data, from which biological as well as clinical
implications should be drawn.

In these cases, each gene de�nes a point in D-dimensional space (where
D is the number of samples studied), and functional similarities are likely
to reveal themselves as 'clusters' in this space. Several authors suggested
di�erent clustering methods for the task of revealing meaningful clusters
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[22, 26, 27]. The question of the similarity measures, however, has not been
fully investigated yet.

The main problem is still evaluating the results of these methods. In par-
ticular, a method to identify groups of genes which are reliable, and may be
candidates for a deeper analysis, is still absent. We suggest using clustering
validation methods, suggested at the previous chapter, for these purposes.

Other informatics issues are related to DNA microarrays, including data
warehousing, integration with biological databases, and visualization [28].
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6.2 Colon Cancer experiment

In this section we describe clustering analysis of oligonucleotide array data,
that consists of 2000 gene expression pro�les for 62 tissues, 40 of which are
colon cancer tumor and 22 are normal. This data was originally analyzed by
Alon et al. [27]. Using a variant of the deterministic annealing method [19],
they performed cluster analysis on the tissues and found two large clusters
that coincide with independently determined classi�cation into tumor and
normal tissues.

As mentioned at the beginning of this chapter, developing analysis meth-
ods for DNA microarray data is of fundamental importance. We therefore
revisited this experiment, and suggested a systematic method to zoom in on
clusters of genes which cooperatively di�erentiate tumor tissues from normal
ones. Full account of this work is give elsewhere [29].

In this section, we demonstrate the use of our resampling cluster validity
method for this DNA microarray data. After a brief account of the clustering
analysis, we present the application of resampling methods for clustering
tissues as well as genes. We then compare of these results with known tagging
of the genes.

6.2.1 The data set

The data set is composed of 40 colon tumor samples and 22 normal colon tis-
sue samples, analyzed with an A�ymetrix oligonucleotide array complemen-
tary to more than 6500 human genes and ESTs (expressed sequence tags).
The genes are represented on a set of 4 chips. Following the analysis per-
formed by Alon et al. [27], we use only the 2000 genes of highest intensity1.
The expression data can be described as a matrix Aij, where i = 1; : : : ; 2000
is the gene index and j = 1; : : : ; 62 is the tissue index. This data is available
on the web at http://wwww.molbio.princeton.edu/colondata/.

To analyze the genes, we view each row of Aij as a vector in a 62 dimen-
sional metric space. The data to be clustered consists of 2000 such points.
Since in most cases [27, 30, 22], one is interested in identifying and cluster-
ing together genes that have correlated expressions, the Pearson correlation

1We sort the genes according to their minimal expression over the tissues, and include
in our data the highest 2000.
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coe�cient is used as a similarity measure between the genes. Equivalently,
one can normalize each row of the matrix, such that its mean vanishes and
its L2 norm is unity. The Euclidean distance between two normalized genes,
� and �, is related to the Pearson correlation by

d2�� = 2(1� Corr(�; �)): (6.1)

The normalized data constitutes a new matrix, G, where
X
j

Gij = 0 ;
X
j

G2ij = 1 8i: (6.2)

Another way to view the data is to consider the tissues as our (62) data
points in a 2000 dimensional space. This will allow us to cluster the tissues
on the basis of their expression pro�le over the entire set of genes. For this
view we construct a new matrix T , obtained by normalizing the columns of
the matrix A. The elements of T are

Tij = Aji �PkAki=np
n� 1StdkAki

: (6.3)

Each of the 62 rows of T represents the gene expressions of a di�erent tissue,
yielding 62 data points in a 2000 dimensional space.

6.2.2 Clustering the tissues

The main purpose of clustering the tissues is to check whether the tumor
and normal tissues can be naturally separated on the basis of gene expression
data. If this is indeed possible, one can proceed to the next step and identify
the genes that are responsible for the separation.

We used SPC to cluster the tissues [29], and identi�ed two clusters of
tumor and normal tissues with high accuracy and e�ciency. We chose the
valueK = 12, using a method which may be considered supervised; expecting
to �nd two classes, we settled for a value of K which has 'got the job done'.

In general, we want the clustering procedure to be unsupervised all the
way. This is of course the case when no prior knowledge of the data is
available. Here we use the resampling mechanism to identify a good K value.
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Di�erent solutions

Using di�erent values for the parameter K yields di�erent clustering solu-
tions. These solutions can be seen in the dendrograms of �gure 6.1.

When using SPC with K = 5, the data breaks into the 'correct' two
clusters, but then almost immediately it breaks again into �ve sub-clusters.
Looking at the temperature scale, one may argue that the �ve cluster solution
is the stable solution (in terms of section A.2), and one may question the
validity of the two-cluster solution.

For K = 15, the only break into macroscopic clusters is the one which
identi�es the two 'correct' clusters. We mark these clusters by arrows in the
dendrogram (�gure 6.1(b)). The corresponding dendrogram shows that the
larger cluster of the two is less dense, and so it 'melts away' while the smaller
cluster survives for a wide range of temperatures.

Finally, at K = 25 one identi�es the separation of the small cluster from
the rest of the data. However, the rest of the data breaks immediately into
many clusters of order one, so it should be considered as a background rather
than another cluster.

Geometric interpretation

The above results suggest the following geometric interpretation, visualized
in �gure 6.2. We imagine that our data set is constructed from three clusters,
where the �rst (A) is denser than the other two, while those (B and C) are
closer to each other then to A. It may very well be that the separation
between clusters B and C is a sample artifact.

At low K value, the three clusters are very loosely connected. As the
temperature rises, the three break up almost together. This is a manifestation
of the fact that small values of K increase the sensitivity of SPC to noise
(such as the small crack in the data, separating clusters B and C).

Increasing the value ofK is manifested more signi�cantly in the number of
connection between clusters B and C then in the connections between those
clusters and cluster A. Therefore, the global interaction to cluster A gets
relatively weaker, and the two major clusters, A and B+C, are separated at
some temperature. However, it may be that the large number of connections
between clusters B and C makes the interaction between them so strong, that
they are not separated anymore, but melt together. This meltdown occurs
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(a) (b)
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Figure 6.1: Clustering solutions for (a) K = 5, (b) K = 15 and (c) K = 25.
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Figure 6.2: Geometric interpretation for di�erent clustering results, for (a)
low K values, (b) moderate values, and (c) high values.

while cluster A stays intact, due to its higher density.
As K gets even larger, the whole data set is highly connected, and does

not break into large clusters. It just \melts" gradually, starting with the
lower density areas (formerly known as clusters B and C), and moving at
higher temperatures to the higher density area A.

Resampling method

Let us now go back to our resampling method for validating a clustering
solution of the tissues. The question of which value of K to choose may be
translated to one on cluster validity. If the 5 cluster structure is a reliable
one, a small K value should be selected. If no cluster structure exists in the
data, a large K should be chosen, etc.

In order to calculate our �gure of merit M, we break the data 20 times
into two parts, each of size 2/3 of the data. One third of the points reside in
both parts, and their clustering assignment is used to calculateM. For each
application of the SPC algorithm, we regard the �rst break into macroscopic
clusters as the clustering solution.

The results obtained for several values of K are plotted in �gure 6.3. As
expected, very low and very high values of K give similarly stable solutions.
These are just the cases where the �rst break in the data already breaks it up
to single point clusters. However, At K = 8 we observe another peak in M ,
which corresponds to a break into the two 'correct' clusters. This solution
appears also for higher values of K, but in these cases it is not stable to
resampling.



6.2. Colon Cancer experiment 58

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

M

Figure 6.3: Figure of meritM as a function of K for the colon tissue data.

It should be noted, however, that this optimal value of K = 8 correspond
to a data set which is smaller than the original one. In order to �nd the
corresponding K values for the full sample, we check for which K are the
clustering assignments of the full sample most similar to the assignments
obtained for the resampled subsets. We �nd that when using K = 10 for
clustering the full sample we obtain the most similar results2 to clustering
the resampled subsets with K = 8.

We conclude that using K = 10 for the full sample is optimal for our case.
This value is in agreement with our understanding that this value should be
low (in order to be sensitive to the substructure of the data), but not too low
(in a way that would not enable to reveal the hierarchy of the structure).

6.2.3 Clustering genes

Clustering the genes serves two purposes. One is to identify groups of genes
which act cooperatively. If such cooperative behavior is consistent with the
di�erent classes of tissues, one can hypothesize about the role this group of
genes serves in the colon cancer.

2The similarity between these clustering solutions is measured as de�ned by the original
M.
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The other purpose is more exploratory in nature. Having identied cluster
of genes, one may ask what makes their expression correlated. Trying to
answer this question, one may, for example, identify common promoters of
these genes, or alternative classi�cations of the tissues.

Clustering analysis is therefore applied for the data matrix G, which has
2000 rows corresponding to the 2000 genes, and 62 columns corresponding to
the tissues. In [29] we propose a systematic method to analyze the clustering
results, and to identify such clusters. Here we take a di�erent approach, and
try to identify gene clusters worth inspection based on their reliability, in
terms of stability against resampling.

The SPC results are shown as a dendrogram in �gure 6.4. This dendro-
gram is the result of clustering the full 2000 genes.

Our resampling scheme has been applied to this data, using 25 resamples
of size 1200. This time, however, we calculatedM for each cluster of the full
original sample separately. Given a cluster C, we calculate M only for the
points of this cluster, at the temperature at which this cluster is identi�ed.
We therefore get a stability merit for each cluster. In �gure 6.4 we paint each
box, representing clusters, according to this score.

We now focus our attention on clusters of highest scores. First, we take
the top 20 clusters. If one of these clusters is a descendent of another one from
the list of 20, we discard it. We are left with 6 clusters, which are circled and
numbered in �gure 6.4 (the numbers are not related to the stability score).

We are now ready to interpret those clusters. The �rst three clusters
consist of known families of genes. Cluster #1 is the Ribosomal proteins
cluster. The genes of cluster #2 are all Cytochrome C genes, which are
related with energy transfer. Most of the genes of cluster #3 belong to the
HLA-2 family, which are histocompatability antigens.

Cluster #4 contains a variety of genes. Some of these genes are related to
metabolism. When trying to cluster the tissues based on these genes alone,
we �nd a stable partition to two clusters, which is not consistent with the
tumor/normal labeling. At this point, we are still unable to explain this
partition.

Clusters #5 and #6 contain also genes of various types. The genes of
these clusters have most typical behavior: all the genes of cluster #5 are
highly expressed in the normal tissues but not in the tumor ones; And all
genes of cluster #6 are the other way around.

To summarize, clustering stability score based on resampling enabled us
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Figure 6.4: Dendrogram of genes. Clusters of size 7 or larger are shown as
boxes. Color code is based onM. Selected clusters are circled and numbered,
as explained in the text.
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to zero in on clusters with typical behavior, which may have biological mean-
ing. Using resampling enabled us to select clusters without making any new
assumption, which is a major advantage in exploratory research. The down-
side of this method, however, is it's computational burden. In this experiment
we had to perform clustering analysis 20 times for a rather large data set.
This would be the typical case for DNA microarray data.



Chapter 7

Summary

This work proposes a method to validate clustering analysis results, based
on resampling. It is assumed that a cluster which is robust to resampling is
less likely to be the result of a sample artifact or 
uctuations.

The strength of this method is that it requires no additional assumptions.
Speci�cally, no assumption is made either about the structure of the data,
the expected clusters, or the noise in the data.

We introduced a �gure of merit, M, which re
ects the stability of the
cluster partition against resampling. The typical behavior of this �gure of
merit as a function of the resolution parameter allows clear identi�cation of
natural resolution scales in the problem.

The question of a natural resolution levels is inherent to the clustering
problem, and thus emerges in any clustering scheme. The resampling method
introduced here is general, and applicable to any kind of data set, and to any
clustering algorithm.

Using a simple one-dimensional model, we got an analytical expression
for our �gure of merit, which enabled us to determine its behavior as a
function of the resolution parameter. Local maxima are identi�ed for values
of the parameter corresponding to stable clustering solutions. Such solutions
can either be trivial (at very low and very high resolution); or non-trivial,
revealing internal structure of the data.

We tested this behavior numerically on several data sets, of di�erent levels
of complexity: a one dimensional data set, very similar to the one considered
in our model; a two-dimensional toy problem, where we used SPC as our
clustering algorithm; and real life DNA microarray data. In the �rst two
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cases local maxima, corresponding to correct solutions, were observed. In the
last case, relatively high values of the �gure of merit enabled us to identify
genuine clusters of genes.

The �gure of meritM was also used to determine an optimal value for an
important external parameter of the SPC algorithm, namely the connectivity
level of the input graph. At the optimal value the clustering solution is
stable against resampling and, therefore, the �gure of merit M has a local
maximum. We demonstrated this application of the �gure of merit for two-
dimensional toy data and for tissue clustering, based on DNA microarray
data.

Our resampling scheme enable us to identify the most stable clustering
solution among several alternatives. It does not, however, assign a statistical
signi�cance to this solution. This should be the subject for further research.

The fast developing area of DNA microarrays calls for the formulation
of an analysis scheme, which incorporates not only good similarity measures
and clustering methods, but also methods to validate the results. We have
shown here that resampling techniques, together with a validity index which
is free from uncontrolled assumptions, may serve well in this area. This also
calls for more research.



Appendix A

Cluster validity indices

The most common method of clustering validation is the use of validity in-
dicators. Given a clustering solution, the calculated value of an indicator
should re
ect, in some sense, how well this solution meets a certain criterion.
This criterion incorporates the the features one expects a good clustering
solution to have.

Most cluster validity indicators are based on some geometrical interpre-
tation of the notion of clustering. Let us �rst present a few examples.

The �rst index [2] assumes that the clusters are compact. It then states
that a criterion for a good partition of the data into subgroups should �ll the
following requirements:

1: Clear separation between the resulting clusters.
2: Minimal volume of the clusters.
3: Maximal number of data points concentrated

in the vicinity of the cluster centroid.

(A.1)

Given a clustering solution, an index W is calculated, to measure how
well this solution meets these requirements. Let ci be the i'th cluster with ~gi
its centroid. Following [2], we de�ne the within cluster dispersion

Si =

vuut 1

jcij
X
~xj2ci

(~xj � ~gi)
2 ; (A.2)

and the between cluster separation

Tij = j~gi � ~gjj : (A.3)
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The index is then given by

W =
1

C

CX
i=1

max
j 6=i

Si + Sj

Tij
; (A.4)

where C is the number of clusters.
For each pair of clusters, the ratio between the mean within cluster dis-

persion and the between cluster dispersion is measured. In order to calculate
W , the worst counterpart for each cluster, i.e. the cluster for which this ratio
is maximal, is taken. Therefore, a smaller value of W re
ects a clustering
solution which better ful�lls the requirements.

There are two major assumptions involved in the requirements A.1. First,
one assumes that the data points reside in a metric space, so that one can
identify the centroid of a cluster, and calculate the distances of points from
it. Next, it is assumed not only that clusters are compact, but also that they
are spherical about a centroid. This assumption is correct for a very small
subset of clearly clustered data sets. For example, the data set of �gure 4.9,
as well as the one of �gure A.1, do not share this property.
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Figure A.1: Example data set. 48 points reside in two non-compact clusters.

However, many clustering algorithms (e.g. DA, EM, c-shell [3] and more)
incorporate precisely theses assumptions into their search process. It is there-
fore not surprising that this clustering validity index, and many similar to
it, are widely used to compare between these methods.
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The second index [1] uses more local notions. It is based on the obser-
vation, that in order to include a point in a cluster, one expect this point
to be closer to the points of this cluster than to other points. The family
of indices which try to re
ect this feature are all based on comparing be-
tween distances among points within a cluster, to distance between points of
di�erent clusters.

One of the members of this family, perhaps the most straightforward one,
is the index ~R, given by

~R =
1

C

vuutX
c

 
~Wc

~Mc

!2

; (A.5)

with
~Wc =

1

n2c

X
i;j2c

dij ; (A.6)

and
~Mc = min

c0

1

ncnc0

X
i2c;j2c0

dij : (A.7)

Here c is the cluster index, c = 1; : : : ; C; c0 is the cluster which is 'closest' to
the cluster c; nc and nc0 are the cluster sizes. Clustering assignment which
reduces the value of ~R is considered better.

Again, there is an assumption of compactness both in this index, and in
the clustering notion behind it. In any cluster, there may be some points
which are far from each other. For example, imagine a spherical cluster, and
consider two points which lie on the perimeter, separated by the full sphere
diameter. These points reside in the same cluster due to the fact, that they
are both close to the cluster core. The distance between these two points
contributes to ~W . However, if the cluster is compact, there are not that
many such pairs, and the sum in ~W is not a�ected strongly by them.

If the clusters are not compact, however, these pairs dominate the sum.
For example we refer the reader again to the sample of �gure A.1. Two clus-
ters of 60 points, arranged on a cubic lattice with nearest-neighbor distance
a = 1, are separated along the x axis by a distance b = 5. Here

~Wc1 = ~Wc2 = 4:27 ; ~M = 6:0 (A.8)

and
~R = 0:5 : (A.9)
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By imposing a cluster solution which is compact, even though unnatural
to this problem, we can reduce this value of R. Let us break the same data
set into two clusters, by breaking it middle way along the y axis. Now we
have

~Wc1 = ~Wc2 = 3:53 ; ~M = 6:72 (A.10)

and
~R = 0:28 : (A.11)

As expected, the compact cluster solution, though incorrect, gives a better
result according to this de�nition of the index ~R.

A.1 Eliminating compactness assumption by

using pairs of neighbors

We would like to introduce now a modi�ed version for this index. In the
new version, which we call R, only pairs of neighbor points are considered.
Furthermore, we use a rapidly decreasing function of the distance, Jij of
equation 2.5, instead of the distance itself. We then have

R(T ) =
1

C

vuutX
c

�
Wc

Mc

�2
; (A.12)

with

Wc =
1

ec

X
hi;ji
i;j2c

Jij; (A.13)

Mc =
1

e0c

X
hi;ji

i2c;j 62c

Jij: (A.14)

Where ec is the number of edges connecting points of cluster c, and e0c is the
number of edges connecting point of cluster c and points outside it. Note
that by moving from the distance dij to the interaction Jij, we expect now
R to be larger for a better solution.
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Let us look back at the example of �gure A.1. Neighboring points were
decided according to the K-nearest-neighbor criterion, with K = 4. This
time we have

Wc1 =Wc2 = 0:7 ; M = 0:46 ; R = 2:4 (A.15)

for the true clusters; and

Wc1 = Wc2 = 0:7 ; M = 0:68 ; R = 1:08 (A.16)

for the compact partition. This time, a better solution is identi�ed by the
larger R.

Imagine that an analyst has a data set he wants to cluster, and he �nds
in a book two clustering algorithms, which we call A1 and A2. The analyst
applied the two algorithms to his data set, and obtains two distinct clustering
solutions. Having read this text, he calculates the R index, and gets the
results R1 and R2, respectively, where R1 > R2. But what is the statistical
signi�cance of this result?

In order to give this kind of results a statistical signi�cance, one should
obtain the statistics of the index R. This is done using resampling again,
in a method which is based on the bootstrap approach [6]. Again, a set of
resamples is constructed. For each resample, clustering algorithms, say A1

and A2, are applied. The index R is then calculated for every clustering
solution of every resample. Using the obtained populations of R1 and R2

values, the standard deviations �1 and �2 are obtained.
It is than straightforward to de�ne a measure, similar to the well-known

t-test,

t =
R1 �R2�

��11 + ��12

��1 ; (A.17)

which measures the di�erence between the two original values of R in terms
of its standard deviation. This measure provides a statistical meaningful
method to compare the two results.

We note that the value of R is related to the method of determining the
neighboring pairs. Speci�cally, if one chooses to work with the K-nearest-
neighbor criterion, R depends on K. This dependence, however, is not too
sensitive. In �gure A.2 we show the values of R for di�erent values of K.
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Figure A.2: (a) The index R calculated for di�erent sets of neighboring
pairs, determined by the K-nearest-neighbor criterion. Remember that a
better solution is characterized by a larger value of R. As the number of
neighbor pairs gets too large, R prefers compact clusters. (b) For the same
data, ~R is calculated using only neighbor points; lower R corresponds to a
better solution.
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A.2 Temperature range is a measure of sta-

bility

All methods which average distances within clusters and between them, have
a problem which we call counting irrelevant distances. To explain what we
mean by irrelevant distances, let us de�ne what relevant distances are.

There are two distance scales, or resolutions, in the life of a cluster. The
�rst scale is the one which separates this cluster from its surroundings. This
may be the width of the valley in the distribution of data points that sur-
rounds it, its distance from the nearest cluster, etc. The second scale, is the
one separating its sub-clusters, or the resolution at which it breaks up.

The relevant distances between data points of the cluster are those on
either one of the two scales. Obviously, counting all distances (as suggested
in ~R) include many distances which have nothing to do with these scales (for
example, the distances between points on two di�erent sides of the cluster).

Counting only pairs of neighbor points reduces the number of irrelevant
distances that are counted, but does not eliminate them completely. No
method exists that can distinguish between pairs of relevant distances and
pairs of irrelevant ones.

We present here a method to overcome this problem, which is unique to
the SPC algorithm. In �gure A.3 we plot the correlation functions Gij, as
a function of the temperature, for all neighbor pairs in the data of �gure
A.1. Let us focus our attention on the left cluster. This cluster is formed at
temperature T = 0:037, where the correlation functions corresponding to the
edges connecting it to the world (painted red in the �gure) decrease below the
threshold value � = 0:5. It is broken when the correlations corresponding to
internal edges (painted green) also decrease below the threshold, at T ' 0:1.

The distance between the two groups of curves, the one corresponding to
correlations between the cluster and the world, and the other corresponding
to correlations within the cluster, is a measure for the stability of the cluster.
In [17] we argue that the best way to measure the distance between corre-
lations is by subtracting the temperature integrals of the two curves. If one
approximates these curves by a unit step function, which changes from one
to zero at the temperature where the original function gets the value 0.5,
than the di�erence of the integrals is just the di�erence of the corresponding
temperatures. This di�erence is then normalized by the mean interaction
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Figure A.3: Correlation functions for neighbor pairs of the data set in �gure
A.1. Lines in red correspond to edges connecting the two clusters, lines in
green correspond to internal edges of the left cluster.

strength, to obtain the dimensionless stability index

Q =
Tint � Text

�J
: (A.18)

Here Text is the de�ned by G(Text) = 1
2
for the edges of the group which

connects the cluster to the outside world1 and similarly G(Tint) =
1
2
for edges

which connect its sub-clusters.
It is intuitively appealing to claim that clusters which survive for a wider

range of temperatures are more reliable. This de�nition of Q provides a
geometrical interpretation of this observation. Clusters which survive for
wider ranges of temperatures are those for which the distance scale which
separates the cluster from its surrounding is signi�cantly di�erent from the
one which breaks it to pieces.

Obtaining statistics for the index Q is di�cult. Therefore, Q should be
used mainly to order resulting clusters according to their reliability. In then
next section we demonstrate the application of this method.

1Due to noise, it may be that di�erent edges of this group have slightly di�erent such
temperatures. In such case, we choose the highest of these temperatures.
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A.3 Yeast cell cycle experiment

The biology literature of recent years presents a lot of evidence for cell cycle-
regulated genes. Such regulation may be required for the proper functioning
of mechanisms that maintain order during cell division, allow conservation
of resources and more.

Many cell cycle-regulated genes are involved in processes that occur only
once per cell cycle, including many that controls the cell division. The cell
division cycle is thus a self-regulating mechanism.

A series of experiments were cpnducted by Spellman et al. [31] in order to
identify cell-cycle regulated genes in the gnome of Saccharomyces cerevisiae
yeast. These experiments utilized cDNA microarrays with cDNAs represent-
ing the full yeast genome.

Spellman et al. used several di�erent methods to synchronize the yeast
cells in the sample before microarray hybridization. We limit our discussion
here to one experiment where the synchronyzation was done by adding an �
factor to the sample. Samples for hybridiztion were taken every 7 minutes
for almost 140 minutes. Details of the experiment can be found in [31]. The
data is available at URL http://cellcycle-www.stanford.edu.

Following Eisen et al. [22], we use in our analysis only the 2467 genes
whose functional annotation is known. The data from this experiment is thus
a 2467� 18 matrix, Eij; i = 1; :::2467 and j = 1; :::18.

A.3.1 Clustering genes with SPC

In order to �nd groups of cell cycle-regulated genes, or other groups of genes
with potentially interesting behavior, we perform clustering for the genes.
We therefore regard the genes as 2467 data points in a 18 dimensional space.

The coordinates of each gene were normalized in the standard way;

Yij =
Eij� < Ei >

�i
(A.19)

where

< Ei >=
1

18

18X
j=1

Eij ; �2i =
1

18

18X
j=1

E2
ij� < Ei >

2 : (A.20)
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Euclidean distance between the rows of the matrix Yij is proportional to
the Pearson correlation, commonly used in the DNA microarray community,
between rows of the original matrix Eij.

The data were clustered using the SPC algorithm. The neighboring points
were decided according to the K-mutual-neighbor criterion, described in chap-
ter 2, with K = 10.

The resulting dendrogram is shown in Fig A.4. Each node represents a
cluster at some level. The boxes are clusters whose size exceeds 6.

24

7
6

1

3 5

Figure A.4: Dendrogram of genes, according to SPC . Boxes are clusters
containing 7 genes or more. Coloring is according to the Q score. Circled
clusters are the selected ones, as explained in the text.
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The branches of the resulting dendrogram were ordered in the following
way: say at some point a cluster C has split into C1 and C2. Say of these
two C1 splits �rst, into C

(1)
1 and C

(2)
1 . These two sibling branches are ordered

according to the proximity of their centroids to the centroid of their \uncle",
C2. The ordering obtained from this procedure is believed to re
ect the
structure of the data.

A.3.2 Cluster validity index is used to identify inter-

esting clusters

In section A.2 we described the index Q, which identi�es stable clusters as
those which survive over a long range of temperatures. We claim that the
correlation between points residing inside such a cluster is signi�cantly larger
than the highest correlation between this cluster and its surroundings.

In terms of gene expression, this argument is translated to the argument,
that the time variation of genes residing in such a cluster is signi�cantly
correlated among themselves. If the only synchronized process in the di�erent
cells is the cell division cycle, then one expects such genes to be cell cycle-
regulated.

We calculated the score Q for each one of the clusters which appear in
the dendrogram of �gure A.4. The score of each cluster determines its color
in this �gure. Histogram of the scores is shown in �gure A.5.

The score Q can now be thresholded in order to select interesting clusters.
We select a cluster if its Q score is higher than 0.9, while its parent's score
is not. This way we do not bother ourselves with sub clusters of selected
clusters. The selected clusters are the ones which are circled in �gure A.4.
The mean time pro�le of these clusters is shown in �gure A.6.

We would like now to interpret the selected clusters. By inspecting the
mean pro�les, it is evident that clusters 1, 2 and 3 are cell cycle-regulated.
Indeed, we identify in these clusters many genes which are known to be cell
cycle-regulated.

Like all living cells, the yeast cell cycle consists of four phases:
G1!S!G2!M!G1 . . . , where S is the phase of DNA synthesis, M stands
for mitosis, and G1 and G2 are the gap phases. In cluster #1 we �nd genes
which are active at the G2/M-phase of the cell cycle; Cluster #2 is dominated
by histones, which are S phase genes; and cluster #3 contains mostly late
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Figure A.5: Histogram of the Q-score for the clusters of �gure A.4.

G1 speci�c genes.
Clusters 4 and 5 are not cell cycle-regulated, as we can see from their

mean expression pro�le. This claim is supported by the fact, that in these
cluster we could not �nd any gene which is known to be cell-cycle regulated.
Nevertheless, the two clusters do have some unique pro�le. In cluster #4,
we clearly identify a transient behavior. This behavior may be related to the
fact that the cells were starved during the � factor arrest. Genes of cluster
#5 are correlated due to the sharp peak at the second time step. This may
be some artifact of the experiment.

Finally, clusters 6 and 7 show more erratic behavior. From the small
error bars, we see how well the genes of these clusters are correlated among
themselves. It turns out that the genes of these two clusters are are all
ribosomal proteins, which we �nd in all our DNA chip works to be highly
correlated.

In another work [32] we have used other methods to identify interesting
clusters. We found 11 such clusters. Out of these clusters, 7 clusters share
the same branch as the clusters selected here. The other 4 clusters have
larger standard deviation from the mean pro�le.
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Figure A.6: Mean expression pro�le for the selected clusters. error bars
represent the standard deviation of the expression of the genes in the cluster.
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In summary, we �nd that the cluster validity index Q turns out to be
rather e�cient in identifying clusters of some biological meaning. The main
advantage of this approach is the intuitive meaning of this index. Another
bene�t is that in fact the calculation of the index, and the thresholding, is
not necessary: one can identify clusters of high Q scores just by looking at
the dendrogram, and observind branches which remain stable through large
range of temperatures.
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